Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Permittivity-customizable Low-cost Laminated PET Sheet Multilayer Substrate to Design Flexible and Conformal Planar Inverted F Antenna

Author(s): Sachin Maithani*, Shivam Bansal, Garima Saini and Balwinder Singh Dhaliwal

Volume 16, Issue 7, 2023

Published on: 03 July, 2023

Page: [717 - 725] Pages: 9

DOI: 10.2174/2352096516666230503150934

Price: $65

Abstract

In this article, a Planar Inverted F Antenna (PIFA) has been designed using low-cost commercially available transparent laminated sheets. Energy Dispersive X-ray (EDX) analysis is used to acquire the element composition of the transparent laminated sheet.

Methods: The flexibility is attained using a market-available low-cost Polyethylene Terephthalate (PET) sheet as a substrate. The dielectric properties of this non-conventional laminated sheet need to be identified for antenna design and the microstrip ring resonator test method is used to determine the dielectric properties of the multilayer PET sheets.

Results: The linear match has been observed on multilayer laminated PET sheets for dielectric properties and radiation characteristics. Adhesive copper foil of a thickness of 0.08 mm has been used as for conducting layer on the PET lamination sheet. As per the literature survey, it is evident that this is the first attempt to use the reported methodology for PIFA design application. The gain of proposed antenna is 5.2 dB.

Conclusion: The designed flexible antenna has been developed for wearable and IoT applications in 2.45 GHz ISM band. A good match has been observed between the simulated and measured characteristics.

Keywords: Planar inverted F antenna (PIFA), polyethylene terephthalate (PET), industrial scientific and medical (ISM), lowcost antenna, flexible antenna, energy dispersive x-ray (EDX).

Graphical Abstract
[1]
A. Rida, L. Yang, R. Vyas, and M.M. Tentzeris, "Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications", IEEE Antennas Propag. Mag., vol. 51, no. 3, pp. 13-23, 2009.
[http://dx.doi.org/10.1109/MAP.2009.5251188]
[2]
R.B.V.B. Simorangkir, Y. Yang, L. Matekovits, and K.P. Esselle, "Dual-band dual-mode textile antenna on pdms substrate for body-centric communications", IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 677-680, 2017.
[http://dx.doi.org/10.1109/LAWP.2016.2598729]
[3]
H.A. Elmobarak Elobaid, S.K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, "A transparent and flexible polymer-fabric tissue uwb antenna for future wireless networks", IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1333-1336, 2017.
[http://dx.doi.org/10.1109/LAWP.2016.2633790]
[4]
A. Aneja, X.J. Li, and P.H.J. Chong, "Design and analysis of a 1.1 and 2.4 GHz concurrent dual-band low noise amplifier for multiband radios", AEU Int. J. Electron. Commun., vol. 134, p. 153654, 2021.
[http://dx.doi.org/10.1016/j.aeue.2021.153654]
[5]
T. Parveen, Q. Umar Khan, D. Fazal, U. Ali, and N. Akhtar, "Design and analysis of triple band circular patch antenna", AEU Int. J. Electron. Commun., vol. 112, p. 152960, 2019.
[http://dx.doi.org/10.1016/j.aeue.2019.152960]
[6]
H. Yalduz, T.E. Tabaru, V.T. Kilic, and M. Turkmen, "Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications", AEU Int. J. Electron. Commun., vol. 126, p. 153465, 2020.
[http://dx.doi.org/10.1016/j.aeue.2020.153465]
[7]
H. Arun, "Advancements in the use of carbon nanotubes for antenna realization", AEU Int. J. Electron. Commun., vol. 136, p. 153753, 2021.
[http://dx.doi.org/10.1016/j.aeue.2021.153753]
[8]
A. Abdu, H.X. Zheng, H.A. Jabire, and M. Wang, "CPW-fed flexible monopole antenna with H and two concentric C slots on textile substrate, backed by EBG for WBAN", Int. J. RF Microw. Comput.-Aided Eng., vol. 28, no. 7, p. e21505, 2018.
[http://dx.doi.org/10.1002/mmce.21505]
[9]
C.Y.D. Sim, C.C. Chen, B.S. Chen, and S.Y. Liang, "Compact size flexible UHF RFID tag antenna for racing pigeon ring applications", Int. J. RF Microw. Comput.-Aided Eng., vol. 27, no. 9, p. e21144, 2017.
[http://dx.doi.org/10.1002/mmce.21144]
[10]
J. Matyas, P. Slobodian, L. Munster, R. Olejnik, and P. Urbanek, "Microstrip antenna from silver nanoparticles printed on a flexible polymer substrate", Mater. Today Proc., vol. 4, no. 4, pp. 5030-5038, 2017.
[http://dx.doi.org/10.1016/j.matpr.2017.04.110]
[11]
H.R. Khaleel, H.M. Al-Rizzo, D.G. Rucker, and S. Mohan, "A compact polyimide-based UWB antenna for flexible electronics", IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 564-567, 2012.
[http://dx.doi.org/10.1109/LAWP.2012.2199956]
[12]
B. Mohamadzade, R.B.V.B. Simorangkir, R.M. Hashmi, and A. Lalbakhsh, "A conformal ultrawideband antenna with monopole-like radiation patterns", IEEE Trans. Antenn. Propag., vol. 68, no. 8, pp. 6383-6388, 2020.
[http://dx.doi.org/10.1109/TAP.2020.2969744]
[13]
L. Yang, A. Rida, R. Vyas, and M.M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology", IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2894-2901, 2007.
[http://dx.doi.org/10.1109/TMTT.2007.909886]
[14]
L. Wang, Y.X. Guo, B. Salam, and C.W.A. Lu, "A flexible modified dipole antenna printed on PET film", 2012 IEEE Asia-Pacific Conf Antennas Propagation, APCAP, Singapore, pp. 239-240, 2012.
[http://dx.doi.org/10.1109/APCAP.2012.6333246]
[15]
D. Betancourt, and J. Castan, "Printed antenna on flexible low-cost PET substrate for UHF applications", Prog. Electromagn. Res. C. Pier C, vol. 38, pp. 129-140, 2013.
[http://dx.doi.org/10.2528/PIERC13012507]
[16]
H. Dogan, I.B. Basyigit, and A. Genc, "Determination and modelling of dielectric properties of the cherry leaves of varying moisture content over 3.30–7.05 GHz frequency range", J. Microw. Power Electromagn. Energy, vol. 54, no. 3, pp. 254-270, 2020.
[http://dx.doi.org/10.1080/08327823.2020.1794724]
[17]
A. Genc, I.B. Basyigit, H. Dogan, and B. Colak, "Measuring and modelling the complex-permittivity of hemp plant (Cannabis Sativa) at X band for microwave remote sensing", J. Electromagn. Waves Appl., vol. 35, no. 14, pp. 1909-1921, 2021.
[http://dx.doi.org/10.1080/09205071.2021.1924294]
[18]
A. Genç, H. Doğan, and İ.B. Başyğ̇ıt, "A new semiempirical model determining the dielectric characteristics of citrus leaves for the remote sensing at C band", Turk. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1644-1655, 2020.
[http://dx.doi.org/10.3906/elk-1909-92]
[19]
A. Chebihi, C. Luxey, A. Diallo, P. Le Thuc, and R. Staraj, "A novel isolation technique for closely spaced PIFAs for UMTS mobile phones", IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 665-668, 2008.
[http://dx.doi.org/10.1109/LAWP.2008.2009887]
[20]
R. Caso, A. D’Alessandro, A.A. Serra, P. Nepa, and G. Manara, "An integrated dual-band PIFA for DVB-T and WiMAX applications", IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1027-1030, 2011.
[http://dx.doi.org/10.1109/LAWP.2011.2168372]
[21]
L. Catarinucci, F.P. Chietera, and R. Colella, "Permittivity-customizable ceramic-doped silicone substrates shaped with 3-d-printed molds to design flexible and conformal antennas", IEEE Trans. Antenn. Propag., vol. 68, no. 6, pp. 4967-4972, 2020.
[http://dx.doi.org/10.1109/TAP.2020.2969748]
[22]
G.P. Gao, C. Yang, B. Hu, R.F. Zhang, and S.F. Wang, "A wide-bandwidth wearable All-Textile PIFA with dual resonance modes for 5 GHz WLAN Applications", IEEE Trans. Antenn. Propag., vol. 67, no. 6, pp. 4206-4211, 2019.
[http://dx.doi.org/10.1109/TAP.2019.2905976]
[23]
S. Yan, V. Volskiy, and G.A.E. Vandenbosch, "Compact Dual-Band Textile PIFA for 433-MHz/2.4-GHz ISM Bands", IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2436-2439, 2017.
[http://dx.doi.org/10.1109/LAWP.2017.2723419]
[24]
M.G. Faraj, "PET as a plastic substrate for the flexible optoelectronic applications", Optoelectron. Adv. Mater. Rapid Commun., vol. 5, no. 8, pp. 879-882, 2016.
[25]
K. Singla, B.S. Dhaliwal, and G. Saini, "characterization and comparison of 3d printed substrate with varying infill density for antenna design applications", CEUR Workshop Proc, vol. 3058, pp. 0-1, 2021.
[26]
D. Markovic, B. Jokanovic, M. Marjanovic, and M. Djordjevic, "Improved Method for Measurement of the Dielectric Properties of Microwave Substrates Using Microstrip T-resonator," 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, Poland, 2007, pp. 1-3.
[http://dx.doi.org/10.1109/IMTC.2007.379138]
[27]
Y.N. Noskov, "Method for measuring properties of high relative dielectric constant materials in a cutoff waveguide cavity", IEEE Trans. Microw. Theory Tech., vol. 48, no. 3, pp. 329-333, 2000.
[http://dx.doi.org/10.1109/22.826830]
[28]
L. Cai, Z.H. Jiang, and W. Hong, "Broadband measurement of substrate complex permittivity using optimized ABCD matrix", IEEE Access, vol. 8, pp. 224513-224521, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3044699]
[29]
K. Chang, and L.H. Hsieh, Microwave Ring Circuits and Related Structures, 2nd ed. Neu Jersay, John Wiley & Sons, Inc., 2004.
[http://dx.doi.org/10.1002/0471721298]
[30]
Zhu Bocheng, Liu Zhangfa, and Li Shizhi, "A novel broadband microstrip antenna," In IEEE Antennas and Propagation Society International Symposium. 1995 Digest, Newport Beach, CA, USA, vol. 2, 1995, pp. 1014-1017
[http://dx.doi.org/10.1109/APS.1995.531096]
[31]
C.A. Balanis, Antenna theory Analysis and design., New Jarsey, USA Wiley, 1982.
[32]
S. Masihi, M. Panahi, D. Maddipatla, A.K. Bose, X. Zhang, A.J. Hanson, B.B. Narakathu, B.J. Bazuin, and M.Z. Atashbar, "Development of a flexible tunable and compact microstrip antenna via laser assisted patterning of copper film", IEEE Sens. J., vol. 20, no. 14, pp. 7579-7587, 2020.
[http://dx.doi.org/10.1109/JSEN.2020.2987318]
[33]
A. Arif, M. Zubair, M. Ali, M.U. Khan, and M.Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN Applications", IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 5, pp. 981-985, 2019.
[http://dx.doi.org/10.1109/LAWP.2019.2906829]
[34]
M. Ullah, M. Islam, T. Alam, and F. Ashraf, "Paper-Based Flexible Antenna for Wearable Telemedicine Applications at 2.4 GHz ISM Band", Sensors (Basel), vol. 18, no. 12, p. 4214, 2018.
[http://dx.doi.org/10.3390/s18124214] [PMID: 30513719]
[35]
M.A. Riheen, T.T. Nguyen, T.K. Saha, T. Karacolak, and P.K. Sekhar, "CPW fed wideband bowtie slot antenna on PET substrate", Prog. Electromagn. Res. C, vol. 101, pp. 147-158, 2020.
[http://dx.doi.org/10.2528/PIERC20031402]
[36]
M.A. Rahman, M. Foisal Hossain, M.A. Riheen, and P.K. Sekhar, "Early brain stroke detection using flexible monopole antenna", Progress Electromagnet. Res., vol. 99, pp. 99-110, 2020.
[http://dx.doi.org/10.2528/PIERC19120704]
[37]
M.R. Hasan, M.A. Riheen, P. Sekhar, and T. Karacolak, "Compact CPW‐fed circular patch flexible antenna for super‐wideband applications", IET Microw. Antennas Propag., vol. 14, no. 10, pp. 1069-1073, 2020.
[http://dx.doi.org/10.1049/iet-map.2020.0155]
[38]
A. Hassan, S. Ali, G. Hassan, J. Bae, and C.H. Lee, "Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications", Microsyst. Technol., vol. 23, no. 8, pp. 3701-3709, 2017.
[http://dx.doi.org/10.1007/s00542-016-3113-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy