Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

CRISPR/Cas9 Technology for Non-Coding Gene Editing in Schizophrenia Therapeutics: The Recent Progress And Challenges

Author(s): Khushi Raj Mittal, Nandini Kumar Jain, Swati Mittal and Chakresh Kumar Jain*

Volume 20, Issue 2, 2024

Published on: 19 April, 2023

Page: [125 - 134] Pages: 10

DOI: 10.2174/2666082219666230320151355

Price: $65

Abstract

Within a decade the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 system), an advanced gene-editing technology became one of the celebrated approaches in modern disease therapeutics and was reported to have a potential role in the alteration of non-coding RNAs segment which are the pivotal causes behind the several mental disorder such as Schizophrenia. In general, Schizophrenia is referred as a neurodevelopmental disorder and symptomatically exhibited by social deficit, cognitive dysfunction, apathy, delusions, hallucinations, etc. At a genomics level large number of loci are susceptible for genetic alteration in schizophrenia and are mostly located in the genome’s non-coding region. With the growing variants and mutations in ncRNA genes (miRNA and lncRNA) strongly associated with schizophrenia, the need to develop a genetic tool to help with the treatment and study of schizophrenia increases. Recently the use of CRISPR/cas9 technology in the productive alteration of non-coding RNAs genes such as miRNA; miR-291, miR-141, and miR-21, lncRNA, lncRNA-21A, AK023948, and LncRNA Rian has been reported. The Cas9 protein and guide RNA (gRNA) together form the CRISPR/Cas9 system is known to be highly specific and efficient for manipulating the impact of gene mutations linked to genomic DNA like ncRNA besides other inheritable genetic diseases. Copy number variations are also found to be linked with schizophrenia. The generation of reciprocal CNVs of 15q13.3 and 16p11.2 in humaninduced pluripotent stem cells (iPSCs) with the CRISPR/Cas 9 system has opened new possibilities. Still, there are some limitations and challenges yet to be defeated, like the blood-brain barrier poses an obstacle to treating mental disorders and ethical issues like genomic DNA manipulation of eggs and embryos. This review brings schizophrenia-associated ncRNAs and CRISPR gene-editing technology for the non-coding parts of the genomic DNA together and recent challenges.

Keywords: Schizophrenia, CRISPR/cas9 system, ncRNA, miRNA, lncRNA, CNVs.

Graphical Abstract
[1]
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[2]
Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12(3): 501-27.
[http://dx.doi.org/10.1017/S0954579400003138] [PMID: 11014750]
[3]
Kavanagh DH, Tansey KE, O’Donovan MC, Owen MJ. Schizophrenia genetics: Emerging themes for a complex disorder. Mol Psychiatry 2015; 20(1): 72-6.
[http://dx.doi.org/10.1038/mp.2014.148] [PMID: 25385368]
[4]
Cardno AG, Marshall EJ, Coid B, et al. Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56(2): 162-8.
[http://dx.doi.org/10.1001/archpsyc.56.2.162] [PMID: 10025441]
[5]
Costain G, McDonald-McGinn DM, Bassett AS. Prenatal genetic testing with chromosomal microarray analysis identifies major risk variants for schizophrenia and other later-onset disorders. Am J Psychiatry 2013; 170(12): 1498.
[http://dx.doi.org/10.1176/appi.ajp.2013.13070880] [PMID: 24306343]
[6]
Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460(7256): 748-52.
[http://dx.doi.org/10.1038/nature08185] [PMID: 19571811]
[7]
Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[8]
Merelo V, Durand D, Lescallette AR, et al. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 2015; 8: 57.
[http://dx.doi.org/10.3389/fnmol.2015.00057] [PMID: 26483630]
[9]
Rao SQ, Hu HL, Ye N, Shen Y, Xu Q. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr Res 2015; 166(1-3): 125-30.
[http://dx.doi.org/10.1016/j.schres.2015.04.032] [PMID: 26004688]
[10]
Nudelman AS, DiRocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 2009; 20(4) NA.
[http://dx.doi.org/10.1002/hipo.20646] [PMID: 19557767]
[11]
Tognini P, Putignano E, Coatti A, Pizzorusso T. Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 2011; 14(10): 1237-9.
[http://dx.doi.org/10.1038/nn.2920] [PMID: 21892154]
[12]
Smalheiser NR, Lugli G. microRNA regulation of synaptic plasticity. Neuromolecular Med 2009; 11(3): 133-40.
[http://dx.doi.org/10.1007/s12017-009-8065-2] [PMID: 19458942]
[13]
Mellios N, Sur M. The emerging role of microRNAs in Schizophrenia and autism spectrum disorders. Front Psychiatry 2012; 3: 39.
[http://dx.doi.org/10.3389/fpsyt.2012.00039] [PMID: 22539927]
[14]
Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 2007; 120(15): 2498-506.
[http://dx.doi.org/10.1242/jcs.009357] [PMID: 17623775]
[15]
Barry G, Briggs JA, Vanichkina DP, et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 2014; 19(4): 486-94.
[http://dx.doi.org/10.1038/mp.2013.45] [PMID: 23628989]
[16]
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011; 45(1): 273-97.
[http://dx.doi.org/10.1146/annurev-genet-110410-132430] [PMID: 22060043]
[17]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[18]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[19]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[20]
Olde Loohuis NFM, Ba W, Stoerchel PH, et al. MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD. Cell Rep 2015; 11(12): 1876-84.
[http://dx.doi.org/10.1016/j.celrep.2015.05.040] [PMID: 26095359]
[21]
Siegert S, Seo J, Kwon EJ, et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 2015; 18(7): 1008-16.
[http://dx.doi.org/10.1038/nn.4023] [PMID: 26005852]
[22]
Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9(10): 1274-81.
[http://dx.doi.org/10.1261/rna.5980303] [PMID: 13130141]
[23]
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5(3): R13.
[http://dx.doi.org/10.1186/gb-2004-5-3-r13] [PMID: 15003116]
[24]
Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005; 308(5723): 833-8.
[http://dx.doi.org/10.1126/science.1109020] [PMID: 15774722]
[25]
Vo N, Klein ME, Varlamova O, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 2005; 102(45): 16426-31.
[http://dx.doi.org/10.1073/pnas.0508448102] [PMID: 16260724]
[26]
Schratt GM, Tuebing F, Nigh EA, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006; 439(7074): 283-9.
[http://dx.doi.org/10.1038/nature04367] [PMID: 16421561]
[27]
Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012; 46(2): 263-71.
[http://dx.doi.org/10.1016/j.nbd.2011.12.029] [PMID: 22207190]
[28]
Wang J, Wang Y, Yang J, Huang Y. MicroRNAs as novel biomarkers of schizophrenia. (Review) Exp Ther Med 2014; 8(6): 1671-6.
[http://dx.doi.org/10.3892/etm.2014.2014] [PMID: 25371713]
[29]
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43(10): 969-76.
[http://dx.doi.org/10.1038/ng.940] [PMID: 21926974]
[30]
Franke B, Stein JL, Ripke S, et al. Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nat Neurosci 2016; 19(3): 420-31.
[http://dx.doi.org/10.1038/nn.4228] [PMID: 26854805]
[31]
Ma G, Yin J, Fu J, et al. Association of a miRNA-137 polymorphism with schizophrenia in a Southern Chinese Han population. BioMed Res Int 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/751267] [PMID: 25250332]
[32]
Lett TA, Chakavarty MM, Felsky D, et al. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 2013; 18(4): 443-50.
[http://dx.doi.org/10.1038/mp.2013.17] [PMID: 23459466]
[33]
Guan F, Zhang B, Yan T, Li L, Liu F, Li T, et al. MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. Schizophr Res 2014; 152: 97-104.
[34]
Wang S, Li W, Zhang H, et al. Association of microRNA137 gene polymorphisms with age at onset and positive symptoms of schizophrenia in a Han Chinese population. Int J Psychiatry Med 2014; 47(2): 153-68.
[http://dx.doi.org/10.2190/PM.47.2.f] [PMID: 25084801]
[35]
Rose EJ, Morris DW, Fahey C, et al. The miR-137 schizophrenia susceptibility variant rs1625579 does not predict variability in brain volume in a sample of schizophrenic patients and healthy individuals. Am J Med Genet B Neuropsychiatr Genet 2014; 165(6): 467-71.
[http://dx.doi.org/10.1002/ajmg.b.32249] [PMID: 25044277]
[36]
Wright C, Gupta CN, Chen J, et al. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia. Transl Psychiatry 2016; 6(2): e724.
[http://dx.doi.org/10.1038/tp.2015.211] [PMID: 26836412]
[37]
Kuswanto CN, Sum MY, Qiu A, Sitoh YY, Liu J, Sim K. The impact of genome wide supported microRNA-137 (MIR137) risk variants on frontal and striatal white matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168(5): 317-26.
[http://dx.doi.org/10.1002/ajmg.b.32314] [PMID: 25921703]
[38]
Kos A, Aschrafi A, Nadif Kasri N. The multifarious hippocampal functions of microRNA-137. Neuroscientist 2016; 22(5): 440-6.
[http://dx.doi.org/10.1177/1073858415608356] [PMID: 26396150]
[39]
Strazisar M, Cammaerts S, van der Ven K, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry 2015; 20(4): 472-81.
[http://dx.doi.org/10.1038/mp.2014.53] [PMID: 24888363]
[40]
Wright C, Calhoun VD, Ehrlich S, Wang L, Turner JA, Bizzozero NIP. Meta gene set enrichment analyses link miR-137-regulated pathways with schizophrenia risk. Front Genet 2015; 6: 147.
[http://dx.doi.org/10.3389/fgene.2015.00147] [PMID: 25941532]
[41]
Vallès A, Martens GJM, De Weerd P, Poelmans G, Aschrafi A. MicroRNA-137 regulates a glucocorticoid receptor–dependent signalling network: implications for the etiology of schizophrenia. J Psychiatry Neurosci 2014; 39(5): 312-20.
[http://dx.doi.org/10.1503/jpn.130269] [PMID: 24866554]
[42]
Ishii N, Ozaki K, Sato H, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51(12): 1087-99.
[http://dx.doi.org/10.1007/s10038-006-0070-9] [PMID: 17066261]
[43]
Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 2010; 10(1): 49.
[http://dx.doi.org/10.1186/1471-213X-10-49] [PMID: 20459797]
[44]
Liao J, He Q, Li M, Chen Y, Liu Y, Wang J. LncRNA MIAT: Myocardial infarction associated and more. Gene 2016; 578: 158-61.
[http://dx.doi.org/10.1016/j.gene.2015.12.032]
[45]
Chung DW, Volk DW, Arion D, Zhang Y, Sampson AR, Lewis DA. Dysregulated ErbB4 splicing in schizophrenia: Selective effects on parvalbumin expression. Am J Psychiatry 2016; 173: 60-8.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020150]
[46]
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101: 25-33.
[47]
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[48]
Fatica A, Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet 2014; 15(1): 7-21.
[http://dx.doi.org/10.1038/nrg3606] [PMID: 24296535]
[49]
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5): 510-7.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[50]
Han J, Zhang J, Chen L, et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol 2014; 11(7): 829-35.
[http://dx.doi.org/10.4161/rna.29624] [PMID: 25137067]
[51]
Aparicio-Prat E, Arnan C, Sala I, Bosch N, Guigó R, Johnson R. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 2015; 16(1): 846.
[http://dx.doi.org/10.1186/s12864-015-2086-z] [PMID: 26493208]
[52]
Ho TT, Zhou N, Huang J, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 2015; 43(3): e17.
[http://dx.doi.org/10.1093/nar/gku1198] [PMID: 25414344]
[53]
Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 2016; 6(1): 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382]
[54]
Pompili M, Venturini P, Palermo M, et al. Mood disorders medications: Predictors of nonadherence – review of the current literature. Expert Rev Neurother 2013; 13(7): 809-25.
[http://dx.doi.org/10.1586/14737175.2013.811976] [PMID: 23898852]
[55]
Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 2013; 41(14): e141.
[http://dx.doi.org/10.1093/nar/gkt464] [PMID: 23748566]
[56]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[57]
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4): 347-55.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[58]
Huang X, Wang Y, Yan W, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 2015; 33(5): 1470-9.
[http://dx.doi.org/10.1002/stem.1969] [PMID: 25702619]
[59]
Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72.
[http://dx.doi.org/10.1007/s13238-015-0153-5] [PMID: 25894090]
[60]
Callaway E. Gene-editing research in human embryos gains momentum. Nature 2016; 532(7599): 289-90.
[http://dx.doi.org/10.1038/532289a] [PMID: 27111607]
[61]
Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351(6271): 400-3.
[http://dx.doi.org/10.1126/science.aad5725] [PMID: 26721683]
[62]
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351(6271): 403-7.
[http://dx.doi.org/10.1126/science.aad5143] [PMID: 26721684]
[63]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160]
[64]
Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351(6271): 407-11.
[http://dx.doi.org/10.1126/science.aad5177] [PMID: 26721686]
[65]
Sankaran VG, Weiss MJ. Anemia: Progress in molecular mechanisms and therapies. Nat Med 2015; 21(3): 221-30.
[http://dx.doi.org/10.1038/nm.3814] [PMID: 25742458]
[66]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[67]
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016; 34(2): 204-9.
[http://dx.doi.org/10.1038/nbt.3440] [PMID: 26829320]
[68]
St Clair D. Copy number variation and schizophrenia. Schizophr Bull 2009; 35(1): 9-12.
[http://dx.doi.org/10.1093/schbul/sbn147] [PMID: 18990708]
[69]
Levinson DF, Duan J, Oh S, et al. Copy number variants in schizophrenia: Confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168(3): 302-16.
[http://dx.doi.org/10.1176/appi.ajp.2010.10060876] [PMID: 21285140]
[70]
Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012; 99(1): 81-91.
[http://dx.doi.org/10.1016/j.pneurobio.2012.07.005] [PMID: 22813947]
[71]
Kirov G, Pocklington AJ, Holmans P, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17(2): 142-53.
[http://dx.doi.org/10.1038/mp.2011.154] [PMID: 22083728]
[72]
Malhotra D, Sebat J. CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148(6): 1223-41.
[http://dx.doi.org/10.1016/j.cell.2012.02.039] [PMID: 22424231]
[73]
Hamshere ML, Walters JTR, Smith R, et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2013; 18(6): 708-12.
[http://dx.doi.org/10.1038/mp.2012.67] [PMID: 22614287]
[74]
Ripke S, O’Dushlaine C, Chambert K, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45(10): 1150-9.
[http://dx.doi.org/10.1038/ng.2742] [PMID: 23974872]
[75]
Purcell SM, Moran JL, Fromer M, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506(7487): 185-90.
[http://dx.doi.org/10.1038/nature12975] [PMID: 24463508]
[76]
Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet 2011; 45(1): 203-26.
[http://dx.doi.org/10.1146/annurev-genet-102209-163544] [PMID: 21854229]
[77]
Zhou W, Zhang L, Guoxiang X, et al. GluR1 controls dendrite growth through its binding partner, SAP97. J Neurosci 2008; 28(41): 10220-33.
[http://dx.doi.org/10.1523/JNEUROSCI.3434-08.2008] [PMID: 18842882]
[78]
Nakagawa T, Goto K, Kondo H. Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J Biol Chem 1996; 271(20): 12088-94.
[http://dx.doi.org/10.1074/jbc.271.20.12088] [PMID: 8662589]
[79]
Jungerius BJ, Hoogendoorn MLC, Bakker SC, et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry 2008; 13(11): 1060-8.
[http://dx.doi.org/10.1038/sj.mp.4002080] [PMID: 17893707]
[80]
Vorstman JAS, Chow EW, Ophoff RA, et al. Association of the PIK4CA schizophrenia-susceptibility gene in adults with the 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2009; 150B(3): 430-3.
[http://dx.doi.org/10.1002/ajmg.b.30827] [PMID: 18646052]
[81]
Fullston T, Gabb B, Callen D, et al. Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156(2): 204-14.
[http://dx.doi.org/10.1002/ajmg.b.31157] [PMID: 21302349]
[82]
Tai DJC, Ragavendran A, Manavalan P, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci 2016; 19(3): 517-22.
[http://dx.doi.org/10.1038/nn.4235] [PMID: 26829649]
[83]
Krishan K, Kanchan T, Singh B. Human genome editing and ethical considerations. Sci Eng Ethics 2016; 22(2): 597-9.
[http://dx.doi.org/10.1007/s11948-015-9675-8] [PMID: 26154417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy