Review Article

Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases

Author(s): Mirtha E. Aguado, Maikel Izquierdo, Maikel González-Matos, Ana C. Varela, Yanira Méndez, Maday A. del Rivero, Daniel G. Rivera and Jorge González-Bacerio*

Volume 24, Issue 5, 2023

Published on: 05 April, 2023

Page: [416 - 461] Pages: 46

DOI: 10.2174/1389450124666230224140724

Price: $65

Abstract

Background: Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis.

Objective: In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases.

Conclusion: Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.

Keywords: Antiparasite agents, divalent metal cations, enzyme-inhibitor complexes, metalo-aminopeptidases, pathogenic parasites, protease inhibitors.

« Previous
Graphical Abstract
[1]
Booth M, Jennings V, Fhaolain IN, O’Cuinn G. Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. J Dairy Res 1990; 57(2): 245-54.
[http://dx.doi.org/10.1017/S0022029900026868]
[2]
Smid EJ, Poolman B, Konings WN. Casein utilization by lactococci. Appl Environ Microbiol 1991; 57(9): 2447-52.
[http://dx.doi.org/10.1128/aem.57.9.2447-2452.1991] [PMID: 1768119]
[3]
Harbut MB, Velmourougane G, Dalal S, et al. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci USA 2011; 108(34): E526-34.
[http://dx.doi.org/10.1073/pnas.1105601108] [PMID: 21844374]
[4]
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 2018; 46(D1): D624-32.
[http://dx.doi.org/10.1093/nar/gkx1134] [PMID: 29145643]
[5]
Haeggström JZ, Nordlund P, Thunnissen MMGM. Functional properties and molecular architecture of leukotriene A4 hydrolase, a pivotal catalyst of chemotactic leukotriene formation. ScientificWorldJournal 2002; 2: 1734-49.
[http://dx.doi.org/10.1100/tsw.2002.810] [PMID: 12806167]
[6]
Piesse C, Tymms M, Garrafa E, et al. Human aminopeptidase B ( rnpep ) on chromosome 1q32.2: complementary DNA, genomic structure and expression. Gene 2002; 292(1-2): 129-40.
[http://dx.doi.org/10.1016/S0378-1119(02)00650-9] [PMID: 12119107]
[7]
Albiston A, Ye S, Chai S. Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept Lett 2004; 11(5): 491-500.
[http://dx.doi.org/10.2174/0929866043406643] [PMID: 15544570]
[8]
Rozenfeld R, Muller L, Messari SE, Llorens-Cortes C. The C-terminal domain of aminopeptidase A is an intramolecular chaperone required for the correct folding, cell surface expression, and activity of this monozinc aminopeptidase. J Biol Chem 2004; 279(41): 43285-95.
[http://dx.doi.org/10.1074/jbc.M404369200] [PMID: 15263000]
[9]
Chávez-Gutiérrez L, Bourdais J, Aranda G, et al. A truncated isoform of pyroglutamyl aminopeptidase II produced by exon extension has dominant-negative activity. J Neurochem 2005; 92(4): 807-17.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02916.x] [PMID: 15686482]
[10]
Díaz-Perales A, Quesada V, Sánchez LM, et al. Identification of human aminopeptidase O, a novel metalloprotease with structural similarity to aminopeptidase B and leukotriene A4 hydrolase. J Biol Chem 2005; 280(14): 14310-7.
[http://dx.doi.org/10.1074/jbc.M413222200] [PMID: 15687497]
[11]
Klinke T, Rump A, Pönisch R, et al. Identification and characterization of CaApe2--a neutral arginine/alanine/leucine-specific metallo-aminopeptidase from Candida albicans. FEMS Yeast Res 2008; 8(6): 858-69.
[http://dx.doi.org/10.1111/j.1567-1364.2008.00411.x] [PMID: 18637841]
[12]
Rawlings ND, Barrett AJ. Methods in Enzymology. Elsevier Inc. 1995; Vol. 248: pp. 183-228.
[13]
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie 2010; 92(11): 1509-29.
[http://dx.doi.org/10.1016/j.biochi.2010.04.026] [PMID: 20457213]
[14]
Dalal S, Ragheb DRT, Schubot FD, Klemba M. A naturally variable residue in the S1 subsite of M1 family aminopeptidases modulates catalytic properties and promotes functional specialization. J Biol Chem 2013; 288(36): 26004-12.
[http://dx.doi.org/10.1074/jbc.M113.465625] [PMID: 23897806]
[15]
Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 1967; 27(2): 157-62.
[http://dx.doi.org/10.1016/S0006-291X(67)80055-X] [PMID: 6035483]
[16]
Allary M, Schrével J, Florent I. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology 2002; 125(1): 1-10.
[http://dx.doi.org/10.1017/S0031182002001828] [PMID: 12166515]
[17]
Cadavid-Restrepo G, Gastardelo TS, Faudry E, et al. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC Biochem 2011; 12(1): 46.
[http://dx.doi.org/10.1186/1471-2091-12-46] [PMID: 21861921]
[18]
Florent I, Derhy Z, Allary M, Monsigny M, Mayer R, Schrével J. A Plasmodium falciparum aminopeptidase gene belonging to the M1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Mol Biochem Parasitol 1998; 97(1-2): 149-60.
[http://dx.doi.org/10.1016/S0166-6851(98)00143-1] [PMID: 9879894]
[19]
Chandu D, Nandi D. PepN is the major aminopeptidase in Escherichia coli: insights on substrate specificity and role during sodium-salicylate-induced stress. Microbiology (Reading) 2003; 149(12): 3437-47.
[http://dx.doi.org/10.1099/mic.0.26518-0] [PMID: 14663077]
[20]
Addlagatta A, Gay L, Matthews BW. Structural basis for the unusual specificity of Escherichia coli aminopeptidase N. Biochemistry 2008; 47(19): 5303-11.
[http://dx.doi.org/10.1021/bi7022333] [PMID: 18416562]
[21]
Luan Y, Xu W. The structure and main functions of aminopeptidase N. Curr Med Chem 2007; 14(6): 639-47.
[http://dx.doi.org/10.2174/092986707780059571] [PMID: 17346152]
[22]
Maroux S, Louvard D, Barath J. The aminopeptidase from hog intestinal brush border. Biochimica et Biophysica Acta (BBA) - Enzymology 1973; 321(1): 282-95.
[http://dx.doi.org/10.1016/0005-2744(73)90083-1] [PMID: 4750768]
[23]
Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 2007; 11(2): 145-59.
[http://dx.doi.org/10.1517/14728222.11.2.145] [PMID: 17227231]
[24]
Yamashita M, Kajiyama H, Terauchi M, et al. Involvement of aminopeptidase N in enhanced chemosensitivity to paclitaxel in ovarian carcinoma in vitro and in vivo. Int J Cancer 2007; 120(10): 2243-50.
[http://dx.doi.org/10.1002/ijc.22528] [PMID: 17266036]
[25]
Saiki I, Yoneda J, Azuma I, et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation. Int J Cancer 1993; 54(1): 137-43.
[http://dx.doi.org/10.1002/ijc.2910540122] [PMID: 8097496]
[26]
Rangel R, Sun Y, Guzman-Rojas L, et al. Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci USA 2007; 104(11): 4588-93.
[http://dx.doi.org/10.1073/pnas.0611653104] [PMID: 17360568]
[27]
Bauvois B, Dauzonne D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: Chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 2006; 26(1): 88-130.
[http://dx.doi.org/10.1002/med.20044] [PMID: 16216010]
[28]
Shimizu T, Tani K, Hase K, et al. CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 2002; 46(9): 2330-8.
[http://dx.doi.org/10.1002/art.10517] [PMID: 12355480]
[29]
Bedir A, Özener Ç, Emerk K. Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria. Nephron 1996; 74(1): 110-3.
[http://dx.doi.org/10.1159/000189288] [PMID: 8883027]
[30]
Sloane PD, Zimmerman S, Suchindran C, et al. The public health impact of Alzheimer’s disease, 2000-2050: potential implication of treatment advances. Annu Rev Public Health 2002; 23(1): 213-31.
[http://dx.doi.org/10.1146/annurev.publhealth.23.100901.140525] [PMID: 11910061]
[31]
Reinhold D, Biton A, Pieper S, et al. Dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) as regulators of T cell function and targets of immunotherapy in CNS inflammation. Int Immunopharmacol 2006; 6(13-14): 1935-42.
[http://dx.doi.org/10.1016/j.intimp.2006.07.023] [PMID: 17161346]
[32]
Thielitz A, Ansorge S, Bank U, et al. The ectopeptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related enzymes as possible targets in the treatment of skin diseases. Front Biosci 2008; 13(13): 2364-75.
[http://dx.doi.org/10.2741/2850] [PMID: 17981718]
[33]
Jones PM, Robinson MW, Dalton JP, George AM. The Plasmodium falciparum malaria M1 alanyl aminopeptidase (PfA-M1): insights of catalytic mechanism and function from MD simulations. PLoS One 2011; 6(12): e28589.
[http://dx.doi.org/10.1371/journal.pone.0028589] [PMID: 22205955]
[34]
Taylor A. Aminopeptidases: structure and function. FASEB J 1993; 7(2): 290-8.
[http://dx.doi.org/10.1096/fasebj.7.2.8440407] [PMID: 8440407]
[35]
Alén C, Sherratt DJ, Colloms SD. Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. EMBO J 1997; 16(17): 5188-97.
[http://dx.doi.org/10.1093/emboj/16.17.5188] [PMID: 9311979]
[36]
Behari J, Stagon L, Calderwood SB. pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae. J Bacteriol 2001; 183(1): 178-88.
[http://dx.doi.org/10.1128/JB.183.1.178-188.2001] [PMID: 11114915]
[37]
Lowther WT, Matthews BW. Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 2002; 102(12): 4581-608.
[http://dx.doi.org/10.1021/cr0101757] [PMID: 12475202]
[38]
Cappiello M, Alterio V, Amodeo P, et al. Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase. Biochemistry 2006; 45(10): 3226-34.
[http://dx.doi.org/10.1021/bi052069v] [PMID: 16519517]
[39]
Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol Chem 2006; 387(12): 1535-44.
[http://dx.doi.org/10.1515/BC.2006.191] [PMID: 17132098]
[40]
Scranton MA, Yee A, Park SY, Walling LL. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J Biol Chem 2012; 287(22): 18408-17.
[http://dx.doi.org/10.1074/jbc.M111.309500] [PMID: 22493451]
[41]
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166: 38-51.
[http://dx.doi.org/10.1016/j.biochi.2019.01.007] [PMID: 30654132]
[42]
Carroll RK, Robison TM, Rivera FE, et al. Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect 2012; 14(11): 989-99.
[http://dx.doi.org/10.1016/j.micinf.2012.04.013] [PMID: 22613209]
[43]
McGowan S, Oellig CA, Birru WA, et al. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc Natl Acad Sci USA 2010; 107(6): 2449-54.
[http://dx.doi.org/10.1073/pnas.0911813107] [PMID: 20133789]
[44]
Duprez K, Scranton MA, Walling LL, Fan L. Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Crystallogr D Biol Crystallogr 2014; 70(6): 1649-58.
[http://dx.doi.org/10.1107/S1399004714006245] [PMID: 24914976]
[45]
Modak JK, Rut W, Wijeyewickrema LC, Pike RN, Drag M, Roujeinikova A. Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase. Biochimie 2016; 121: 60-71.
[http://dx.doi.org/10.1016/j.biochi.2015.11.021] [PMID: 26616008]
[46]
Gu YQ, Holzer FM, Walling LL. Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur J Biochem 1999; 263(3): 726-35.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00548.x] [PMID: 10469136]
[47]
Allen MP, Yamada AH, Carpenter FH. Kinetic parameters of metal-substituted leucine aminopeptidase from bovine lens. Biochemistry 1983; 22(16): 3778-83.
[http://dx.doi.org/10.1021/bi00285a010] [PMID: 6615800]
[48]
Kim H, Lipscomb WN. X-ray crystallographic determination of the structure of bovine lens leucine aminopeptidase complexed with amastatin: Formulation of a catalytic mechanism featuring a gem-diolate transition state. Biochemistry 1993; 32(33): 8465-78.
[http://dx.doi.org/10.1021/bi00084a011] [PMID: 8357796]
[49]
Straeter N, Lipscomb WN. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry 1995; 34(45): 14792-800.
[http://dx.doi.org/10.1021/bi00045a021] [PMID: 7578088]
[50]
Sträter N, Sun L, Kantrowitz ER, Lipscomb WN. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proc Natl Acad Sci USA 1999; 96(20): 11151-5.
[http://dx.doi.org/10.1073/pnas.96.20.11151] [PMID: 10500145]
[51]
Zhu X, Barman A, Ozbil M, Zhang T, Li S, Prabhakar R. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach. J Biol Inorg Chem 2012; 17(2): 209-22.
[http://dx.doi.org/10.1007/s00775-011-0843-2] [PMID: 21918843]
[52]
Sivaraman KK, Oellig CA, Huynh K, et al. X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. J Mol Biol 2012; 422(4): 495-507.
[http://dx.doi.org/10.1016/j.jmb.2012.06.006] [PMID: 22709581]
[53]
Wright J, Harding JW. Important roles for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev 1997; 25(1): 96-124.
[http://dx.doi.org/10.1016/S0165-0173(97)00019-2] [PMID: 9370053]
[54]
Wilk S, Wilk E, Magnusson RP. Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem 1998; 273(26): 15961-70.
[http://dx.doi.org/10.1074/jbc.273.26.15961] [PMID: 9632644]
[55]
Chen Y, Farquhar ER, Chance MR, Palczewski K, Kiser PD. Insights into substrate specificity and metal activation of mammalian tetrahedral aspartyl aminopeptidase. J Biol Chem 2012; 287(16): 13356-70.
[http://dx.doi.org/10.1074/jbc.M112.347518] [PMID: 22356908]
[56]
Yokoyama R, Kawasaki H, Hirano H. Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J 2006; 273(1): 192-8.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05057.x] [PMID: 16367759]
[57]
Teuscher F, Lowther J, Skinner-Adams TS, et al. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J Biol Chem 2007; 282(42): 30817-26.
[http://dx.doi.org/10.1074/jbc.M704938200] [PMID: 17720817]
[58]
Liu S, Widom J, Kemp CW, Crews CM, Clardy J. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 1998; 282(5392): 1324-7.
[http://dx.doi.org/10.1126/science.282.5392.1324] [PMID: 9812898]
[59]
Ma ZQ, Xie SX, Huang QQ, Nan FJ, Hurley TD, Ye QZ. Structural analysis of inhibition of E. coli methionine aminopeptidase: implication of loop adaptability in selective inhibition of bacterial enzymes. BMC Struct Biol 2007; 7(1): 84.
[http://dx.doi.org/10.1186/1472-6807-7-84] [PMID: 18093325]
[60]
Lowther WT, Matthews BW. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta Protein Struct Mol Enzymol 2000; 1477(1-2): 157-67.
[http://dx.doi.org/10.1016/S0167-4838(99)00271-X] [PMID: 10708856]
[61]
Giglione C, Boularot A, Meinnel T. Protein N-terminal methionine excision. Cell Mol Life Sci 2004; 61(12): 1455-74.
[http://dx.doi.org/10.1007/s00018-004-3466-8] [PMID: 15197470]
[62]
Chen X, Xie S, Bhat S, Kumar N, Shapiro TA, Liu JO. Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chem Biol 2009; 16(2): 193-202.
[http://dx.doi.org/10.1016/j.chembiol.2009.01.006] [PMID: 19246010]
[63]
Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 1989; 86(21): 8247-51.
[http://dx.doi.org/10.1073/pnas.86.21.8247] [PMID: 2682640]
[64]
Addlagatta A, Hu X, Liu JO, Matthews BW. Structural basis for the functional differences between type I and type II human methionine aminopeptidases. Biochemistry 2005; 44(45): 14741-9.
[http://dx.doi.org/10.1021/bi051691k] [PMID: 16274222]
[65]
Zhang P, Nicholson DE, Bujnicki JM, et al. Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for Malaria and Leishmaniasis. J Biomed Sci 2002; 9(1): 34-40.
[http://dx.doi.org/10.1007/BF02256576] [PMID: 11810023]
[66]
Bradshaw RA, Brickey WW, Walker KW. N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families. Trends Biochem Sci 1998; 23(7): 263-7.
[http://dx.doi.org/10.1016/S0968-0004(98)01227-4] [PMID: 9697417]
[67]
Alvarado JJ, Nemkal A, Sauder JM, et al. Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470. Mol Biochem Parasitol 2009; 168(2): 158-67.
[http://dx.doi.org/10.1016/j.molbiopara.2009.07.008] [PMID: 19660503]
[68]
Hu XV, Chen X, Han KC, Mildvan AS, Liu JO. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases. Biochemistry 2007; 46(44): 12833-43.
[http://dx.doi.org/10.1021/bi701127x] [PMID: 17929833]
[69]
Mauriz JL, Martín-Renedo J, García-Palomo A, Tuñón MJ, González-Gallego J. Methionine aminopeptidases as potential targets for treatment of gastrointestinal cancers and other tumours. Curr Drug Targets 2010; 11(11): 1439-57.
[http://dx.doi.org/10.2174/1389450111009011439] [PMID: 20583970]
[70]
Datta B, Ray MK, Chakrabarti D, Wylie DE, Gupta NK. Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of eIF-2 kinase-catalyzed phosphorylation of the eIF-2 α-subunit. J Biol Chem 1989; 264(34): 20620-4.
[http://dx.doi.org/10.1016/S0021-9258(19)47108-1] [PMID: 2511207]
[71]
Calcagno S, Klein CD. N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b. Appl Microbiol Biotechnol 2016; 100(16): 7091-102.
[http://dx.doi.org/10.1007/s00253-016-7470-3] [PMID: 27023914]
[72]
Kanudia P, Mittal M, Kumaran S, Chakraborti PK. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity. BMC Biochem 2011; 12(1): 35.
[http://dx.doi.org/10.1186/1471-2091-12-35] [PMID: 21729287]
[73]
Chatterjee M, Chatterjee N, Datta R, Datta B, Gupta NK. Expression and activity of p67 are induced during heat shock. Biochem Biophys Res Commun 1998; 249(1): 113-7.
[http://dx.doi.org/10.1006/bbrc.1998.9056] [PMID: 9705841]
[74]
D’souza VM, Bennett B, Copik AJ, Holz RC. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry 2000; 39(13): 3817-26.
[http://dx.doi.org/10.1021/bi9925827] [PMID: 10736182]
[75]
Yang G, Kirkpatrick RB, Ho T, et al. Steady-state kinetic characterization of substrates and metal-ion specificities of the full-length and N-terminally truncated recombinant human methionine aminopeptidases (type 2). Biochemistry 2001; 40(35): 10645-54.
[http://dx.doi.org/10.1021/bi010806r] [PMID: 11524009]
[76]
Meng L, Ruebush S, D’souza VM, Copik AJ, Tsunasawa S, Holz RC. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 2002; 41(23): 7199-208.
[http://dx.doi.org/10.1021/bi020138p] [PMID: 12044150]
[77]
Marschner A, Klein CD. Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Biochimie 2015; 115: 35-43.
[http://dx.doi.org/10.1016/j.biochi.2015.04.012] [PMID: 25921435]
[78]
Lu JP, Chai SC, Ye QZ. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J Med Chem 2010; 53(3): 1329-37.
[79]
Kishor C, Arya T, Reddi R, et al. Identification, biochemical and structural evaluation of species-specific inhibitors against type I methionine aminopeptidases. J Med Chem 2013; 56(13): 5295-305.
[http://dx.doi.org/10.1021/jm400395p] [PMID: 23767698]
[80]
Chang SY, McGary EC, Chang S. Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 1989; 171(7): 4071-2.
[http://dx.doi.org/10.1128/jb.171.7.4071-4072.1989] [PMID: 2544569]
[81]
Li X, Chang YH. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci USA 1995; 92(26): 12357-61.
[http://dx.doi.org/10.1073/pnas.92.26.12357] [PMID: 8618900]
[82]
Altmeyer M, Amtmann E, Heyl C, Marschner A, Scheidig AJ, Klein CD. Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases. Bioorg Med Chem Lett 2014; 24(22): 5310-4.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.047] [PMID: 25293447]
[83]
Greenwood BM, Bojang K, Whitty CJM, Targett GAT. Malaria. Lancet 2005; 365(9469): 1487-98.
[http://dx.doi.org/10.1016/S0140-6736(05)66420-3] [PMID: 15850634]
[84]
Laveran A. A new parasite found in the blood of malarial patients. Parasitic origin of malarial attacks. Bull Mem Soc Med Hop Paris 1880; 17: 158-64.
[85]
World Health Organization (WHO). Malaria. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
[86]
Turschner S, Efferth T. Drug resistance in Plasmodium: natural products in the fight against malaria. Mini Rev Med Chem 2009; 9(2): 206-14.
[http://dx.doi.org/10.2174/138955709787316074] [PMID: 19200025]
[87]
Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 2014; 44(12): 901-13.
[http://dx.doi.org/10.1016/j.ijpara.2014.07.010] [PMID: 25196370]
[88]
Aly ASI, Vaughan AM, Kappe SHI. Malaria parasite development in the mosquito and infection of the mammalian host. Annu Rev Microbiol 2009; 63(1): 195-221.
[http://dx.doi.org/10.1146/annurev.micro.091208.073403] [PMID: 19575563]
[89]
McGowan S, Porter CJ, Lowther J, et al. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci USA 2009; 106(8): 2537-42.
[http://dx.doi.org/10.1073/pnas.0807398106] [PMID: 19196988]
[90]
Azimzadeh O, Sow C, Gèze M, Nyalwidhe J, Florent I. Plasmodium falciparum PfA-M1 aminopeptidase is trafficked via the parasitophorous vacuole and marginally delivered to the food vacuole. Malar J 2010; 9(1): 189-204.
[http://dx.doi.org/10.1186/1475-2875-9-189] [PMID: 20591164]
[91]
Mathew R, Wunderlich J, Thivierge K, et al. Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci Rep 2021; 11(1): 2854.
[http://dx.doi.org/10.1038/s41598-021-82499-4] [PMID: 33536500]
[92]
Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. London: Academic Press 1998.
[93]
Velmourougane G, Harbut MB, Dalal S, et al. Synthesis of new (-)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase. J Med Chem 2011; 54(6): 1655-66.
[http://dx.doi.org/10.1021/jm101227t] [PMID: 21366301]
[94]
Flipo M, Beghyn T, Leroux V, Florent I, Deprez BP, Deprez-Poulain RF. Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J Med Chem 2007; 50(6): 1322-34.
[http://dx.doi.org/10.1021/jm061169b] [PMID: 17326615]
[95]
Deprez-Poulain R, Flipo M, Piveteau C, et al. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J Med Chem 2012; 55(24): 10909-17.
[http://dx.doi.org/10.1021/jm301506h] [PMID: 23176597]
[96]
Kannan Sivaraman K, Paiardini A, Sieńczyk M, et al. Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. J Med Chem 2013; 56(12): 5213-7.
[http://dx.doi.org/10.1021/jm4005972] [PMID: 23713488]
[97]
Krishnamoorthy M, Achary A. Exploration of Sitagliptin as a potential inhibitor for the M1 Alanine aminopeptidase enzyme in Plasmodium falciparum using computational docking. Bioinformation 2013; 9(6): 293-8.
[http://dx.doi.org/10.6026/97320630009293] [PMID: 23559748]
[98]
Addlagatta A, Gay L, Matthews BW. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc Natl Acad Sci USA 2006; 103(36): 13339-44.
[http://dx.doi.org/10.1073/pnas.0606167103] [PMID: 16938892]
[99]
Ito K, Nakajima Y, Onohara Y, et al. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition. J Biol Chem 2006; 281(44): 33664-76.
[http://dx.doi.org/10.1074/jbc.M605203200] [PMID: 16885166]
[100]
Nocek B, Mulligan R, Bargassa M, Collart F, Joachimiak A. Crystal structure of aminopeptidase N from human pathogen Neisseria meningitidis. Proteins 2008; 70(1): 273-9.
[http://dx.doi.org/10.1002/prot.21276]
[101]
Pangburn MK, Walsh KA. Thermolysin and neutral protease. Mechanistic considerations. Biochemistry 1975; 14(18): 4050-4.
[http://dx.doi.org/10.1021/bi00689a019]
[102]
Kester WR, Matthews BW. Comparison of the structures of carboxypeptidase A and thermolysin. J Biol Chem 1977; 252(21): 7704-10.
[http://dx.doi.org/10.1016/S0021-9258(17)41025-8] [PMID: 914833]
[103]
Kester WR, Matthews BW. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 1977; 16(11): 2506-16.
[http://dx.doi.org/10.1021/bi00630a030] [PMID: 861218]
[104]
Vander Jagt DL, Baack BR, Hunsaker LA. Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 1984; 10(1): 45-54.
[http://dx.doi.org/10.1016/0166-6851(84)90017-3] [PMID: 6363922]
[105]
Vander Jagt DL, Caughey WS, Campos NM, Hunsaker LA, Zanner MA. Parasite proteases and antimalarial activities of protease inhibitors. Prog Clin Biol Res 1989; 313: 105-18.
[PMID: 2675111]
[106]
Olaya P, Wasserman M. Effect of calpain inhibitors on the invasion of human erythrocytes by the parasite Plasmodium flaciparum. Biochim Biophys Acta Mol Basis Dis 1991; 1096(3): 217-21.
[http://dx.doi.org/10.1016/0925-4439(91)90008-W] [PMID: 2018795]
[107]
Gavigan CS, Dalton JP, Bell A. The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2001; 117(1): 37-48.
[http://dx.doi.org/10.1016/S0166-6851(01)00327-9] [PMID: 11551630]
[108]
Kitjaroentham A, Suthiphongchai T, Wilairat P. Effect of metalloprotease inhibitors on invasion of red blood cell by Plasmodium falciparum. Acta Trop 2006; 97(1): 5-9.
[http://dx.doi.org/10.1016/j.actatropica.2005.05.015] [PMID: 16168946]
[109]
Florens L, Washburn MP, Raine JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 2002; 419(6906): 520-6.
[http://dx.doi.org/10.1038/nature01107] [PMID: 12368866]
[110]
Florens L, Liu X, Wang Y, et al. Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol 2004; 135(1): 1-11.
[http://dx.doi.org/10.1016/j.molbiopara.2003.12.007] [PMID: 15287581]
[111]
Lasonder E, Ishihama Y, Andersen JS, et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 2002; 419(6906): 537-42.
[http://dx.doi.org/10.1038/nature01111] [PMID: 12368870]
[112]
Lasonder E, Janse CJ, van Gemert GJ, et al. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog 2008; 4(10): e1000195.
[http://dx.doi.org/10.1371/journal.ppat.1000195] [PMID: 18974882]
[113]
Lamarque M, Tastet C, Poncet J, et al. Food vacuole proteome of the malarial parasite Plasmodium falciparum. Proteomics Clin Appl 2008; 2(9): 1361-74.
[http://dx.doi.org/10.1002/prca.200700112] [PMID: 21136929]
[114]
Silvestrini F, Lasonder E, Olivieri A, et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2010; 9(7): 1437-48.
[http://dx.doi.org/10.1074/mcp.M900479-MCP200] [PMID: 20332084]
[115]
Lindner SE, Swearingen KE, Harupa A, et al. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013; 12(5): 1127-43.
[http://dx.doi.org/10.1074/mcp.M112.024505] [PMID: 23325771]
[116]
Weißbach T, Golzmann A, Bennink S, Pradel G, Julius Ngwa C. Transcript and protein expression analysis of proteases in the blood stages of Plasmodium falciparum. Exp Parasitol 2017; 180: 33-44.
[http://dx.doi.org/10.1016/j.exppara.2017.03.006] [PMID: 28351685]
[117]
Dalal S, Klemba M. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem 2007; 282(49): 35978-87.
[http://dx.doi.org/10.1074/jbc.M703643200] [PMID: 17895246]
[118]
Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J Biol Chem 2011; 286(31): 27255-65.
[http://dx.doi.org/10.1074/jbc.M111.225318] [PMID: 21659511]
[119]
Curley GP, O’Donovan SM, McNally J, et al. Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei. J Eukaryot Microbiol 1994; 41(2): 119-23.
[http://dx.doi.org/10.1111/j.1550-7408.1994.tb01483.x] [PMID: 8167617]
[120]
Kolakovich KA, Gluzman IY, Duffin KL, Goldberg DE. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol 1997; 87(2): 123-35.
[http://dx.doi.org/10.1016/S0166-6851(97)00062-5] [PMID: 9247924]
[121]
Whisstock JC, McGowan S, Trenholme KR, Gardiner DL, Dalton JP. Reply to Klemba: Intracellular processing of the membrane-bound Pf A-M1 neutral aminopeptidase, a target for new antimalarials. Proc Natl Acad Sci USA 2009; 106(22): E56.
[http://dx.doi.org/10.1073/pnas.0903872106]
[122]
Skinner-Adams TS, Stack CM, Trenholme KR, et al. Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci 2010; 35(1): 53-61.
[http://dx.doi.org/10.1016/j.tibs.2009.08.004] [PMID: 19796954]
[123]
Kuhn Y, Rohrbach P, Lanzer M. Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin. Cell Microbiol 2007; 9(4): 1004-13.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00847.x] [PMID: 17381432]
[124]
Francis SE, Sullivan DJ Jr, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 1997; 51(1): 97-123.
[http://dx.doi.org/10.1146/annurev.micro.51.1.97] [PMID: 9343345]
[125]
Krugliak M, Zhang J, Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol Biochem Parasitol 2002; 119(2): 249-56.
[http://dx.doi.org/10.1016/S0166-6851(01)00427-3] [PMID: 11814576]
[126]
Allen RJW, Kirk K. Cell volume control in the Plasmodium-infected erythrocyte. Trends Parasitol 2004; 20(1): 7-10.
[http://dx.doi.org/10.1016/j.pt.2003.10.015] [PMID: 14700581]
[127]
Sherman IW. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ 1977; 55(2-3): 265-76.
[PMID: 338183]
[128]
Rosenthal PJ. Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr Opin Hematol 2002; 9(2): 140-5.
[http://dx.doi.org/10.1097/00062752-200203000-00010] [PMID: 11844998]
[129]
Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T. Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. Blood Cells Mol Dis 2004; 32(3): 353-9.
[http://dx.doi.org/10.1016/j.bcmd.2004.01.006] [PMID: 15121091]
[130]
Becker K, Kirk K. Of malaria, metabolism and membrane transport. Trends Parasitol 2004; 20(12): 590-6.
[http://dx.doi.org/10.1016/j.pt.2004.09.004] [PMID: 15522669]
[131]
Martin RE, Kirk K. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. Blood 2007; 109(5): 2217-24.
[http://dx.doi.org/10.1182/blood-2005-11-026963] [PMID: 17047158]
[132]
Payne SH, Loomis WF. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 2006; 5(2): 272-6.
[http://dx.doi.org/10.1128/EC.5.2.272-276.2006] [PMID: 16467468]
[133]
Naughton JA, Nasizadeh S, Bell A. Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2010; 173(2): 81-7.
[http://dx.doi.org/10.1016/j.molbiopara.2010.05.007] [PMID: 20478341]
[134]
Francis SE, Gluzman IY, Oksman A, et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J 1994; 13(2): 306-17.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06263.x] [PMID: 8313875]
[135]
Batra S, Sabnis YA, Rosenthal PJ, Avery MA. Structure-based approach to falcipain-2 inhibitors: synthesis and biological evaluation of 1,6,7-trisubstituted dihydroisoquinolines and isoquinolines. Bioorg Med Chem 2003; 11(10): 2293-9.
[http://dx.doi.org/10.1016/S0968-0896(03)00117-2] [PMID: 12713840]
[136]
Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol 2003; 206(21): 3735-44.
[http://dx.doi.org/10.1242/jeb.00589] [PMID: 14506208]
[137]
Ersmark K, Feierberg I, Bjelic S, et al. Potent inhibitors of the Plasmodium falciparum enzymes plasmepsin I and II devoid of cathepsin D inhibitory activity. J Med Chem 2004; 47(1): 110-22.
[http://dx.doi.org/10.1021/jm030933g] [PMID: 14695825]
[138]
Skinner-Adams TS, Lowther J, Teuscher F, et al. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J Med Chem 2007; 50(24): 6024-31.
[http://dx.doi.org/10.1021/jm070733v] [PMID: 17960925]
[139]
Flipo M, Florent I, Grellier P, Sergheraert C, Deprez-Poulain R. Design, synthesis and antimalarial activity of novel, quinoline-Based, zinc metallo-aminopeptidase inhibitors. Bioorg Med Chem Lett 2003; 13(16): 2659-62.
[http://dx.doi.org/10.1016/S0960-894X(03)00550-X] [PMID: 12873488]
[140]
Flipo M, Beghyn T, Charton J, Leroux VA, Deprez BP, Deprez-Poulain RF. A library of novel hydroxamic acids targeting the metallo-protease family: Design, parallel synthesis and screening. Bioorg Med Chem 2007; 15(1): 63-76.
[http://dx.doi.org/10.1016/j.bmc.2006.10.010] [PMID: 17070058]
[141]
Eksi S, Czesny B, Greenbaum DC, Bogyo M, Williamson KC. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol Microbiol 2004; 53(1): 243-50.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04108.x] [PMID: 15225318]
[142]
Omara-Opyene AL, Moura PA, Sulsona CR, et al. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J Biol Chem 2004; 279(52): 54088-96.
[http://dx.doi.org/10.1074/jbc.M409605200] [PMID: 15491999]
[143]
Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 2004; 101(13): 4384-9.
[http://dx.doi.org/10.1073/pnas.0307720101] [PMID: 15070727]
[144]
Sijwali PS, Kato K, Seydel KB, et al. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc Natl Acad Sci USA 2004; 101(23): 8721-6.
[http://dx.doi.org/10.1073/pnas.0402738101] [PMID: 15166288]
[145]
González-Bacerio J, Osuna J, Ponce A, et al. High-level expression in Escherichia coli, purification and kinetic characterization of Plasmodium falciparum M1-aminopeptidase. Protein Expr Purif 2014; 104: 103-14.
[http://dx.doi.org/10.1016/j.pep.2014.08.002] [PMID: 25123643]
[146]
Poreba M, McGowan S, Skinner-Adams TS, et al. Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One 2012; 7(2): e31938.
[http://dx.doi.org/10.1371/journal.pone.0031938] [PMID: 22359643]
[147]
Dalal S, Ragheb DRT, Klemba M. Engagement of the S1, S1′ and S2′ subsites drives efficient catalysis of peptide bond hydrolysis by the M1-family aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol 2012; 183(1): 70-7.
[http://dx.doi.org/10.1016/j.molbiopara.2012.02.003] [PMID: 22348949]
[148]
Huang K, Takahara S, Kinouchi T, et al. Alanyl aminopeptidase from human seminal plasma: purification, characterization, and immunohistochemical localization in the male genital tract. J Biochem 1997; 122(4): 779-87.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021823] [PMID: 9399582]
[149]
Chavagnat F, Casey MG, Meyer J. Purification, characterization, gene cloning, sequencing, and overexpression of aminopeptidase N from Streptococcus thermophilus A. Appl Environ Microbiol 1999; 65(7): 3001-7.
[http://dx.doi.org/10.1128/AEM.65.7.3001-3007.1999] [PMID: 10388695]
[150]
Chappelet-Tordo D, Lazdunski C, Murgier M, Lazdunski A. Aminopeptidase N from Escherichia coli: ionizable active-center groups and substrate specificity. Eur J Biochem 1977; 81(2): 299-305.
[http://dx.doi.org/10.1111/j.1432-1033.1977.tb11952.x] [PMID: 340221]
[151]
Johnson GD, Hersh LB. Studies on the subsite specificity of the rat brain puromycin-sensitive aminopeptidase. Arch Biochem Biophys 1990; 276(2): 305-9.
[http://dx.doi.org/10.1016/0003-9861(90)90724-D] [PMID: 2306097]
[152]
Orning L, Gierse JK, Fitzpatrick FA. The bifunctional enzyme leukotriene-A4 hydrolase is an arginine aminopeptidase of high efficiency and specificity. J Biol Chem 1994; 269(15): 11269-73.
[http://dx.doi.org/10.1016/S0021-9258(19)78120-4] [PMID: 8157657]
[153]
Niven GW, Holder SA, Strøman P. A study of the substrate specificity of aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Appl Microbiol Biotechnol 1995; 44(1-2): 100-5.
[http://dx.doi.org/10.1007/BF00164487] [PMID: 8579823]
[154]
Malcolm TR, Swiderska KW, Hayes BK, Drag M, Drinkwater N, McGowan S. Mapping the substrate sequence and length of the Plasmodium M1 and M17 aminopeptidases bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.13.338178]
[155]
González-Bacerio J, Carmona AK, Gazarini ML, Chávez M, Alonso del Rivero M. Kinetic characterization of recombinant PfAM1, a M1-aminopeptidase from Plasmodium falciparum (Aconoidasida: Plasmodiidae), using fluorogenic peptide substrates. Rev Cub Cienc Biol 2015; 4: 40-8.
[156]
Na BK, Bae YA, Zo YG, et al. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4. PLoS Negl Trop Dis 2010; 4(10): e849.
[http://dx.doi.org/10.1371/journal.pntd.0000849] [PMID: 20967286]
[157]
Nankya-Kitaka MF, Curley GP, Gavigan CS, Bell A, Dalton JP. Plasmodium chabaudi chabaudi and P. falciparum : inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol Res 1998; 84(7): 552-8.
[http://dx.doi.org/10.1007/s004360050447] [PMID: 9694371]
[158]
Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 1976; 29(1): 97-9.
[http://dx.doi.org/10.7164/antibiotics.29.97] [PMID: 931798]
[159]
Suda H, Takita T, Aoyagi T, Umezawa H. The chemical synthesis of bestatin. J Antibiot (Tokyo) 1976; 29(5): 600-1.
[http://dx.doi.org/10.7164/antibiotics.29.600] [PMID: 956051]
[160]
Burley SK, David PR, Lipscomb WN. Leucine aminopeptidase: bestatin inhibition and a model for enzyme-catalyzed peptide hydrolysis. Proc Natl Acad Sci USA 1991; 88(16): 6916-20.
[http://dx.doi.org/10.1073/pnas.88.16.6916] [PMID: 1871107]
[161]
Tsuge H, Ago H, Aoki M, et al. Crystallization and preliminary X-ray crystallographic studies of recombinant human leukotriene A4 hydrolase complexed with bestatin. J Mol Biol 1994; 238(5): 854-6.
[http://dx.doi.org/10.1006/jmbi.1994.1341] [PMID: 8182755]
[162]
Scornik O, Botbol V. Bestatin as an experimental tool in mammals. Curr Drug Metab 2001; 2(1): 67-85.
[http://dx.doi.org/10.2174/1389200013338748] [PMID: 11465152]
[163]
Bhat SY, Dey A, Qureshi IA. Structural and functional highlights of methionine aminopeptidase 2 from Leishmania donovani. Int J Biol Macromol 2018; 115: 940-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.090] [PMID: 29680505]
[164]
Stack CM, Lowther J, Cunningham E, et al. Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J Biol Chem 2007; 282(3): 2069-80.
[http://dx.doi.org/10.1074/jbc.M609251200] [PMID: 17107951]
[165]
Yasuhara T, Yokosawa H, Hoshi M, Ishii S. Sea urchin sperm aminopeptidase: comparative studies of sperm-associated and -solubilized enzymes. Biochem Int 1983; 7(5): 593-8.
[PMID: 6679749]
[166]
Iwaki S, Nakamura T, Koyama J. Inhibitory effects of various synthetic substrates for aminopeptidases on phagocytosis of immune complexes by macrophages. J Biochem 1986; 99(5): 1317-26.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135599] [PMID: 3711065]
[167]
Sekine K, Fujii H, Abe F. Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leukemia 1999; 13(5): 729-34.
[http://dx.doi.org/10.1038/sj.leu.2401388] [PMID: 10374877]
[168]
Sekine K, Fujii H, Abe F, Nishikawa K. Augmentation of death ligand-induced apoptosis by aminopeptidase inhibitors in human solid tumor cell lines. Int J Cancer 2001; 94(4): 485-91.
[http://dx.doi.org/10.1002/ijc.1492] [PMID: 11745433]
[169]
Deprez-Poulain R, Melnyk P. 1,4-bis(3-aminopropyl)piperazine libraries: from the discovery of classical chloroquine-like antimalarials to the identification of new targets. Comb Chem High Throughput Screen 2005; 8(1): 39-48.
[http://dx.doi.org/10.2174/1386207053328165] [PMID: 15720196]
[170]
Harbut MB, Velmourougane G, Reiss G, Chandramohanadas R, Greenbaum DC. Development of bestatin-based activity-based probes for metallo-aminopeptidases. Bioorg Med Chem Lett 2008; 18(22): 5932-6.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.021] [PMID: 18823778]
[171]
González-Bacerio J, Maluf SEC, Méndez Y, et al. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem 2017; 25(17): 4628-36.
[http://dx.doi.org/10.1016/j.bmc.2017.06.047] [PMID: 28728898]
[172]
Grembecka J, Mucha A, Cierpicki T, Kafarski P. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. J Med Chem 2003; 46(13): 2641-55.
[http://dx.doi.org/10.1021/jm030795v] [PMID: 12801228]
[173]
Skinner-Adams TS, Peatey CL, Anderson K, et al. The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrob Agents Chemother 2012; 56(6): 3244-9.
[http://dx.doi.org/10.1128/AAC.06245-11] [PMID: 22450967]
[174]
Mistry SN, Drinkwater N, Ruggeri C, et al. Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors. J Med Chem 2014; 57(21): 9168-83.
[http://dx.doi.org/10.1021/jm501323a] [PMID: 25299353]
[175]
Drinkwater N, Vinh NB, Mistry SN, et al. Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. Eur J Med Chem 2016; 110: 43-64.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.015] [PMID: 26807544]
[176]
Vinh NB, Drinkwater N, Malcolm TR, et al. Hydroxamic acid inhibitors provide cross-species inhibition of Plasmodium M1 and M17 aminopeptidases. J Med Chem 2019; 62(2): 622-40.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01310] [PMID: 30537832]
[177]
Paiardini A, Bamert RS, Kannan-Sivaraman K, et al. Screening the medicines for Malaria Venture “Malaria Box” against the Plasmodium falciparum aminopeptidases, M1, M17 and M18. PLoS One 2015; 10(2): e0115859.
[http://dx.doi.org/10.1371/journal.pone.0115859] [PMID: 25700165]
[178]
Bounaadja L, Schmitt M, Albrecht S, Mouray E, Tarnus C, Florent I. Selective inhibition of PfA-M1, over PfA-M17, by an amino-benzosuberone derivative blocks malaria parasites development in vitro and in vivo. Malar J 2017; 16(1): 382.
[http://dx.doi.org/10.1186/s12936-017-2032-4] [PMID: 28934959]
[179]
Salomon E, Schmitt M, Mouray E, et al. Aminobenzosuberone derivatives as PfA-M1 inhibitors: Molecular recognition and antiplasmodial evaluation. Bioorg Chem 2020; 98: 103750.
[http://dx.doi.org/10.1016/j.bioorg.2020.103750] [PMID: 32182520]
[180]
Klemba M, Gluzman I, Goldberg DE. A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation. J Biol Chem 2004; 279(41): 43000-7.
[http://dx.doi.org/10.1074/jbc.M408123200] [PMID: 15304495]
[181]
Ragheb D, Bompiani K, Dalal S, Klemba M. Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 2009; 284(37): 24806-15.
[http://dx.doi.org/10.1074/jbc.M109.018424] [PMID: 19574214]
[182]
Rosenthal PJ. Cysteine proteases of malaria parasites. Int J Parasitol 2004; 34(13-14): 1489-99.
[http://dx.doi.org/10.1016/j.ijpara.2004.10.003] [PMID: 15582526]
[183]
Drinkwater N, Yang W, Riley BT, et al. Role of dynamic cooperativity in the mechanism of hexameric M17 aminopeptidases bioRxiv 2017.
[http://dx.doi.org/10.1101/244665]
[184]
Burley SK, David PR, Taylor A, Lipscomb WN. Molecular structure of leucine aminopeptidase at 2.7-A resolution. Proc Natl Acad Sci USA 1990; 87(17): 6878-82.
[http://dx.doi.org/10.1073/pnas.87.17.6878] [PMID: 2395881]
[185]
Maric S, Donnelly SM, Robinson MW, et al. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors. Biochemistry 2009; 48(23): 5435-9.
[http://dx.doi.org/10.1021/bi9003638] [PMID: 19408962]
[186]
N’Guessan H, Megnassan E. In silico design of phosphonic arginine and hydroxamic acid inhibitors of Plasmodium falciparum M17 leucyl aminopeptidase with favorable pharmacokinetic profile. Journal of Drug Design and Medicinal Chemistry 2017; 3(6): 98-125.
[http://dx.doi.org/10.11648/j.jddmc.20170306.13]
[187]
Larrinaga G, Callado LF, Agirregoitia N, Varona A, Gil J. Subcellular distribution of membrane-bound aminopeptidases in the human and rat brain. Neurosci Lett 2005; 383(1-2): 136-40.
[http://dx.doi.org/10.1016/j.neulet.2005.03.061] [PMID: 15936526]
[188]
Le Roch KG, Zhou Y, Blair PL, et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 2003; 301(5639): 1503-8.
[http://dx.doi.org/10.1126/science.1087025] [PMID: 12893887]
[189]
Liu J, Istvan ES, Gluzman IY, Gross J, Goldberg DE. Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc Natl Acad Sci USA 2006; 103(23): 8840-5.
[http://dx.doi.org/10.1073/pnas.0601876103] [PMID: 16731623]
[190]
Goldberg DE, Slater AF, Cerami A, Henderson GB. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci USA 1990; 87(8): 2931-5.
[http://dx.doi.org/10.1073/pnas.87.8.2931] [PMID: 2183218]
[191]
Klonis N, Xie SC, McCaw JM, et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci USA 2013; 110(13): 5157-62.
[http://dx.doi.org/10.1073/pnas.1217452110] [PMID: 23431146]
[192]
Xie SC, Dogovski C, Hanssen E, et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci 2016; 129(2): 406-16.
[PMID: 26675237]
[193]
Xie SC, Ralph SA, Tilley L. K13, the cytostome, and artemisinin resistance. Trends Parasitol 2020; 36(6): 533-44.
[http://dx.doi.org/10.1016/j.pt.2020.03.006] [PMID: 32359872]
[194]
Mnkandhla D, van Marwijk J, Hoppe H, Wilhelmi BS, Whiteley CG. In vivo; in vitro interaction of silver nanoparticles with leucine aminopeptidase from human and Plasmodium falciparum. J Nanosci Nanotechnol 2017; 17: 1-7.
[PMID: 29448508]
[195]
Gu YQ, Walling LL. Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur J Biochem 2000; 267(4): 1178-87.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01116.x] [PMID: 10672029]
[196]
Carroll RK, Veillard F, Gagne DT, et al. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. BCHM 2013; 394(6): 791-803.
[http://dx.doi.org/10.1515/hsz-2012-0308] [PMID: 23241672]
[197]
Lin WY, Lin SH, Van Wart HE. Steady-state kinetics of hydrolysis of dansyl-peptide substrates by leucine aminopeptidase. Biochemistry 1988; 27(14): 5062-8.
[http://dx.doi.org/10.1021/bi00414a017] [PMID: 3167029]
[198]
Kim H, Lipscomb WN. Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by x-ray crystallography. Proc Natl Acad Sci USA 1993; 90(11): 5006-10.
[http://dx.doi.org/10.1073/pnas.90.11.5006] [PMID: 8506345]
[199]
Gardiner DL, Trenholme KR, Skinner-Adams TS, Stack CM, Dalton JP. Overexpression of leucyl aminopeptidase in Plasmodium falciparum parasites. Target for the antimalarial activity of bestatin. J Biol Chem 2006; 281(3): 1741-5.
[http://dx.doi.org/10.1074/jbc.M508955200] [PMID: 16286469]
[200]
Lauterbach SB, Coetzer TL. The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar J 2008; 7(1): 161.
[http://dx.doi.org/10.1186/1475-2875-7-161] [PMID: 18721457]
[201]
Wilk S, Wilk E, Magnusson RP. Identification of histidine residues important in the catalysis and structure of aspartyl aminopeptidase. Arch Biochem Biophys 2002; 407(2): 176-83.
[http://dx.doi.org/10.1016/S0003-9861(02)00494-0] [PMID: 12413488]
[202]
Durá MA, Rosenbaum E, Larabi A, Gabel F, Vellieux FMD, Franzetti B. The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea. Mol Microbiol 2009; 72(1): 26-40.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06600.x] [PMID: 19291145]
[203]
McGowan S. Working in concert: the metalloaminopeptidases from Plasmodium falciparum. Curr Opin Struct Biol 2013; 23(6): 828-35.
[http://dx.doi.org/10.1016/j.sbi.2013.07.015] [PMID: 23948130]
[204]
Kusch P, Deininger S, Specht S, et al. In vitro and in vivo antimalarial activity assays of seeds from Balanites aegyptiaca: Compounds of the extract show growth inhibition and activity against plasmodial aminopeptidase. J Parasitol Res 2011; 2011: 1-9.
[http://dx.doi.org/10.1155/2011/368692] [PMID: 21687598]
[205]
Kumari M, Chandra S, Tiwari N, Subbarao N. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. BMC Struct Biol 2016; 16(1): 12.
[http://dx.doi.org/10.1186/s12900-016-0063-7] [PMID: 27534744]
[206]
Mills RM. Chagas disease: Epidemiology and barriers to treatment. Am J Med 2020; 133(11): 1262-5.
[http://dx.doi.org/10.1016/j.amjmed.2020.05.022] [PMID: 32592664]
[207]
World Health Organization, Chagas disease (also known as American tripanosomiasis) fact sheet. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
[208]
Romano PS, Cueto JA, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 2012; 64(5): 387-96.
[http://dx.doi.org/10.1002/iub.1019] [PMID: 22454195]
[209]
Rassi A Jr, Rassi A, Marin-Neto JA. Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Mem Inst Oswaldo Cruz 2009; 104 (Suppl. 1): 152-8.
[http://dx.doi.org/10.1590/S0074-02762009000900021] [PMID: 19753470]
[210]
Py MO. Neurologic manifestations of Chagas disease. Curr Neurol Neurosci Rep 2011; 11(6): 536-42.
[http://dx.doi.org/10.1007/s11910-011-0225-8] [PMID: 21904918]
[211]
Guedes PMM, Silva GK, Gutierrez FRS, Silva JS. Current status of Chagas disease chemotherapy. Expert Rev Anti Infect Ther 2011; 9(5): 609-20.
[http://dx.doi.org/10.1586/eri.11.31] [PMID: 21609270]
[212]
Gaspar L, Moraes C, Freitas-Junior L, et al. Current and future chemotherapy for Chagas disease. Curr Med Chem 2015; 22(37): 4293-312.
[http://dx.doi.org/10.2174/0929867322666151015120804] [PMID: 26477622]
[213]
Molina I, Salvador F, Sánchez-Montalvá A, et al. Toxic profile of benznidazole in patients with chronic Chagas disease: Risk factors and comparison of the product from two different manufacturers. Antimicrob Agents Chemother 2015; 59(10): 6125-31.
[http://dx.doi.org/10.1128/AAC.04660-14] [PMID: 26195525]
[214]
Timm J, Valente M, García-Caballero D, Wilson KS, González-Pacanowska D. Structural characterization of acidic M17 leucine aminopeptidases from the TriTryps and evaluation of their role in nutrient starvation in Trypanosoma brucei. MSphere 2017; 2(4): e00226-17.
[http://dx.doi.org/10.1128/mSphere.00226-17] [PMID: 28815215]
[215]
Manchola NC, Rapado LN, Barisón MJ, Silber AM. Biochemical characterization of branched chain amino acids uptake in Trypanosoma cruzi. J Eukaryot Microbiol 2016; 63(3): 299-308.
[http://dx.doi.org/10.1111/jeu.12278] [PMID: 26496801]
[216]
Izquierdo M, Aguado ME, Zoltner M, González-Bacerio J. High-level expression in Escherichia coli, purification and kinetic characterization of LAPTc, a Trypanosoma cruzi M17-aminopeptidase. Protein J 2019; 38(2): 167-80.
[http://dx.doi.org/10.1007/s10930-019-09823-w] [PMID: 30905022]
[217]
Vujčić Z, Dojnov B, Milovanović A, Božić N. Purification and properties of the major leucyl aminopeptidase from Solanum tuberosum tubers. Fruit Veget Cereal Sci Biotechnol 2008; 2: 125-30.
[218]
Morty RE, Morehead J. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J Biol Chem 2002; 277(29): 26057-65.
[http://dx.doi.org/10.1074/jbc.M202779200] [PMID: 12006595]
[219]
Nagy V, Nampoothiri KM, Pandey A, Rahulan R, Szakacs G. Production of L-leucine aminopeptidase by selected Streptomyces isolates. J Appl Microbiol 2008; 104(2): 380-7.
[PMID: 17887988]
[220]
Correa AF, Bastos IMD, Neves D, Kipnis A, Junqueira-Kipnis AP, de Santana JM. The activity of a hexameric M17 metallo-aminopeptidase is associated with survival of Mycobacterium tuberculosis. Front Microbiol 2017; 8: 504.
[http://dx.doi.org/10.3389/fmicb.2017.00504] [PMID: 28396657]
[221]
Lee JY, Song SM, Seok JW, et al. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax. Mol Biochem Parasitol 2010; 170(1): 45-8.
[http://dx.doi.org/10.1016/j.molbiopara.2009.11.003] [PMID: 19931315]
[222]
Izquierdo M, Lin D, O’Neill S, et al. Development of a high- throughput screening assay to identify inhibitors of the major M17-leucyl aminopeptidase from Trypanosoma cruzi using rapidfire mass spectrometry. SLAS Discov 2020; 25(9): 1064-71.
[http://dx.doi.org/10.1177/2472555220923367] [PMID: 32400260]
[223]
Trochine A, Creek DJ, Faral-Tello P, Barrett MP, Robello C. Bestatin induces specific changes in Trypanosoma cruzi dipeptide pool. Antimicrob Agents Chemother 2015; 59(5): 2921-5.
[http://dx.doi.org/10.1128/AAC.05046-14] [PMID: 25712359]
[224]
World Health Organization. Trypanosomiasis, human African (sleeping sickness). 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
[225]
Cullen D, Mocerino M. A brief review of drug discovery research for human African trypanosomiasis. Curr Med Chem 2017; 24(7): 701-17.
[http://dx.doi.org/10.2174/0929867324666170120160034] [PMID: 28117003]
[226]
Ponte-Sucre A. An overview of Trypanosoma brucei infections: An intense host–parasite interaction. Front Microbiol 2016; 7: 2126.
[http://dx.doi.org/10.3389/fmicb.2016.02126] [PMID: 28082973]
[227]
Mony BM, Matthews KR. Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol 2015; 96(2): 220-32.
[http://dx.doi.org/10.1111/mmi.12949] [PMID: 25630552]
[228]
Silvester E, McWilliam K, Matthews K. The cytological events and molecular control of life cycle development of Trypanosoma brucei in the mammalian bloodstream. Pathogens 2017; 6(3): 29.
[http://dx.doi.org/10.3390/pathogens6030029] [PMID: 28657594]
[229]
Rotureau B, Van Den Abbeele J. Through the dark continent: African trypanosome development in the tsetse fly. Front Cell Infect Microbiol 2013; 3: 53.
[http://dx.doi.org/10.3389/fcimb.2013.00053] [PMID: 24066283]
[230]
Mogk S, Boßelmann CM, Mudogo CN, Stein J, Wolburg H, Duszenko M. African trypanosomes and brain infection - the unsolved question. Biol Rev Camb Philos Soc 2017; 92(3): 1675-87.
[http://dx.doi.org/10.1111/brv.12301] [PMID: 27739621]
[231]
Geiger A, Bossard G, Sereno D, et al. Escaping deleterious immune response in their hosts: Lessons from trypanosomatids. Front Immunol 2016; 7: 212.
[http://dx.doi.org/10.3389/fimmu.2016.00212] [PMID: 27303406]
[232]
Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose tissue: A safe haven for parasites? Trends Parasitol 2017; 33(4): 276-84.
[http://dx.doi.org/10.1016/j.pt.2016.11.008] [PMID: 28007406]
[233]
Peña-Diaz P, Vancová M, Resl C, Field MC, Lukeš J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog 2017; 13(4): e1006310.
[http://dx.doi.org/10.1371/journal.ppat.1006310] [PMID: 28388690]
[234]
Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999; 24(1): 34-5.
[http://dx.doi.org/10.1016/S0968-0004(98)01336-X] [PMID: 10087920]
[235]
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 2002; 18(2): 298-305.
[http://dx.doi.org/10.1093/bioinformatics/18.2.298] [PMID: 11847077]
[236]
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996; 241(3): 779-86.
[http://dx.doi.org/10.1111/j.1432-1033.1996.00779.x] [PMID: 8944766]
[237]
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007; 2(4): 953-71.
[http://dx.doi.org/10.1038/nprot.2007.131] [PMID: 17446895]
[238]
Concepción-Acevedo J, Luo J, Klingbeil MM. Dynamic localization of Trypanosoma brucei mitochondrial DNA polymerase ID. Eukaryot Cell 2012; 11(7): 844-55.
[http://dx.doi.org/10.1128/EC.05291-11] [PMID: 22286095]
[239]
Gluenz E, Shaw MK, Gull K. Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. Mol Microbiol 2007; 64(6): 1529-39.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05749.x] [PMID: 17511811]
[240]
Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr 1984; 4(1): 409-54.
[http://dx.doi.org/10.1146/annurev.nu.04.070184.002205] [PMID: 6380539]
[241]
Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R. Amino acid biosynthesis: New architectures in allosteric enzymes. Plant Physiol Biochem 2008; 46(3): 325-39.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.006] [PMID: 18272376]
[242]
Ginger ML, Prescott MC, Reynolds DG, Chance ML, Goad LJ. Utilization of leucine and acetate as carbon sources for sterol and fatty acid biosynthesis by old and new World Leishmania species, Endotrypanum monterogeii and Trypanosoma cruzi. Eur J Biochem 2000; 267(9): 2555-66.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01261.x] [PMID: 10785375]
[243]
Nes CR, Singha UK, Liu J, et al. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms. Biochem J 2012; 443(1): 267-77.
[http://dx.doi.org/10.1042/BJ20111849] [PMID: 22176028]
[244]
Lee YR, Na BK, Moon EK, et al. Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One 2015; 10(6): e0129884.
[http://dx.doi.org/10.1371/journal.pone.0129884] [PMID: 26075721]
[245]
Fowler JH, Narváez-Vásquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL. Leucine aminopeptidase regulates defense and wound signaling in tomato downstream of jasmonic acid. Plant Cell 2009; 21(4): 1239-51.
[http://dx.doi.org/10.1105/tpc.108.065029] [PMID: 19376935]
[246]
Chu L, Lai Y, Xu X, et al. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283(28): 19351-8.
[http://dx.doi.org/10.1074/jbc.M801034200] [PMID: 18482986]
[247]
Sharma A. Malarial protease inhibitors: potential new chemotherapeutic agents. Curr Opin Investig Drugs 2007; 8(8): 642-52.
[PMID: 17668366]
[248]
Arastu-Kapur S, Ponder EL, Fonović UP, et al. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 2008; 4(3): 203-13.
[http://dx.doi.org/10.1038/nchembio.70] [PMID: 18246061]
[249]
Benz C, Clucas C, Mottram JC, Hammarton TC. Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLoS One 2012; 7(1): e30367-12.
[http://dx.doi.org/10.1371/journal.pone.0030367] [PMID: 22279588]
[250]
Charlier D, Kholti A, Huysveld N, et al. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase 1 1Edited by M. Yaniv. J Mol Biol 2000; 302(2): 409-24.
[http://dx.doi.org/10.1006/jmbi.2000.4067] [PMID: 10970742]
[251]
Colloms SD, Bath J, Sherratt DJ. Topological selectivity in Xer site-specific recombination. Cell 1997; 88(6): 855-64.
[http://dx.doi.org/10.1016/S0092-8674(00)81931-5] [PMID: 9118228]
[252]
Sträter N, Sherratt DJ, Colloms SD. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 1999; 18(16): 4513-22.
[http://dx.doi.org/10.1093/emboj/18.16.4513] [PMID: 10449417]
[253]
McCulloch R, Burke ME, Sherratt DJ. Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specific recombination. Mol Microbiol 1994; 12(2): 241-51.
[http://dx.doi.org/10.1111/j.1365-2958.1994.tb01013.x] [PMID: 8057849]
[254]
Reijns M, Lu Y, Leach S, Colloms SD. Mutagenesis of PepA suggests a new model for the Xer/cer synaptic complex. Mol Microbiol 2005; 57(4): 927-41.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04716.x] [PMID: 16091035]
[255]
Ishizaki T, Tosaka A, Nara T, et al. Leucine aminopeptidase during meiotic development. Eur J Biochem 2002; 269(3): 826-32.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02713.x] [PMID: 11846784]
[256]
Zhang S, Yang X, Shi H, et al. Overexpression of leucine aminopeptidase 3 contributes to malignant development of human esophageal squamous cell carcinoma. J Mol Histol 2014; 45(3): 283-92.
[http://dx.doi.org/10.1007/s10735-014-9566-3] [PMID: 24477662]
[257]
Knowles G. The effects of arphamenine-A, an inhibitor of aminopeptidases, on in-vitro growth of Trypanosoma brucei brucei. J Antimicrob Chemother 1993; 32(1): 172-4.
[http://dx.doi.org/10.1093/jac/32.1.172] [PMID: 8226412]
[258]
Umezawa H, Aoyagi T, Ohuchi S, et al. Arphamenines A and B,new inhibitors of aminopeptidase B, produced by bacteria. J Antibiot (Tokyo) 1983; 36(11): 1572-5.
[http://dx.doi.org/10.7164/antibiotics.36.1572] [PMID: 6654760]
[259]
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372(3): 774-97.
[http://dx.doi.org/10.1016/j.jmb.2007.05.022] [PMID: 17681537]
[260]
Carpenter FH, Vahl JM. Leucine aminopeptidase (Bovine lens). Mechanism of activation by Mg 2+ and Mn 2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content. J Biol Chem 1973; 248(1): 294-304.
[http://dx.doi.org/10.1016/S0021-9258(19)44474-8] [PMID: 4692835]
[261]
Zheng J, Jia H, Zheng Y. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9. Int J Parasitol 2015; 45(2-3): 141-8.
[http://dx.doi.org/10.1016/j.ijpara.2014.09.003] [PMID: 25444863]
[262]
Gourlay SC, Colloms SD. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 2004; 52(1): 53-65.
[http://dx.doi.org/10.1111/j.1365-2958.2003.03962.x] [PMID: 15049810]
[263]
Paul S, Summers D, Arg R, Pep A. ArgR and PepA, accessory proteins for XerCD-mediated resolution of ColE1 dimers, are also required for stable maintenance of the P1 prophage. Plasmid 2004; 52(1): 63-8.
[http://dx.doi.org/10.1016/j.plasmid.2004.04.003] [PMID: 15212893]
[264]
Li FJ, Shen Q, Wang C, Sun Y, Yuan AY, He CY. A role of autophagy in Trypanosoma brucei cell death. Cell Microbiol 2012; 14(8): 1242-56.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01795.x] [PMID: 22463696]
[265]
World Health Organization. Leishmaniasis. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
[266]
Handman E. Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 2001; 14(2): 229-43.
[http://dx.doi.org/10.1128/CMR.14.2.229-243.2001] [PMID: 11292637]
[267]
Sundar S, Singh A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther Adv Infect Dis 2016; 3(3-4): 98-109.
[http://dx.doi.org/10.1177/2049936116646063] [PMID: 27536354]
[268]
Mohapatra S. Drug resistance in leishmaniasis: Newer developments. Trop Parasitol 2014; 4(1): 4-9.
[http://dx.doi.org/10.4103/2229-5070.129142] [PMID: 24754020]
[269]
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114(20): 10369-428.
[http://dx.doi.org/10.1021/cr400552x] [PMID: 25253511]
[270]
Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol 2017; 15(4): 217-31.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[271]
Schneider P, Glaser TA. Characterisation of two soluble metalloexopeptidases in the protozoan parasite Leishmania major. Mol Biochem Parasitol 1993; 62(2): 223-31.
[http://dx.doi.org/10.1016/0166-6851(93)90111-A] [PMID: 8139615]
[272]
Gu YQ, Chao WS, Walling LL. Localization and post-translational processing of the wound-induced leucine aminopeptidase proteins of tomato. J Biol Chem 1996; 271(42): 25880-7.
[http://dx.doi.org/10.1074/jbc.271.42.25880] [PMID: 8824220]
[273]
Toma C, Honma Y. Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene. Infect Immun 1996; 64(11): 4495-500.
[http://dx.doi.org/10.1128/iai.64.11.4495-4500.1996] [PMID: 8890197]
[274]
Aguado ME, González-Matos M, Izquierdo M, Quintana J, Field MC, González-Bacerio J. Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expr Purif 2021; 183: 105877.
[http://dx.doi.org/10.1016/j.pep.2021.105877] [PMID: 33775769]
[275]
Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y. Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane-spanning zinc metallopeptidase family. J Biol Chem 1996; 271(1): 56-61.
[http://dx.doi.org/10.1074/jbc.271.1.56] [PMID: 8550619]
[276]
Cottrell GS, Hooper NM, Turner AJ. Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese(II)-dependent enzyme. Biochemistry 2000; 39(49): 15121-8.
[http://dx.doi.org/10.1021/bi001585c] [PMID: 11106490]
[277]
D’souz VM, Holz RC. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 1999; 38(34): 11079-85.
[http://dx.doi.org/10.1021/bi990872h] [PMID: 10460163]
[278]
Walker KW, Bradshaw RA. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: A case of mistaken identity? Protein Sci 1998; 7(12): 2684-7.
[http://dx.doi.org/10.1002/pro.5560071224] [PMID: 9865965]
[279]
Gu YQ, Walling LL. Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur J Biochem 2002; 269(6): 1630-40.
[http://dx.doi.org/10.1046/j.1432-1327.2002.02795.x] [PMID: 11895433]
[280]
Van Wart HE, Lin SH. Metal binding stoichiometry and mechanism of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochemistry 1981; 20(20): 5682-9.
[http://dx.doi.org/10.1021/bi00523a007] [PMID: 7295698]
[281]
Wilkes SH, Prescott JM. The slow, tight binding of bestatin and amastatin to aminopeptidases. J Biol Chem 1985; 260(24): 13154-62.
[http://dx.doi.org/10.1016/S0021-9258(17)38851-8] [PMID: 2865258]
[282]
Taylor A, Peltier CZ, Torre FJ, Hakamian N. Inhibition of bovine lens leucine aminopeptidase by bestatin: number of binding sites and slow binding of this inhibitor. Biochemistry 1993; 32(3): 784-90.
[http://dx.doi.org/10.1021/bi00054a007] [PMID: 8422382]
[283]
Maggiora LL, Orawski AT, Simmons WH. Apstatin analogue inhibitors of aminopeptidase P, a bradykinin-degrading enzyme. J Med Chem 1999; 42(13): 2394-402.
[http://dx.doi.org/10.1021/jm9805642] [PMID: 10395480]
[284]
Clements JM, Beckett RP, Brown A, et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 2001; 45(2): 563-70.
[http://dx.doi.org/10.1128/AAC.45.2.563-570.2001] [PMID: 11158755]
[285]
Bienvenue DL, Bennett B, Holz RC. Inhibition of the aminopeptidase from Aeromonas proteolytica by l-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor–enzyme complex. J Inorg Biochem 2000; 78(1): 43-54.
[http://dx.doi.org/10.1016/S0162-0134(99)00203-2] [PMID: 10714704]
[286]
Sakakibara T, Ito K, Irie Y, et al. Toxicological studies on bestatin. I. Acute toxicity test in mice, rats and dogs. Jpn J Antibiot 1983; 36(11): 2971-84.
[PMID: 6674528]
[287]
Beatriz Vermelho A, Giovanni De Simone S, Masini d’Avila-Levy C, et al. Trypanosomatidae peptidases: A target for drugs development. Curr Enzym Inhib 2007; 3(1): 19-48.
[http://dx.doi.org/10.2174/157340807779815468]
[288]
Kim H, Burley SK, Lipscomb WN. Re-refinement of the X-ray crystal structure of bovine lens leucine aminopeptidase complexed with bestatin. J Mol Biol 1993; 230(3): 722-4.
[http://dx.doi.org/10.1006/jmbi.1993.1193] [PMID: 8478928]
[289]
Jia H, Nishikawa Y, Luo Y, Yamagishi J, Sugimoto C, Xuan X. Characterization of a leucine aminopeptidase from Toxoplasma gondii. Mol Biochem Parasitol 2010; 170(1): 1-6.
[http://dx.doi.org/10.1016/j.molbiopara.2009.11.005] [PMID: 19931316]
[290]
Kale A, Pijning T, Sonke T, Dijkstra BW, Thunnissen AMWH. Crystal structure of the leucine aminopeptidase from Pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity. J Mol Biol 2010; 398(5): 703-14.
[http://dx.doi.org/10.1016/j.jmb.2010.03.042] [PMID: 20359484]
[291]
Bhosale M, Pande S, Kumar A, Kairamkonda S, Nandi D. Characterization of two M17 family members in Escherichia coli, Peptidase A and Peptidase B. Biochem Biophys Res Commun 2010; 395(1): 76-81.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.142] [PMID: 20350528]
[292]
Stirling CJ, Colloms SD, Collins JF, Szatmari G, Sherratt DJ. xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 1989; 8(5): 1623-7.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03547.x] [PMID: 2670557]
[293]
Charlier D, Hassanzadeh Gh G, Kholti A, Gigot D, Piérard A, Glansdorff N. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEI multimers. J Mol Biol 1995; 250(4): 392-406.
[http://dx.doi.org/10.1006/jmbi.1995.0385] [PMID: 7616564]
[294]
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42(D1): D222-30.
[http://dx.doi.org/10.1093/nar/gkt1223] [PMID: 24288371]
[295]
Prescott JM, Wagner FW, Holmquist B, Vallee BL. Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-binding sites. Biochemistry 1985; 24(20): 5350-6.
[http://dx.doi.org/10.1021/bi00341a012] [PMID: 4074699]
[296]
Zacharias J, Knapp EW. Protein secondary structure classification revisited: processing DSSP information with PSSC. J Chem Inf Model 2014; 54(7): 2166-79.
[http://dx.doi.org/10.1021/ci5000856] [PMID: 24866861]
[297]
Kumar R, Mohapatra P, Dubey VK. Exploring realm of proteases of Leishmania donovani genome and gene expression analysis of proteases under apoptotic condition. J Proteomics Bioinform 2016; 9(8): 200-8.
[http://dx.doi.org/10.4172/jpb.1000407]
[298]
Paris C, Loiseau PM, Bories C, Bréard J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2004; 48(3): 852-9.
[http://dx.doi.org/10.1128/AAC.48.3.852-859.2004] [PMID: 14982775]
[299]
Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004; 48(8): 3010-5.
[http://dx.doi.org/10.1128/AAC.48.8.3010-3015.2004] [PMID: 15273114]
[300]
Kumar R, Tiwari K, Dubey VK. Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci Rep 2017; 7(1): 95.
[http://dx.doi.org/10.1038/s41598-017-00186-9] [PMID: 28273904]
[301]
Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281(5381): 1312-6.
[http://dx.doi.org/10.1126/science.281.5381.1312] [PMID: 9721091]
[302]
Green DR. Apoptotic pathways. Cell 2000; 102(1): 1-4.
[http://dx.doi.org/10.1016/S0092-8674(00)00003-9] [PMID: 10929706]
[303]
Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805): 770-6.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[304]
Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59(7) (Suppl.): 1701s-6s.
[PMID: 10197583]
[305]
Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000; 407(6805): 796-801.
[http://dx.doi.org/10.1038/35037734] [PMID: 11048731]
[306]
Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci 1994; 107(10): 2691-704.
[http://dx.doi.org/10.1242/jcs.107.10.2691] [PMID: 7876338]
[307]
Ameisen JC, Idziorek T, Billaut-Mulot O, et al. Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 1995; 2(4): 285-300.
[PMID: 17180034]
[308]
Christensen ST, Wheatley DN, Rasmussen MI, Rasmussen L. Mechanisms controlling death, survival and proliferation in a model unicellular eukaryote Tetrahymena thermophila. Cell Death Differ 1995; 2(4): 301-8.
[PMID: 17180035]
[309]
Moreira MEC, Del Portillo HA, Milder RV, Balanco JMF, Barcinski MA. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996; 167(2): 305-13.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199605)167:2<305::AID-JCP15>3.0.CO;2-6] [PMID: 8613472]
[310]
Welburn SC, Dale C, Ellis D, Beecroft R, Pearson TW. Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ 1996; 3(2): 229-36.
[PMID: 17180087]
[311]
Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 2002; 9(1): 65-81.
[http://dx.doi.org/10.1038/sj.cdd.4400951] [PMID: 11803375]
[312]
Saudagar P, Saha P, Saikia AK, Dubey VK. Molecular mechanism underlying antileishmanial effect of oxabicyclo[3.3.1]nonanones: Inhibition of key redox enzymes of the pathogen. Eur J Pharm Biopharm 2013; 85(3): 569-77.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.014] [PMID: 24002022]
[313]
Compton MM. A biochemical hallmark of apoptosis: Internucleosomal degradation of the genome. Cancer Metastasis Rev 1992; 11(2): 105-19.
[http://dx.doi.org/10.1007/BF00048058] [PMID: 1327565]
[314]
Jiménez-Ruiz A, Alzate J, MacLeod E, Lüder CG, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3(1): 104.
[http://dx.doi.org/10.1186/1756-3305-3-104] [PMID: 21062457]
[315]
Kulkarni MM, McMaster WR, Kamysz W, McGwire BS. Antimicrobial peptide-induced apoptotic death of leishmania results from calcium-de pend ent, caspase-independent mitochondrial toxicity. J Biol Chem 2009; 284(23): 15496-504.
[http://dx.doi.org/10.1074/jbc.M809079200] [PMID: 19357081]
[316]
Dolai S, Pal S, Yadav RK, Adak S. Endoplasmic reticulum stress-induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem 2011; 286(15): 13638-46.
[http://dx.doi.org/10.1074/jbc.M110.201889] [PMID: 21330370]
[317]
Wang J, Stieglitz KA, Kantrowitz ER. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 2005; 44(23): 8378-86.
[http://dx.doi.org/10.1021/bi050155p] [PMID: 15938627]
[318]
Holland DR, Hausrath AC, Juers D, Matthews BW. Structural analysis of zinc substitutions in the active site of thermolysin. Protein Sci 1995; 4(10): 1955-65.
[http://dx.doi.org/10.1002/pro.5560041001] [PMID: 8535232]
[319]
Kleifeld O, Rulíšek L, Bogin O, et al. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Biochemistry 2004; 43(22): 7151-61.
[http://dx.doi.org/10.1021/bi0302696] [PMID: 15170352]
[320]
Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ Jr, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci USA 2006; 103(39): 14548-53.
[http://dx.doi.org/10.1073/pnas.0604101103] [PMID: 16983082]
[321]
Musonda CC, Whitlock GA, Witty MJ, Brun R, Kaiser M. Synthesis and evaluation of 2-pyridyl pyrimidines with in vitro antiplasmodial and antileishmanial activity. Bioorg Med Chem Lett 2009; 19(2): 401-5.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.098] [PMID: 19091562]
[322]
Lloyd D, Turner NA, Khunkitti W, Hann AC, Furr JR, Russell AD. Encystation in Acanthamoeba castellanii: development of biocide resistance. J Eukaryot Microbiol 2001; 48(1): 11-6.
[http://dx.doi.org/10.1111/j.1550-7408.2001.tb00410.x] [PMID: 11249185]
[323]
Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16(2): 273-307.
[http://dx.doi.org/10.1128/CMR.16.2.273-307.2003] [PMID: 12692099]
[324]
Tomlinson G, Jones EA. Isolation of cellulose from the cyst wall of a soil amoeba. Biochim Biophys Acta 1962; 63(1): 194-200.
[http://dx.doi.org/10.1016/0006-3002(62)90353-0] [PMID: 13985444]
[325]
Weisman RA. Differentiation in Acanthamoeba castellanii. Annu Rev Microbiol 1976; 30(1): 189-219.
[http://dx.doi.org/10.1146/annurev.mi.30.100176.001201] [PMID: 791066]
[326]
Khan NA. Acanthamoeba: biology and pathogenesis. Horizon Scientific Press 2009.
[327]
Matsushima M, Takahashi T, Ichinose M, Miki K, Kurokawa K, Takahashi K. Structural and immunological evidence for the identity of prolyl aminopeptidase with leucyl aminopeptidase. Biochem Biophys Res Commun 1991; 178(3): 1459-64.
[http://dx.doi.org/10.1016/0006-291X(91)91057-J] [PMID: 1908238]
[328]
Okhuysen PC, Chappell CL, Kettner C, Sterling CR. Cryptosporidium parvum metalloaminopeptidase inhibitors prevent in vitro excystation. Antimicrob Agents Chemother 1996; 40(12): 2781-4.
[http://dx.doi.org/10.1128/AAC.40.12.2781] [PMID: 9124840]
[329]
Singh U, Brewer JL, Boothroyd JC. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol 2002; 44(3): 721-33.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02903.x] [PMID: 11994153]
[330]
Poloz Y, Catalano A, O’Day DH. Bestatin inhibits cell growth, cell division, and spore cell differentiation in Dictyostelium discoideum. Eukaryot Cell 2012; 11(4): 545-57.
[http://dx.doi.org/10.1128/EC.05311-11] [PMID: 22345351]
[331]
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: A world emerging. Infect Genet Evol 2012; 12(8): 1788-809.
[http://dx.doi.org/10.1016/j.meegid.2012.07.004] [PMID: 22871652]
[332]
Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology 2004; 129(S1): S247-69.
[http://dx.doi.org/10.1017/S0031182004005190] [PMID: 15938514]
[333]
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: Advances in biology and functional genomics. Int J Parasitol 2013; 43(2): 125-32.
[http://dx.doi.org/10.1016/j.ijpara.2012.09.008] [PMID: 23068911]
[334]
Lin ECY, Chueh LL, Lin CN, Hsieh LE, Su BL. The therapeutic efficacy of two antibabesial strategies against Babesia gibsoni. Vet Parasitol 2012; 186(3-4): 159-64.
[http://dx.doi.org/10.1016/j.vetpar.2011.11.073] [PMID: 22222008]
[335]
Aboge GO, Cao S, Terkawi MA, et al. Molecular characterization of Babesia bovis M17 leucine aminopeptidase and inhibition of Babesia growth by bestatin. J Parasitol 2015; 101(5): 536-41.
[http://dx.doi.org/10.1645/15-745.1] [PMID: 26057618]
[336]
McCarthy E, Stack C, Donnelly SM, et al. Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol 2004; 34(6): 703-14.
[http://dx.doi.org/10.1016/j.ijpara.2004.01.008] [PMID: 15111092]
[337]
van der Werf MJ, de Vlas SJ, Brooker S, et al. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop 2003; 86(2-3): 125-39.
[http://dx.doi.org/10.1016/S0001-706X(03)00029-9] [PMID: 12745133]
[338]
Hotez PJ, Kamath A. Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 2009; 3(8): e412.
[http://dx.doi.org/10.1371/journal.pntd.0000412] [PMID: 19707588]
[339]
World Health Organization. Schistosomiasis. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
[340]
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380(9859): 2095-128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[341]
Thétiot-Laurent SAL, Boissier J, Robert A, Meunier B. Schistosomiasis chemotherapy. Angew Chem Int Ed 2013; 52(31): 7936-56.
[http://dx.doi.org/10.1002/anie.201208390] [PMID: 23813602]
[342]
Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool 2004; 82(2): 211-32.
[http://dx.doi.org/10.1139/z03-213]
[343]
Brindley PJ, Kalinna BH, Dalton JP, et al. Proteolytic degradation of host hemoglobin by schistosomes1Note: Nucleotide sequences data reported in the paper have been submitted to the GenBank™ data base with the accession numbers L41346 and U77932.1. Mol Biochem Parasitol 1997; 89(1): 1-9.
[http://dx.doi.org/10.1016/S0166-6851(97)00098-4] [PMID: 9297696]
[344]
Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP. Helminth proteinases and their associated genes. Adv Parasitol 1999; 43: 162-8.
[http://dx.doi.org/10.1016/S0065-308X(08)60243-2]
[345]
Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 2002; 120(1): 1-21.
[http://dx.doi.org/10.1016/S0166-6851(01)00438-8] [PMID: 11849701]
[346]
Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat Rev Immunol 2002; 2(7): 499-511.
[http://dx.doi.org/10.1038/nri843] [PMID: 12094224]
[347]
King CH, Dickman K, Tisch DJ. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 2005; 365(9470): 1561-9.
[http://dx.doi.org/10.1016/S0140-6736(05)66457-4] [PMID: 15866310]
[348]
Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. Lancet 2006; 368(9541): 1106-18.
[http://dx.doi.org/10.1016/S0140-6736(06)69440-3] [PMID: 16997665]
[349]
Keenan JD, Hotez PJ, Amza A, et al. Elimination and eradication of neglected tropical diseases with mass drug administrations: a survey of experts. PLoS Negl Trop Dis 2013; 7(12): e2562.
[http://dx.doi.org/10.1371/journal.pntd.0002562] [PMID: 24340111]
[350]
Crellen T, Walker M, Lamberton PHL, et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple-rounds of mass drug administration. Clin Infect Dis 2016; 63(9): 1151-9.
[PMID: 27470241]
[351]
Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gärtner F, Correia da Costa JM. Praziquantel for schistosomiasis: single-drug metabolism revisited mode of action, and resistance, Antimicrob. Agents Chemother 2017; 24: e02582-e025816.
[http://dx.doi.org/10.1128/AAC.02582-16]
[352]
Rinaldi G, Morales ME, Alrefaei YN, et al. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Mol Biochem Parasitol 2009; 167(2): 118-26.
[http://dx.doi.org/10.1016/j.molbiopara.2009.05.002] [PMID: 19463860]
[353]
Maggioli G, Rinaldi G, Giaudrone I, et al. Expression, purification and characterization of two leucine aminopeptidases of the blood fluke, Schistosoma mansoni. Mol Biochem Parasitol 2018; 219: 17-23.
[http://dx.doi.org/10.1016/j.molbiopara.2017.11.006] [PMID: 29169803]
[354]
Xu YZ, Dresden MH, Matsuda H. Effect of praziquantel on Schistosoma mansoni eggs: leucine aminopeptidase (LAP) activity and anti-LAP antibodies. Am J Trop Med Hyg 1988; 39(1): 46-51.
[http://dx.doi.org/10.4269/ajtmh.1988.39.46] [PMID: 3135759]
[355]
Xu Y, Shawar SM, Dresden MH. Schistosoma mansoni: Purification and characterization of a membrane-associated leucine aminopeptidase. Exp Parasitol 1990; 70(2): 124-33.
[http://dx.doi.org/10.1016/0014-4894(90)90093-R] [PMID: 2298275]
[356]
Abouel-Nour MF, Lotfy M, El-Kady I, El-Shahat M, Doughty BL. Localization of leucine aminopeptidase in the Schistosoma mansoni eggs and in liver tissue from infected mice. J Egypt Soc Parasitol 2005; 35(1): 147-56.
[PMID: 15881002]
[357]
Dalton JP, Smith AM, Clough KA, Brindley PJ. Digestion of haemoglobin by schistosomes: 35 years on. Parasitol Today 1995; 11(8): 299-303.
[http://dx.doi.org/10.1016/0169-4758(95)80045-X] [PMID: 15275329]
[358]
Dalton JP, Clough KA, Jones MK, Brindley PJ. Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni. Infect Immun 1996; 64(4): 1328-34.
[http://dx.doi.org/10.1128/iai.64.4.1328-1334.1996] [PMID: 8606097]
[359]
Brady CP, Brindley PJ, Dowd AJ, Dalton JP. Schistosoma mansoni: differential expression of cathepsins L1 and L2 suggests discrete biological functions for each enzyme. Exp Parasitol 2000; 94(2): 75-83.
[http://dx.doi.org/10.1006/expr.1999.4478] [PMID: 10673343]
[360]
Brady CP, Dowd AJ, Brindley PJ, Ryan T, Day SR, Dalton JP. Recombinant expression and localization of Schistosoma mansoni cathepsin L1 support its role in the degradation of host hemoglobin. Infect Immun 1999; 67(1): 368-74.
[http://dx.doi.org/10.1128/IAI.67.1.368-374.1999] [PMID: 9864238]
[361]
Caffrey CR, Salter JP, Lucas KD, et al. SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Mol Biochem Parasitol 2002; 121(1): 49-61.
[http://dx.doi.org/10.1016/S0166-6851(02)00022-1] [PMID: 11985862]
[362]
Auriault C, Pierce R, Cesari IM, Capron A. Neutral protease activities at different developmental stages of Schistosoma mansoni in mammalian hosts. Comp Biochem Physiol B 1982; 72(3): 377-84.
[http://dx.doi.org/10.1016/0305-0491(82)90215-2] [PMID: 6751680]
[363]
Damonneville M, Auriault C, Pierce RJ, Capron A. Antigenic properties of Schistosoma mansoni aminopeptidases: Evolution during the development in mammalian hosts. Mol Biochem Parasitol 1982; 6(5): 265-75.
[http://dx.doi.org/10.1016/0166-6851(82)90059-7] [PMID: 7177166]
[364]
Xu Y, Dresden MH. Leucine aminopeptidase and hatching of Schistosoma mansoni eggs. J Parasitol 1986; 72(4): 507-11.
[http://dx.doi.org/10.2307/3281498] [PMID: 3783344]
[365]
Jones MK, Bong SH, Green KM, et al. Correlative and dynamic imaging of the hatching biology of Schistosoma japonicum from eggs prepared by high pressure freezing. PLoS Negl Trop Dis 2008; 2(11): e334.
[http://dx.doi.org/10.1371/journal.pntd.0000334] [PMID: 19002240]
[366]
Rogers WP. The role of leucine aminopeptidase in the moulting of nematode parasites. Comp Biochem Physiol 1965; 14(2): 311-21.
[http://dx.doi.org/10.1016/0010-406X(65)90207-0] [PMID: 14326008]
[367]
Rogers WP. Enzymes in the exsheathing fluid of nematodes and their biological significance. Int J Parasitol 1982; 12(6): 495-502.
[http://dx.doi.org/10.1016/0020-7519(82)90043-1] [PMID: 6298132]
[368]
Rogers WP, Frances B. Zinc as a co-factor for an enzyme involved in exsheathment of Haemonchus contortus. Int J Parasitol 1976; 6(4): 315-9.
[http://dx.doi.org/10.1016/0020-7519(76)90053-9] [PMID: 821874]
[369]
Rogers WP, Brooks F. The mechanism of hatching of eggs of Haemonchus contortus. Int J Parasitol 1977; 7(1): 61-5.
[http://dx.doi.org/10.1016/0020-7519(77)90026-1] [PMID: 558173]
[370]
Rogers WP, Brooks F. Leucine aminopeptidase and exsheathing activity in preparations from Haemonchus contortus. Int J Parasitol 1978; 8(6): 449-52.
[http://dx.doi.org/10.1016/0020-7519(78)90062-0] [PMID: 748217]
[371]
Deng C, Sun J, Li X, et al. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis. Mol Biol Rep 2012; 39(10): 9817-26.
[http://dx.doi.org/10.1007/s11033-012-1848-9] [PMID: 22729885]
[372]
McLeod R, Boyer K, Roizen N, et al. The child with congenital toxoplasmosis. Curr Clin Top Infect Dis 2000; 20: 189-208.
[PMID: 10943525]
[373]
Que X, Engel JC, Ferguson D, Wunderlich A, Tomavo S, Reed SL. Cathepsin Cs are key for the intracellular survival of the protozoan parasite, Toxoplasma gondii. J Biol Chem 2007; 282(7): 4994-5003.
[http://dx.doi.org/10.1074/jbc.M606764200] [PMID: 17164247]
[374]
Hatta T, Kazama K, Miyoshi T, et al. Identification and characterisation of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Int J Parasitol 2006; 36(10-11): 1123-32.
[http://dx.doi.org/10.1016/j.ijpara.2006.05.010] [PMID: 16814790]
[375]
Jia H, Terkawi MA, Aboge GO, et al. Characterization of a leucine aminopeptidase of Babesia gibsoni. Parasitology 2009; 136(9): 945-52.
[http://dx.doi.org/10.1017/S0031182009006398] [PMID: 19549347]
[376]
Mei L, Wu F, Hao G, Yang G. Protocol for hit-to-lead optimization of compounds by auto in silico ligand directing evolution (AILDE) approach. STAR Protocols 2021; 2(1): 100312.
[http://dx.doi.org/10.1016/j.xpro.2021.100312] [PMID: 33554146]
[377]
Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 2006; 5(11): 941-55.
[http://dx.doi.org/10.1038/nrd2144] [PMID: 17080030]
[378]
Wickström M, Larsson R, Nygren P, Gullbo J, Aminopeptidase N. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 2011; 102(3): 501-8.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01826.x] [PMID: 21205077]
[379]
Pascual I, García G, Sánchez L, et al. Aminopeptidase N from mammals: biochemical caracteristics, physiological functions and implication in physiopathological processes in humans. Rev Cub Cienc Biol 2015; 4: 2-16.
[380]
Rich DH, Moon BJ, Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes. J Med Chem 1984; 27(4): 417-22.
[http://dx.doi.org/10.1021/jm00370a001] [PMID: 6142952]
[381]
Lee MD, She Y, Soskis MJ, et al. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest 2004; 114(8): 1107-16.
[http://dx.doi.org/10.1172/JCI200422269] [PMID: 15489958]
[382]
Yoshimoto T, Orawski AT, Simmons WH. Substrate specificity of aminopeptidase P from Escherichia coli: comparison with membrane-bound forms from rat and bovine lung. Arch Biochem Biophys 1994; 311(1): 28-34.
[http://dx.doi.org/10.1006/abbi.1994.1204] [PMID: 8185318]
[383]
Prechel MM, Orawski AT, Maggiora LL, Simmons WH. Effect of a new aminopeptidase P inhibitor, apstatin, on bradykinin degradation in the rat lung. J Pharmacol Exp Ther 1995; 275(3): 1136-42.
[PMID: 8531074]
[384]
Broughton BJ, Chaplen P, Freeman WA, Warren PJ, Wooldridge KRH, Wright DE. Studies concerning the antibiotic actinonin. Part VIII. Structure–activity relationships in the actinonin series. J Chem Soc, Perkin Trans 1 1975; (9): 857-60.
[http://dx.doi.org/10.1039/P19750000857] [PMID: 1095607]
[385]
Peschke T, Recknagel RD, Veckenstedt A, Baumgart J, Werner W. Bestatin-induced enhancement of in vivo phagocytosis determined by a new simple assay. Allerg Immunol (Leipz) 1991; 37(3-4): 125-9.
[PMID: 1793085]
[386]
Zhao S, Yao K, Li D, et al. Inhibition of LTA4H by bestatin in human and mouse colorectal cancer. EBioMedicine 2019; 44: 361-74.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.008] [PMID: 31085102]
[387]
Botbol V, Scornik OA. Peptide intermediates in the degradation of cellular proteins. Bestatin permits their accumulation in mouse liver in vivo. J Biol Chem 1983; 258(3): 1942-9.
[http://dx.doi.org/10.1016/S0021-9258(18)33079-5] [PMID: 6822543]
[388]
Bhat SY, Qureshi IA. Structural and functional basis of potent inhibition of Leishmanial leucine aminopeptidase by peptidomimetics. ACS Omega 2021; 6(29): 19076-85.
[http://dx.doi.org/10.1021/acsomega.1c02386] [PMID: 34337246]
[389]
Edgar RCS, Siddiqui G, Hjerrild K, et al. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 2022; 11: e80813.
[http://dx.doi.org/10.7554/eLife.80813] [PMID: 36097817]
[390]
Olaleye OA, Bishai WR, Liu JO. Targeting the role of N-terminal methionine processing enzymes in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2009; 89(Suppl. 1): S55-9.
[http://dx.doi.org/10.1016/S1472-9792(09)70013-7] [PMID: 20006307]
[391]
Nguyen Le Minh P, Nadal M, Charlier D. The trigger enzyme PepA (aminopeptidase A) of Escherichia coli, a transcriptional repressor that generates positive supercoiling. FEBS Lett 2016; 590(12): 1816-25.
[http://dx.doi.org/10.1002/1873-3468.12224] [PMID: 27213286]
[392]
Bhosale M, Kumar A, Das M, Bhaskarla C, Agarwal V, Nandi D. Catalytic activity of Peptidase N is required for adaptation of Escherichia coli to nutritional downshift and high temperature stress. Microbiol Res 2013; 168(1): 56-64.
[http://dx.doi.org/10.1016/j.micres.2012.06.003] [PMID: 22766257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy