Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Neuroprotective Role of BCG Vaccine in Movement Disorders: A Review

Author(s): Narhari Gangaram Yedke and Puneet Kumar*

Volume 23, Issue 1, 2024

Published on: 13 January, 2023

Page: [30 - 38] Pages: 9

DOI: 10.2174/1871527322666221223142813

Price: $65

Abstract

Bacillus Calmette-Guérin (BCG) is the first developed vaccine to prevent tuberculosis (TB) and is the world's most widely used vaccine. It has a reconcilable defense in opposition to tuberculosis, meningitis, and miliary disease in children but changeable protection against pulmonary TB. Immune activation is responsible for regulating neural development by activating it. The effect of the BCG vaccine on neuronal disorders due to subordinate immune provocation is useful. BCG vaccine can prevent neuronal degeneration in different neurological disorders by provoking auto-reactive T-cells. In the case of TB, CD4+ T-cells effectively protect the immune response by protecting the central defense. Because of the preceding fact, BCG induces protection by creating precise T-cells like CD4+ T-cells and CD8+ T-cells. Hence, vaccination-induced protection generates specific T-cells and CD4+ T-cells, and CD8+ T-cells. The BCG vaccine may have an essential effect on motor disorders and play a crucial role in neuroprotective management. The present review describes how the BCG vaccine might be interrelated with motor disorders and play a key role in such diseases.

Keywords: BCG vaccine, neuroprotection, movement disorders, neuroinflammation, autoimmunity, PD.

Graphical Abstract
[1]
Barreto ML, Pereira SM, Ferreira AA. BCG vaccine: Efficacy and indications for vaccination and revaccination. J Pediatr 2006; 82(7): 45-54.
[http://dx.doi.org/10.2223/JPED.1499] [PMID: 16826312]
[2]
Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71(4): 444-57.
[http://dx.doi.org/10.1002/ana.22620] [PMID: 22334391]
[3]
Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M. The BCG World Atlas: A database of global BCG vaccination policies and practices. PLoS Med 2011; 8(3): e1001012.
[http://dx.doi.org/10.1371/journal.pmed.1001012] [PMID: 21445325]
[4]
Rawlins MD, Wexler NS, Wexler AR, et al. The prevalence of Huntington’s disease. Neuroepidemiology 2016; 46(2): 144-53.
[http://dx.doi.org/10.1159/000443738] [PMID: 26824438]
[5]
Rawlins MD, Wexler NS, Wexler AR, et al. The prevalence of Huntington's disease Neuroepidemiology 2016; 46(2): 144-53. doi: 10.1159/000443738. Epub 2016 Jan 30.
[PMID: 26824438]
[6]
Ramos-Arroyo MA, Moreno S, Valiente A. Incidence and mutation rates of Huntington’s disease in Spain: experience of 9 years of direct genetic testing. J Neurol Neurosurg Psychiatry 2005; 76(3): 337-42.
[http://dx.doi.org/10.1136/jnnp.2004.036806] [PMID: 15716522]
[7]
Panas M, Karadima G, Vassos E, et al. Huntington’s disease in Greece: The experience of 14 years. Clin Genet 2011; 80(6): 586-90.
[http://dx.doi.org/10.1111/j.1399-0004.2010.01603.x] [PMID: 21166788]
[8]
Carrassi E, Pugliatti M, Govoni V, Sensi M, Casetta I, Granieri E. Epidemiological study of Huntington’s disease in the province of Ferrara, Italy. Neuroepidemiology 2017; 49(1-2): 18-23.
[http://dx.doi.org/10.1159/000479697] [PMID: 28803251]
[9]
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14(11): e0224433.
[http://dx.doi.org/10.1371/journal.pone.0224433] [PMID: 31697701]
[10]
Bakhta K, Cecillon E, Lacombe E, Lamy M, Leboucher A, Philippe J. Alzheimer’s disease and neurodegenerative diseases in France. Lancet 2019; 394(10197): 466-7.
[http://dx.doi.org/10.1016/S0140-6736(19)31633-2] [PMID: 31402022]
[11]
Laćan G, Dang H, Middleton B, et al. Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory Tcell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci Res 2013; 91(10): 1292-302.
[http://dx.doi.org/10.1002/jnr.23253] [PMID: 23907992]
[12]
Chung KT, Biggers CJ. Albert Léon Charles Calmette (1863-1933) and the antituberculous BCG vaccination. Perspect Biol Med 2001; 44(3): 379-89.
[http://dx.doi.org/10.1353/pbm.2001.0044] [PMID: 11482007]
[13]
Oettinger T, Jørgensen M, Ladefoged A, Hasløv K, Andersen P. Development of the Mycobacterium bovis BCG vaccine: Review of the historical and biochemical evidence for a genealogical tree. Tuber Lung Dis 1999; 79(4): 243-50.
[http://dx.doi.org/10.1054/tuld.1999.0206] [PMID: 10692993]
[14]
Petroff SA, Branch A, Steenken W Jr. Microbic Dissociation III. BCG (Bacillus Calmette-Guerin). Exp Biol Med 1927; 25(1): 14-7.
[http://dx.doi.org/10.3181/00379727-25-3674]
[15]
Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001; 61(22): 8118-21.
[PMID: 11719439]
[16]
Little G. The Canadian Public Health Association 1951-1952: Part II. Canadienne de Sante'e Publique 1952; 43(7): 303-17.
[17]
Leslie C. What caused India’s massive community health workers scheme: A sociology of knowledge. Soc Sci Med 1985; 21(8): 923-30.
[http://dx.doi.org/10.1016/0277-9536(85)90150-9] [PMID: 4071126]
[18]
Jacobs S, Warman A, Roehrig N, et al. Mycobacterium tuberculosis infection in First Nations preschool children in Alberta: Implications for BCG (bacille Calmette-Guérin) vaccine withdrawal. Can J Public Health 2007; 98(2): 116-20.
[http://dx.doi.org/10.1007/BF03404321] [PMID: 17441534]
[19]
Moses MW, Zwerling A, Cattamanchi A, et al. Serial testing for latent tuberculosis using QuantiFERON-TB Gold In-Tube: A Markov model. Sci Rep 2016; 6(1): 30781.
[http://dx.doi.org/10.1038/srep30781] [PMID: 27469388]
[20]
Nevo U, Kipnis J, Golding I, et al. Autoimmunity as a special case of immunity: removing threats from within. Trends Mol Med 2003; 9(3): 88-93.
[http://dx.doi.org/10.1016/S1471-4914(03)00024-8] [PMID: 12657429]
[21]
Chen YH, Kuo TT, Chu MT, Ma HI, Chiang YH, Huang EYK. Postnatal systemic inflammation exacerbates impairment of hippocampal synaptic plasticity in an animal seizure model. Neuroimmunomodulation 2013; 20(4): 223-32.
[http://dx.doi.org/10.1159/000348440] [PMID: 23736043]
[22]
Yong J, Lacan G, Dang H, et al. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease. PLoS One 2011 Jan 31; 6(1): e16610.
[http://dx.doi.org/10.1371/journal.pone.0016610] [PMID: 21304945]
[23]
Cunningham C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 2013; 61(1): 71-90.
[http://dx.doi.org/10.1002/glia.22350] [PMID: 22674585]
[24]
Schütte D, Pluschke G. Immunosuppression and treatment-associated inflammatory response in patients with Mycobacterium ulcerans infection (Buruli ulcer). Expert Opin Biol Ther 2009; 9(2): 187-200.
[http://dx.doi.org/10.1517/14712590802631854] [PMID: 19236249]
[25]
Arts RJW, Carvalho A, La Rocca C, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep 2016; 17(10): 2562-71.
[http://dx.doi.org/10.1016/j.celrep.2016.11.011] [PMID: 27926861]
[26]
Yang J, Qi F, Gu H, et al. Neonatal BCG vaccination of mice improves neurogenesis and behavior in early life. Brain Res Bull 2016; 120: 25-33.
[http://dx.doi.org/10.1016/j.brainresbull.2015.10.012] [PMID: 26536170]
[27]
Zuo Z, Qi F, Xing Z, et al. Bacille Calmette-Guérin attenuates vascular amyloid pathology and maximizes synaptic preservation in APP/PS1 mice following active amyloid-β immunotherapy. Neurobiol Aging 2021; 101: 94-108.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.01.001] [PMID: 33610062]
[28]
Zuo Z, Qi F, Yang J, et al. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain. Neurobiol Dis 2017; 101: 27-39.
[http://dx.doi.org/10.1016/j.nbd.2017.02.001] [PMID: 28189498]
[29]
Li Q, Qi F, Yang J, et al. Neonatal vaccination with bacillus Calmette-Guérin and hepatitis B vaccines modulates hippocampal synaptic plasticity in rats. J Neuroimmunol 2015; 288: 1-12.
[http://dx.doi.org/10.1016/j.jneuroim.2015.08.019] [PMID: 26531688]
[30]
Li Q, Xuan A, Qi F, Yang J, Zou J, Yao Z. Synergistic effects of combined vaccination with BCG and influenza vaccines on spatial cognition and hippocampal plasticity in rats. Brain Res Bull 2019; 149: 268-78.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.025] [PMID: 31051226]
[31]
Song D, Qi F, Liu S, Tang Z, Duan J, Yao Z. The adoptive transfer of BCG-induced T lymphocytes contributes to hippocampal cell proliferation and tempers anxiety-like behavior in immune deficient mice. PLoS One 2020; 15(4): e0225874.
[http://dx.doi.org/10.1371/journal.pone.0225874] [PMID: 32240169]
[32]
Matsuzaki G, Teruya N, Kiyohara Kohama H, et al. Mycobacterium bovis BCG-mediated suppression of Th17 response in mouse experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 2021; 43(2): 203-11.
[http://dx.doi.org/10.1080/08923973.2021.1878215] [PMID: 33541144]
[33]
Qi F, Zuo Z, Yang J, et al. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization. J Neuroinflammation 2017; 14(1): 32.
[http://dx.doi.org/10.1186/s12974-017-0808-7] [PMID: 28183352]
[34]
McFarland CT, Ly L, Jeevan A, et al. BCG vaccination in the cotton rat (Sigmodon hispidus) infected by the pulmonary route with virulent Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010; Jul; 90(4): 262-7. doi: 10.1016/j.tube.2010.03.014. Epub 2010 May 6.
[PMID: 20451457]
[35]
Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun 2013; 27(1): 22-32.
[http://dx.doi.org/10.1016/j.bbi.2012.09.003] [PMID: 22985767]
[36]
Chugh D, Nilsson P, Afjei SA, Bakochi A, Ekdahl CT. Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons. Exp Neurol 2013; 250: 176-88.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.005] [PMID: 24047952]
[37]
Godaly G, Young DB. Mycobacterium bovis bacille Calmette Guerin infection of human neutrophils induces CXCL8 secretion by MyD88-dependent TLR2 and TLR4 activation. Cell Microbiol 2005; 7(4): 591-601.
[http://dx.doi.org/10.1111/j.1462-5822.2004.00489.x] [PMID: 15760459]
[38]
Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2014; 2: 82-90.
[http://dx.doi.org/10.1016/j.redox.2013.12.013] [PMID: 24494187]
[39]
Kunis G, Baruch K, Miller O, Schwartz M. Immunization with a myelin-derived antigen activates the brain’s choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. J Neurosci 2015; 35(16): 6381-93.
[http://dx.doi.org/10.1523/JNEUROSCI.3644-14.2015] [PMID: 25904790]
[40]
Derecki NC, Cardani AN, Yang CH, et al. Regulation of learning and memory by meningeal immunity: A key role for IL-4. J Exp Med 2010; 207(5): 1067-80.
[http://dx.doi.org/10.1084/jem.20091419] [PMID: 20439540]
[41]
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature 2006; 440(7087): 1054-9.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[42]
Santello M, Bezzi P, Volterra A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 2011; 69(5): 988-1001.
[http://dx.doi.org/10.1016/j.neuron.2011.02.003] [PMID: 21382557]
[43]
Dauer W, Przedborski S. Parkinson’s disease. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[44]
Greenamyre JT, Hastings TG. Biomedicine. Parkinson’s - divergent causes, convergent mechanisms. Science 2004; 304(5674): 1120-2.
[http://dx.doi.org/10.1126/science.1098966] [PMID: 15155938]
[45]
McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson’s disease. Adv Neurol 2001; 86: 83-9.
[PMID: 11554012]
[46]
Kurkowska-Jastrzębska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 1999; 156(1): 50-61.
[http://dx.doi.org/10.1006/exnr.1998.6993] [PMID: 10192776]
[47]
Kurkowska-Jastrzębska I, Bałkowiec-Iskra E, Joniec I, Litwin T, Członkowski A, Członkowska A. Immunization with myelin oligodendrocyte glycoprotein and complete Freund adjuvant partially protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage in mouse model of Parkinson’s disease. Neuroscience 2005; 131(1): 247-54.
[http://dx.doi.org/10.1016/j.neuroscience.2004.10.027] [PMID: 15680707]
[48]
Boska MD, Lewis TB, Destache CJ, et al. Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neurosci 2005; 25(7): 1691-700.
[http://dx.doi.org/10.1523/JNEUROSCI.4364-04.2005] [PMID: 15716405]
[49]
Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroimmunol 2007; 183(1-2): 60-8.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.009] [PMID: 17196666]
[50]
Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med 2015; 240(11): 1387-95.
[http://dx.doi.org/10.1177/1535370215576313] [PMID: 25769314]
[51]
Dong Y, Fischer R, Naudé PJ, et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A 2016; Oct 25; 113(43): 12304-9. doi: 10.1073/pnas.1605195113. Epub 2016 Oct 10.
[PMID: 27791020]
[52]
Zhu M, Gu F, Shi J, Hu J, Hu Y, Zhao Z. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Radic Biol Med 2008; 45(10): 1493-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.027] [PMID: 18822370]
[53]
Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. J Neurosci 1999; 19(9): 3440-7.
[http://dx.doi.org/10.1523/JNEUROSCI.19-09-03440.1999] [PMID: 10212304]
[54]
Nomura DK, Morrison BE, Blankman JL, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011; 334(6057): 809-13.
[http://dx.doi.org/10.1126/science.1209200] [PMID: 22021672]
[55]
Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012; 64(6): 543-54.
[http://dx.doi.org/10.1016/j.jinf.2012.03.012] [PMID: 22430715]
[56]
Malik M, Parikh I, Vasquez JB, et al. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener 2015; 10(1): 52.
[http://dx.doi.org/10.1186/s13024-015-0048-1] [PMID: 26438529]
[57]
Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17(5): 681-6.
[http://dx.doi.org/10.1016/0197-4580(96)00115-7] [PMID: 8892340]
[58]
Ibáñez P, Bonnet A-M, Débarges B, et al. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004; 364(9440): 1169-71.
[http://dx.doi.org/10.1016/S0140-6736(04)17104-3] [PMID: 15451225]
[59]
Pribiag H, Stellwagen D. TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33(40): 15879-93.
[http://dx.doi.org/10.1523/JNEUROSCI.0530-13.2013] [PMID: 24089494]
[60]
Sharma V, Thakur V, Singh SN, Guleria R. Tumor necrosis factor and Alzheimer’s disease: a cause and consequence relationship. Klinik Psikofarmakol BBülteni 2012; 22(1): 86-97.
[http://dx.doi.org/10.5455/bcp.20120112064639]
[61]
Olmos G, Lladó J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators of inflammation 2014.
[http://dx.doi.org/10.1155/2014/861231]
[62]
Wojtera M, Sobów T. Kłoszewska I, Liberski PP, Brown DR, Sikorska B. Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer’s disease: Morphometric study and review of the literature. Folia Neuropathol 2012; 50(1): 74-84.
[PMID: 22505366]
[63]
Vezzani A, Granata T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia 2005; 46(11): 1724-43.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00298.x] [PMID: 16302852]
[64]
Walter S, Letiembre M, Liu Y, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 2007; 20(6): 947-56.
[http://dx.doi.org/10.1159/000110455] [PMID: 17982277]
[65]
Musto AE. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci Rep 2016; 6(1): 1-16.
[PMID: 28442746]
[66]
Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J 2008; 49(1): 1-18.
[http://dx.doi.org/10.3349/ymj.2008.49.1.1] [PMID: 18306464]
[67]
Butler T, Li Y, Tsui W, et al. Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia 2016; 57(9): e191-4.
[http://dx.doi.org/10.1111/epi.13457] [PMID: 27381590]
[68]
Kulkarni SK, Naidu PS. Pathophysiology and drug therapy of tardive dyskinesia: Current concepts and future perspectives. Med Actual 2003; 39(1): 19-49.
[http://dx.doi.org/10.1358/dot.2003.39.1.799430] [PMID: 12669107]
[69]
Bishnoi M, Chopra K, Kulkarni SK. Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 2008; 590(1-3): 241-5.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.033] [PMID: 18590723]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy