Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Mini-Review Article

Current State of 44Ti/44Sc Radionuclide Generator Systems and Separation Chemistry

Author(s): Christine E. Schmidt, Leah Gajecki, Melissa A. Deri and Vanessa A. Sanders*

Volume 16, Issue 2, 2023

Published on: 13 December, 2022

Page: [95 - 106] Pages: 12

DOI: 10.2174/1874471016666221111154424

Price: $65

Abstract

In recent years, there has been an increased interest in 44Ti/44Sc generators as an onsite source of 44Sc for medical applications without needing a proximal cyclotron. The relatively short half-life (3.97 hours) and high positron branching ratio (94.3%) of 44Sc make it a viable candidate for positron emission tomography (PET) imaging. This review discusses current 44Ti/44Sc generator designs, focusing on their chemistry, drawbacks, post-elution processing, and relevant preclinical studies of the 44Sc for potential PET radiopharmaceuticals.

Keywords: Scandium, titanium, generators, PET, radioisotope production, diagnostics, radiolabeling.

Graphical Abstract
[1]
Domnanich, K.A.; Müller, C.; Farkas, R.; Schmid, R.M.; Ponsard, B.; Schibli, R.; Türler, A.; van der Meulen, N.P. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: Preclinical in vitro and in vivo investigations. EJNMMI Radiopharm. Chem., 2017, 1(1), 8.
[http://dx.doi.org/10.1186/s41181-016-0013-5] [PMID: 29564385]
[2]
Rosar, F.; Buchholz, H.G.; Michels, S.; Roesch, F.; Piel, M.; Miederer, M.; Reuss, S.; Schreckenberger, M. A performance comparison of Sc-44 to Ga-68 using preclinical PET scanners. J. Nucl. Med., 2018, 59(S1), 1776.
[3]
Bunka, M.; Müller, C.; Vermeulen, C.; Haller, S.; Türler, A.; Schibli, R.; van der Meulen, N.P. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl. Radiat. Isot., 2016, 110, 129-133.
[http://dx.doi.org/10.1016/j.apradiso.2016.01.006] [PMID: 26774390]
[4]
Koumarianou, E.; Loktionova, N.S.; Fellner, M.; Roesch, F.; Thews, O.; Pawlak, D.; Archimandritis, S.C.; Mikolajczak, R. 44Sc-DOTA-BN[2-14]NH2 in comparison to 68Ga-DOTA-BN[2-14]NH2 in pre-clinical investigation. Is 44Sc a potential radionuclide for PET? Appl. Radiat. Isot., 2012, 70(12), 2669-2676.
[http://dx.doi.org/10.1016/j.apradiso.2012.08.004] [PMID: 23037921]
[5]
Kerdjoudj, R.; Pniok, M.; Alliot, C.; Kubíček, V.; Havlíčková, J.; Rösch, F.; Hermann, P.; Huclier-Markai, S. Scandium(III) complexes of monophosphorus acid DOTA analogues: A thermodynamic and radiolabelling study with (44)Sc from cyclotron and from a (44)Ti/(44)Sc generator. Dalton Trans., 2016, 45(4), 1398-1409.
[http://dx.doi.org/10.1039/C5DT04084A] [PMID: 26675416]
[6]
Huclier-Markai, S.; Kerdjoudj, R.; Alliot, C.; Bonraisin, A.C.; Michel, N.; Haddad, F.; Barbet, J. Optimization of reaction conditions for the radiolabeling of DOTA and DOTA-peptide with (44m/44)Sc and experimental evidence of the feasibility of an in vivo PET generator. Nucl. Med. Biol., 2014, 41, e36-e43.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.11.004] [PMID: 24361353]
[7]
Pruszyński, M.; Majkowska-Pilip, A.; Loktionova, N.S.; Eppard, E.; Roesch, F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl. Radiat. Isot., 2012, 70(6), 974-979.
[http://dx.doi.org/10.1016/j.apradiso.2012.03.005] [PMID: 22464928]
[8]
Muller, C.; Bunka, M.; Haller, S.; Koster, U.; Groehn, V.; Bernhardt, P.; van der Meulen, N.; Turler, A.; Schibli, R. Promising prospects for 44Sc-/47Sc-based theragnostics: Application of 47Sc for radionuclide tumor therapy in mice. J. Nuclear. Med., 2014, 55(10), 1658-1664.
[9]
Domnanich, K.A.; Müller, C.; Benešová, M.; Dressler, R.; Haller, S.; Köster, U.; Ponsard, B.; Schibli, R.; Türler, A.; van der Meulen, N.P. 47Sc as useful β--emitter for the radiotheragnostic paradigm: A comparative study of feasible production routes. EJNMMI Radiopharm. Chem., 2017, 2(1), 5.
[http://dx.doi.org/10.1186/s41181-017-0024-x] [PMID: 29503846]
[10]
Volkovitsky, P.; Gilliam, D.M. Possible PET isotope production using linear deuteron accelerators. Nucl. Instrum. Methods Phys. Res. A, 2005, 548(3), 571-573.
[http://dx.doi.org/10.1016/j.nima.2005.05.061]
[11]
Synowiecki, M.A.; Perk, L.R.; Nijsen, J.F.W. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm. Chem., 2018, 3(1), 3.
[http://dx.doi.org/10.1186/s41181-018-0038-z] [PMID: 29503860]
[12]
Cyclotron Produced Radionuclides: Principles and Practice; International atomic energy agency: Vienna, 2009. Available from: https://www-pub.iaea.org/mtcd/publications/pdf/trs468_web.pdf
[14]
Buck, A.K.; Herrmann, K.; Stargardt, T.; Dechow, T.; Krause, B.J.; Schreyögg, J. Economic evaluation of PET and PET/CT in oncology: Evidence and methodologic approaches. J. Nucl. Med. Technol., 2010, 38(1), 6-17.
[http://dx.doi.org/10.2967/jnmt.108.059584] [PMID: 20197541]
[15]
Dash, A.; Chakravarty, R. Radionuclide generators: The prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am. J. Nucl. Med. Mol. Imaging, 2019, 9(1), 30-66.
[PMID: 30911436]
[16]
Schmor, P. Review of cyclotrons for the production of radioactive isotopes for medical and industrial applications. Rev. Accelerat. Sci. Technol., 2011, 4(1), 103-116.
[http://dx.doi.org/10.1142/S1793626811000574]
[17]
Braccini, S.; Alves, F. Special issue “instruments and methods for cyclotron produced radioisotopes”. Instruments, 2019, 3(4), 60.
[http://dx.doi.org/10.3390/instruments3040060]
[18]
Rösch, F.; Baum, R.P. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: On the way to theranostics. Dalton Trans., 2011, 40(23), 6104-6111.
[http://dx.doi.org/10.1039/c0dt01504k] [PMID: 21445433]
[19]
Chernysheva, M.; Loveless, S.C.; Brossard, T.; Becker, K.; Cingoranelli, S.; Aluicio-Sarduy, E.; Song, J.; Ellison, P.; Nolen, J.; Rotsch, D.A.; Lapi, S.E.; Engle, J.W. Accelerator production of scandium radioisotopes: Sc-43, Sc-44, and Sc-47. Curr. Radiopharm., 2021, 14(4), 359-373.
[http://dx.doi.org/10.2174/1874471014999210112205535] [PMID: 33438551]
[20]
Chaple, I.F.; Lapi, S.E. Production and use of the first-row transition metal pet radionuclides (43,44)Sc, (52)Mn, and (45). Ti. J. Nuclear Med., 2018, 59(11), 1655-1659.
[21]
Krajewski, S.; Cydzik, I.; Abbas, K.; Bulgheroni, A.; Simonelli, F.; Holzwarth, U.; Bilewicz, A. Cyclotron production of 44 Sc for clinical application. Radiochim. Acta, 2013, 101(5), 333-338.
[http://dx.doi.org/10.1524/ract.2013.2032]
[22]
van der Meulen, N.P.; Hasler, R.; Talip, Z.; Grundler, P.V.; Favaretto, C.; Umbricht, C.A.; Müller, C.; Dellepiane, G.; Carzaniga, T.S.; Braccini, S. Developments toward the implementation of 44Sc production at a medical cyclotron. Molecules, 2020, 25(20), 4706.
[http://dx.doi.org/10.3390/molecules25204706] [PMID: 33066650]
[23]
Severin, G.W.; Engle, J.W.; Valdovinos, H.F.; Barnhart, T.E.; Nickles, R.J. Cyclotron produced 44gSc from natural calcium. Appl. Radiat. Isot., 2012, 70(8), 1526-1530.
[http://dx.doi.org/10.1016/j.apradiso.2012.04.030] [PMID: 22728844]
[24]
Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V. Production of scandium-44 m and scandium-44 g with deuterons on calcium-44: Cross section measurements and production yield calculations. Phys. Med. Biol., 2015, 60(17), 6847-6864.
[http://dx.doi.org/10.1088/0031-9155/60/17/6847] [PMID: 26301533]
[25]
Loveless, C.S.; Blanco, J.R.; Diehl, G.L., III; Elbahrawi, R.T.; Carzaniga, T.S.; Braccini, S.; Lapi, S.E. Cyclotron production and separation of scandium radionuclides from natural titanium metal and titanium dioxide targets. J. Nuclear Med., 2021, 62(1), 131-136.
[26]
Hernandez, R.; Valdovinos, H.F.; Yang, Y.; Chakravarty, R.; Hong, H.; Barnhart, T.E.; Cai, W. (44)Sc: An attractive isotope for peptide-based PET imaging. Mol. Pharm., 2014, 11(8), 2954-2961.
[http://dx.doi.org/10.1021/mp500343j] [PMID: 25054618]
[27]
van der Meulen, N.P.; Bunka, M.; Domnanich, K.A.; Müller, C.; Haller, S.; Vermeulen, C.; Türler, A.; Schibli, R. Cyclotron production of (44)Sc: From bench to bedside. Nucl. Med. Biol., 2015, 42(9), 745-751.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.05.005] [PMID: 26093495]
[28]
Alliot, C.; Kerdjoudj, R.; Michel, N.; Haddad, F.; Huclier-Markai, S. Cyclotron production of high purity (44m,44)Sc with deuterons from (44)CaCO3 targets. Nucl. Med. Biol., 2015, 42(6), 524-529.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.03.002] [PMID: 25794463]
[29]
Alliot, C.; Audouin, N.; Barbet, J.; Bonraisin, A.C.; Bossé, V.; Bourdeau, C.; Bourgeois, M.; Duchemin, C.; Guertin, A.; Haddad, F.; Huclier-Markai, S.; Kerdjoudj, R.; Laizé, J.; Métivier, V.; Michel, N.; Mokili, M.; Pageau, M.; Vidal, A. Is there an interest to use deuteron beams to produce non-conventional radionuclides? Front. Med., 2015, 2, 31.
[http://dx.doi.org/10.3389/fmed.2015.00031] [PMID: 26029696]
[30]
Talip, Z.; Favaretto, C.; Geistlich, S.; Meulen, N.P.V. A step-by-step guide for the novel radiometal production for medical applications: Case studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules, 2020, 25(4), 966.
[http://dx.doi.org/10.3390/molecules25040966] [PMID: 32093425]
[31]
Daraban, L.; Adam Rebeles, R.; Hermanne, A.; Tarkanyi, F.; Takacs, S. Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37MeV. Nucl. Instrum. Methods Phys. Res. B, 2009, 267(5), 755-759.
[http://dx.doi.org/10.1016/j.nimb.2009.01.010]
[32]
Hermanne, A.; Adam Rebeles, R.; Tarkanyi, F.; Takacs, S.; Takacs, M.P.; Csikai, J.; Ignatyuk, A. Cross sections of deuteron induced reactions on 45Sc up to 50MeV: Experiments and comparison with theoretical codes. Nucl. Instrum. Methods Phys. Res. B, 2012, 270, 106-115.
[http://dx.doi.org/10.1016/j.nimb.2011.09.002]
[33]
Greene, M.W.; Hillman, M. A scandium generator. Int. J. Appl. Radiat. Isot., 1967, 18(7), 540-541.
[http://dx.doi.org/10.1016/0020-708X(67)90121-4]
[34]
Vickery, R.C. The extraction and purification of scandium. J. Chem. Soc., 1955, 245-251.
[http://dx.doi.org/10.1039/jr9550000245]
[35]
Walter, R.I. Anion exchange studies of Sc(III) and V(IV). Separation of scandium, titanium and vanadium. J. Inorg. Nucl. Chem., 1958, 6(1), 58-62.
[http://dx.doi.org/10.1016/0022-1902(58)80100-1]
[36]
Filosofov, D.V.; Loktionova, N.S.; Rösch, F.A. 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim. Acta, 2010, 98(3), 149-156.
[http://dx.doi.org/10.1524/ract.2010.1701]
[37]
Radchenko, V.; Meyer, C.A.L.; Engle, J.W.; Naranjo, C.M.; Unc, G.A.; Mastren, T.; Brugh, M.; Birnbaum, E.R.; John, K.D.; Nortier, F.M.; Fassbender, M.E. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. J. Chromatogr. A, 2016, 1477, 39-46.
[http://dx.doi.org/10.1016/j.chroma.2016.11.047] [PMID: 27903405]
[38]
Dirks, C. 61st Radiobioassay and Radiochemistry Measurements ConferenceIowa City, IA, USA2015. Available from: http://www.rrmc.info/rrmc-61.html
[39]
Holland, J.P.; Sheh, Y.; Lewis, J.S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol., 2009, 36(7), 729-739.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.05.007] [PMID: 19720285]
[41]
How chelating resins behave. Plating Surf. Finish., 1998, 85(10), 22-29.
[42]
Triskem extraction chromatography technical document. 2022. Available from: https://www.triskeminternational. com/scripts/files/5fbc1413c82157.37153904/technicaldoc- worldwide-en-web.pdf
[43]
Vyas, C.; Park, J.; Yang, S. Application of extraction chromatographic techniques for separation and purification of radiometals Sc-44,47 and Cu-64, 67. J. Radiopharm. Molecul. Probes, 2016, 2, 84-95.
[44]
Pruszyński, M.; Loktionova, N.S.; Filosofov, D.V.; Rösch, F. Post-elution processing of (44)Ti/(44)Sc generator-derived (44)Sc for clinical application. Appl. Radiat. Isot., 2010, 68(9), 1636-1641.
[http://dx.doi.org/10.1016/j.apradiso.2010.04.003] [PMID: 20434351]
[45]
Seidl, E.; Lieser, K.H. Die Radionuklidgeneratoren, 113 Sn/113mIn, 68 Ge/68Ga und 44 Ti/44Sc. ract, 1973, 19(4), 196-198.
[46]
Qureshi, M.; Varshney, K.G. Inorganic Ion Exchangers in Chemical Analysis, 1st ed; CRC Press: Boca Raton, 2019.
[47]
Altshuler, G.N.; Malyshenko, N.V.; Popova, A.N. The ion-exchange properties of polymeric zirconium phosphate and zirconium dioxide. Inorg. Mater.: Appl. Res., 2018, 9(4), 746-750.
[http://dx.doi.org/10.1134/S2075113318040032]
[48]
Larenkov, A.A.; Makichyan, A.G.; Iatsenko, V.N. Separation of 44Sc from 44Ti in the context of A generator system for radiopharmaceutical purposes with the example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis. Molecules, 2021, 26(21), 6371.
[http://dx.doi.org/10.3390/molecules26216371] [PMID: 34770780]
[49]
TEVA resin product page. 2022. Available from: https://www.eichrom.com/eichrom/products/teva-resin/
[50]
Itoh, H.; Ikegami, Y.; Suzuki, Y. Stability constants of scandium complexes. II. Dicarboxylate complexes species. Bull. Chem. Soc. Jpn., 1984, 57(12), 3426-3429.
[http://dx.doi.org/10.1246/bcsj.57.3426]
[51]
Eigner, S.; Vera, D.R.B.; Fellner, M.; Loktionova, N.S.; Piel, M.; Lebeda, O.; Rösch, F.; Roß, T.L.; Henke, K.E. Imaging of protein synthesis: In vitro and in vivo evaluation of (44)Sc-DOTA-puromycin. Mol. Imaging Biol., 2013, 15(1), 79-86.
[http://dx.doi.org/10.1007/s11307-012-0561-3] [PMID: 22565849]
[52]
Muller, C.; Bunka, M.; Reber, J.; Fischer, C.; Zhernosekov, K.; Turler, A.; Schibli, R. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent beta--emitters: In vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J. Nuclear Med., 2013, 54(12), 2168-2174.
[53]
Eppard, E.; de la Fuente, A.; Benešová, M.; Khawar, A.; Bundschuh, R.A.; Gärtner, F.C.; Kreppel, B.; Kopka, K.; Essler, M.; Rösch, F. Clinical translation and first in-human use of [44Sc]Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics, 2017, 7(18), 4359-4369.
[http://dx.doi.org/10.7150/thno.20586] [PMID: 29158832]
[54]
Singh, A.; van der Meulen, N.P.; Müller, C.; Klette, I.; Kulkarni, H.R.; Türler, A.; Schibli, R.; Baum, R.P. First-in-Human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: A proof-of-concept study. Cancer Biother. Radiopharm., 2017, 32(4), 124-132.
[http://dx.doi.org/10.1089/cbr.2016.2173] [PMID: 28514206]
[55]
Umbricht, C.A.; Benešová, M.; Schmid, R.M.; Türler, A.; Schibli, R.; van der Meulen, N.P.; Müller, C. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617-preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res., 2017, 7(1), 9.
[http://dx.doi.org/10.1186/s13550-017-0257-4] [PMID: 28102507]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy