Review Article

靶向线粒体药物治疗缺血-再灌注损伤

卷 23, 期 16, 2022

发表于: 10 October, 2022

页: [1526 - 1536] 页: 11

弟呕挨: 10.2174/1389450123666220913121422

价格: $65

摘要

缺血-再灌注损伤是一种复杂的血流动力学病变,是世界范围内死亡的主要原因,它发生在身体的许多器官中。大量研究表明,线粒体在缺血-再灌注损伤的发生机制中起重要作用,线粒体结构异常和功能障碍导致整个线粒体稳态的破坏。此时,线粒体不仅是产生ATP的亚细胞器,也是调节缺血-再灌注损伤的重要靶点,因此,靶向线粒体的药物可以作为治疗缺血-再灌注损伤的新策略。基于这一观点,本文探讨了线粒体结构异常和线粒体功能障碍的潜在治疗药物,重点探讨了靶向线粒体药物在缺血-再灌注损伤治疗中的应用和前景,并试图为缺血-再灌注损伤的临床治疗提供新的思路

关键词: 缺血-再灌注损伤,靶向线粒体药物,线粒体功能障碍,线粒体膜,药物靶点,活性氧

« Previous
图形摘要
[1]
Gagno G, Ferro F, Fluca AL, et al. From brain to heart: Possible role of amyloid-β in ischemic heart disease and ischemia-reperfusion injury. Int J Mol Sci 2020; 21(24): 9655.
[http://dx.doi.org/10.3390/ijms21249655] [PMID: 33348925]
[2]
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Peralta C. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury. Cells 2019; 8(10): 1131.
[http://dx.doi.org/10.3390/cells8101131] [PMID: 31547621]
[3]
Liang S, Wang Y, Liu Y. Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway. Eur Rev Med Pharmacol Sci 2019; 23(1): 370-7.
[PMID: 30657579]
[4]
Galkin A. Brain ischemia/reperfusion injury and mitochondrial complex I damage. Biochemistry 2019; 84(11): 1411-23.
[http://dx.doi.org/10.1134/S0006297919110154] [PMID: 31760927]
[5]
Kezić A, Stajic N, Thaiss F. Innate immune response in kidney ischemia/reperfusion injury: Potential target for therapy. J Immunol Res 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/6305439] [PMID: 28676864]
[6]
Sewell WH, Koth DR, Huggins CE. Ventricular fibrillation in dogs after sudden return of flow to the coronary artery. Surgery 1955; 38(6): 1050-3.
[PMID: 13274263]
[7]
Weyker PD, Webb CA, Kiamanesh D, Flynn BC. Lung ischemia reperfusion injury: A bench-to-bedside review. Semin Cardiothorac Vasc Anesth 2013; 17(1): 28-43.
[8]
Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: Processes in inflammatory networks-A review. Liver Transpl 2010; 16(9): 1016-32.
[http://dx.doi.org/10.1002/lt.22117] [PMID: 20818739]
[9]
Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 2019; 96(2): 291-301.
[http://dx.doi.org/10.1016/j.kint.2019.02.009] [PMID: 31005270]
[10]
Wu L, Xiong X, Wu X, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 2020; 13: 28.
[http://dx.doi.org/10.3389/fnmol.2020.00028] [PMID: 32194375]
[11]
Decuypere JP, Ceulemans LJ, Agostinis P, et al. Autophagy and the kidney: Implications for ischemia-reperfusion injury and therapy. Am J Kidney Dis 2015; 66(4): 699-709.
[http://dx.doi.org/10.1053/j.ajkd.2015.05.021] [PMID: 26169721]
[12]
Liu W, Miao Y, Zhang L, Xu X, Luan Q. MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 2020; 11(1): 189-200.
[http://dx.doi.org/10.1080/21655979.2020.1729322] [PMID: 32050841]
[13]
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev Pharmacol Toxicol 2017; 57(1): 535-65.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103335] [PMID: 27860548]
[14]
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: Implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315(5): H1341-52.
[http://dx.doi.org/10.1152/ajpheart.00028.2018] [PMID: 30095969]
[15]
Hurst S, Hoek J, Sheu SS. Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017; 49(1): 27-47.
[http://dx.doi.org/10.1007/s10863-016-9672-x] [PMID: 27497945]
[16]
Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866(7): 165768.
[http://dx.doi.org/10.1016/j.bbadis.2020.165768] [PMID: 32173461]
[17]
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46(4): 1650-67.
[http://dx.doi.org/10.1159/000489241] [PMID: 29694958]
[18]
Milane L, Trivedi M, Singh A, Talekar M, Amiji M. Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207: 40-58.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.036] [PMID: 25841699]
[19]
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020; 15(1): 235-59.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[20]
Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem 2018; 62(3): 341-60.
[http://dx.doi.org/10.1042/EBC20170104] [PMID: 30030364]
[21]
Whitley BN, Engelhart EA, Hoppins S. Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49: 269-83.
[http://dx.doi.org/10.1016/j.mito.2019.06.002] [PMID: 31228566]
[22]
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595(8): 1184-204.
[http://dx.doi.org/10.1002/1873-3468.14077] [PMID: 33742459]
[23]
Gonzalez-Freire M, Moore AZ, Peterson CA, et al. Associations of peripheral artery disease with calf skeletal muscle mitochondrial DNA heteroplasmy. J Am Heart Assoc 2020; 9(7): e015197.
[http://dx.doi.org/10.1161/JAHA.119.015197] [PMID: 32200714]
[24]
Fang D, Maldonado EN. VDAC regulation: A mitochondrial target to stop cell proliferation. Adv Cancer Res 2018; 138: 41-69.
[http://dx.doi.org/10.1016/bs.acr.2018.02.002] [PMID: 29551129]
[25]
Hemono M, Ubrig É, Azeredo K, Salinas-Giegé T, Drouard L, Duchêne AM. Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and specific functions in mitochondria. Cells 2020; 9(4): 1023.
[http://dx.doi.org/10.3390/cells9041023] [PMID: 32326174]
[26]
Khan A, Kuriachan G, Mahalakshmi R. Cellular interactome of mitochondrial voltage-dependent anion channels: Oligomerization and channel (Mis)regulation. ACS Chem Neurosci 2021; 12(19): 3497-515.
[http://dx.doi.org/10.1021/acschemneuro.1c00429] [PMID: 34503333]
[27]
Lin D, Cui B, Ren J, Ma J. Regulation of VDAC1 contributes to the cardioprotective effects of penehyclidine hydrochloride during myocardial ischemia/reperfusion. Exp Cell Res 2018; 367(2): 257-63.
[http://dx.doi.org/10.1016/j.yexcr.2018.04.004] [PMID: 29630893]
[28]
Ren JY, Lin DM, Wang CB, et al. Postconditioning protection against myocardiocyte anoxia/reoxygenation injury from penehyclidine hydrochloride. Drug Des Devel Ther 2019; 13: 3977-88.
[http://dx.doi.org/10.2147/DDDT.S224282] [PMID: 32063699]
[29]
Taiyab A, Sreedhar AS, Rao CM. Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 2009; 78(2): 142-52.
[http://dx.doi.org/10.1016/j.bcp.2009.04.001] [PMID: 19464431]
[30]
Galuppo M, Giacoppo S, Iori R, et al. 4(α-L-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that defends cerebral tissue and prevents severe damage induced by focal ischemia/reperfusion. J Biol Regul Homeost Agents 2015; 29(2): 343-56.
[PMID: 26122222]
[31]
Lis P, Dyląg M, Niedźwiecka K, et al. The HK2 dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules 2016; 21(12): 1730.
[http://dx.doi.org/10.3390/molecules21121730] [PMID: 27983708]
[32]
Palácio BP, Lucas AMB, de Lacerda AVJ, et al. Pharmacological and molecular docking studies reveal that glibenclamide competitively inhibits diazoxide-induced mitochondrial ATP-sensitive potassium channel activation and pharmacological preconditioning. Eur J Pharmacol 2021; 908: 174379.
[http://dx.doi.org/10.1016/j.ejphar.2021.174379] [PMID: 34324857]
[33]
Bai S, Wang X, Wu H, et al. Cardioprotective effect of anisodamine against ischemia/reperfusion injury through the mitochondrial ATP-sensitive potassium channel. Eur J Pharmacol 2021; 901: 174095.
[http://dx.doi.org/10.1016/j.ejphar.2021.174095] [PMID: 33862063]
[34]
Gozen A, Demiryurek S, Taskin A, et al. Protective activity of ischemic preconditioning on rat testicular ischemia: Effects of Y-27632 and 5-hydroxydecanoic acid. J Pediatr Surg 2013; 48(7): 1565-72.
[http://dx.doi.org/10.1016/j.jpedsurg.2012.10.074] [PMID: 23895973]
[35]
Wu Q, Tang C, Zhang YJ, et al. Diazoxide suppresses hepatic ischemia/reperfusion injury after mouse liver transplantation by a BCL-2-dependent mechanism. J Surg Res 2011; 169(2): e155-66.
[http://dx.doi.org/10.1016/j.jss.2010.04.009] [PMID: 20828743]
[36]
Zhang YJ, Zhang AQ, Zhao XX, Tian ZL, Yao L. Nicorandil protects against ischaemia-reperfusion injury in newborn rat kidney. Pharmacology 2013; 92(5-6): 245-56.
[http://dx.doi.org/10.1159/000355060] [PMID: 24247737]
[37]
Wang R, Yang M, Wang M, et al. Total saponins of aralia elata (Miq) Seem alleviate calcium homeostasis imbalance and endoplasmic reticulum stress-related apoptosis induced by myocardial ischemia/reperfusion injury. Cell Physiol Biochem 2018; 50(1): 28-40.
[http://dx.doi.org/10.1159/000493954] [PMID: 30278458]
[38]
Wang J, Hou J, Lin C, et al. Shuangshen ningxin capsule, a traditional chinese medicinal preparation, alleviates myocardial ischemia through autophagy regulation. Evid Based Complement Alternat Med 2015; 2015: 581260.
[39]
Brunner SN, Bogert NV, Schnitzbauer AA, et al. Levosimendan protects human hepatocytes from ischemia-reperfusion injury. PLoS One 2017; 12(11): e0187839.
[http://dx.doi.org/10.1371/journal.pone.0187839] [PMID: 29145424]
[40]
Shih HC, Huang MS, Lee CH. Magnolol attenuates the lung injury in hypertonic saline treatment from mesenteric ischemia reperfusion through diminishing iNOS. J Surg Res 2012; 175(2): 305-11.
[http://dx.doi.org/10.1016/j.jss.2011.04.063] [PMID: 21704335]
[41]
Dou Z, Rong X, Zhao E, Zhang L, Lv Y. Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol 2019; 39(6): 883-98.
[http://dx.doi.org/10.1007/s10571-019-00687-3] [PMID: 31140018]
[42]
Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 2021; 28: 231-43.
[http://dx.doi.org/10.1016/j.jare.2020.07.007] [PMID: 33364059]
[43]
Kou DQ, Jiang YL, Qin JH, Huang YH. Magnolol attenuates the inflammation and apoptosis through the activation of SIRT1 in experimental stroke rats. Pharmacol Rep 2017; 69(4): 642-7.
[44]
Gong L, He J, Sun X, Li L, Zhang X, Gan H. Activation of sirtuin1 protects against ischemia/reperfusion-induced acute kidney injury. Biomed Pharmacother 2020; 125: 110021.
[45]
Zhang J, Wang L, Gong D, Yang Y, Liu X, Chen Z. Inhibition of the SIRT1 signaling pathway exacerbates endoplasmic reticulum stress induced by renal ischemia/reperfusion injury in type 1 diabetic rats. Mol Med Rep 2020; 21(2): 695-704.
[PMID: 31974604]
[46]
Yang R, Shen YJ, Chen M, et al. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. J Asian Nat Prod Res 2022; 24(3): 278-89.
[http://dx.doi.org/10.1080/10286020.2021.1949302] [PMID: 34292112]
[47]
Tang J, Lu L, Liu Y, et al. Quercetin improve ischemia/reperfusion‐induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC‐1α signaling. J Cell Biochem 2019; 120(6): 9747-57.
[http://dx.doi.org/10.1002/jcb.28255] [PMID: 30656723]
[48]
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 2019; 80(8): 1013-30.
[http://dx.doi.org/10.1002/ddr.21593] [PMID: 31823411]
[49]
Zhang C, Cheng Y, Liu D, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology 2019; 17(1): 18.
[http://dx.doi.org/10.1186/s12951-019-0451-9] [PMID: 30683110]
[50]
Qin QJ, Cui LQ, Li P, Wang YB, Zhang XZ, Guo ML. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol Med Rep 2019; 19(4): 2581-90.
[http://dx.doi.org/10.3892/mmr.2019.9908] [PMID: 30720139]
[51]
Fu H, Chen H, Wang C, et al. Flurbiprofen, a cyclooxygenase inhibitor, protects mice from hepatic ischemia/reperfusion injury by inhibiting GSK-3β signaling and mitochondrial permeability transition. Mol Med 2012; 18(7): 1128-35.
[http://dx.doi.org/10.2119/molmed.2012.00088] [PMID: 22714712]
[52]
Cai L, Li Y, Zhang Q, et al. Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3β/Nrf2-dependent antioxidant response and mitochondrial permeability transition. Eur J Pharmacol 2017; 806: 32-42.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.011] [PMID: 28411054]
[53]
Li Y, Li T, Qi H, Yuan F. Minocycline protects against hepatic ischemia/reperfusion injury in a rat model. Biomed Rep 2015; 3(1): 19-24.
[http://dx.doi.org/10.3892/br.2014.381] [PMID: 25469240]
[54]
El-Sisi AEDES, Sokar SS, Shebl AM, Mohamed DZ, Abu-Risha SES. Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury. Toxicol Appl Pharmacol 2021; 410: 115340.
[http://dx.doi.org/10.1016/j.taap.2020.115340] [PMID: 33264646]
[55]
Tan YQ, Chen HW, Li J, Astragaloside IV, Astragaloside IV. An effective drug for the treatment of cardiovascular diseases. Drug Des Devel Ther 2020; 14: 3731-46.
[http://dx.doi.org/10.2147/DDDT.S272355] [PMID: 32982178]
[56]
Li Y, Yang Y, Zhao Y, et al. Astragaloside IV reduces neuronal apoptosis and parthanatos in ischemic injury by preserving mitochondrial hexokinase-II. Free Radic Biol Med 2019; 131: 251-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.033] [PMID: 30502455]
[57]
Liu D, Ma Z, Di S, et al. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med 2018; 129: 59-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.032] [PMID: 30172748]
[58]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 60(5): 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[59]
Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol 2019; 234(1): 214-22.
[http://dx.doi.org/10.1002/jcp.26848] [PMID: 29968913]
[60]
Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol 2019; 66(1): 13-21.
[PMID: 30816367]
[61]
Tan F, Fu W, Cheng N, Meng D, Gu Y. Ligustrazine reduces blood-brain barrier permeability in a rat model of focal cerebral ischemia and reperfusion. Exp Ther Med 2015; 9(5): 1757-62.
[http://dx.doi.org/10.3892/etm.2015.2365] [PMID: 26136889]
[62]
Mangus RS, Kinsella SB, Farar DT, Fridell JA, Woolf LT, Kubal CA. Impact of volatile anesthetic agents on early clinical outcomes in liver transplantation. Transplant Proc 2018; 50(5): 1372-7.
[http://dx.doi.org/10.1016/j.transproceed.2018.03.001] [PMID: 29880359]
[63]
Luongo TS, Lambert JP, Gross P, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 2017; 545(7652): 93-7.
[http://dx.doi.org/10.1038/nature22082] [PMID: 28445457]
[64]
Kuo JR, Wang CC, Huang SK, Wang SJ. Tamoxifen depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase Cα in rat cerebral cortex nerve terminals. Neurochem Int 2012; 60(2): 105-14.
[http://dx.doi.org/10.1016/j.neuint.2011.11.014] [PMID: 22142530]
[65]
Lambert JP, Luongo TS, Tomar D, et al. MCUB regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress. Circulation 2019; 140(21): 1720-33.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.037968] [PMID: 31533452]
[66]
Chapoy-Villanueva H, Silva-Platas C, Gutiérrez-Rodríguez AK, et al. Changes in the stoichiometry of uniplex decrease mitochondrial calcium overload and contribute to tolerance of cardiac ischemia/reperfusion injury in hypothyroidism. Off J Am Thyr Assoc 2019; 29(12): 1755-64.
[67]
Seara FAC, Maciel L, Barbosa RAQ, et al. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. PLoS One 2018; 13(1): e0190355.
[http://dx.doi.org/10.1371/journal.pone.0190355] [PMID: 29304184]
[68]
Xu H, Cheng J, Wang X, et al. Resveratrol pretreatment alleviates myocardial ischemia/reperfusion injury by inhibiting STIM1-mediated intracellular calcium accumulation. J Physiol Biochem 2019; 75(4): 607-18.
[http://dx.doi.org/10.1007/s13105-019-00704-5] [PMID: 31786730]
[69]
Yin B, Hou X, Lu M. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin 2019; 40(5): 599-607.
[http://dx.doi.org/10.1038/s41401-018-0082-y] [PMID: 30030530]
[70]
Pedersen SF, Counillon L. The SLC9A-C mammalian Na +/H + exchanger family: Molecules, mechanisms, and physiology. Physiol Rev 2019; 99(4): 2015-113.
[http://dx.doi.org/10.1152/physrev.00028.2018] [PMID: 31507243]
[71]
Nicolau SM, Egea J, López MG, García AG. Mitochondrial Na+/Ca2+ exchanger, a new target for neuroprotection in rat hippocampal slices. Biochem Biophys Res Commun 2010; 400(1): 140-4.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.028] [PMID: 20713022]
[72]
Samangouei P, Crespo-Avilan GE, Cabrera-Fuentes H, et al. MiD49 and MiD51: New mediators of mitochondrial fission and novel targets for cardioprotection. Cond Med 2018; 1(5): 239-46.
[PMID: 30338314]
[73]
Ji W, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 2015; 4: e11553.
[http://dx.doi.org/10.7554/eLife.11553] [PMID: 26609810]
[74]
Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharm Sin B 2020; 10(10): 1866-79.
[http://dx.doi.org/10.1016/j.apsb.2020.03.004] [PMID: 33163341]
[75]
Adaniya SM. O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316(5): C583-604.
[http://dx.doi.org/10.1152/ajpcell.00523.2018] [PMID: 30758993]
[76]
He C, Wang Z, Shi J. Pharmacological effects of icariin. Adv Pharmacol 2020; 87: 179-203.
[http://dx.doi.org/10.1016/bs.apha.2019.10.004] [PMID: 32089233]
[77]
Huang C, Cui Y, Ji L, et al. Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. Pharm Biol 2013; 51(4): 463-73.
[http://dx.doi.org/10.3109/13880209.2012.740052] [PMID: 23336403]
[78]
Bi J, Zhang J, Ren Y, et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biol 2019; 20: 296-306.
[http://dx.doi.org/10.1016/j.redox.2018.10.019] [PMID: 30388684]
[79]
Belosludtsev KN, Starinets VS, Belosludtsev MN, Mikheeva IB, Dubinin MV, Belosludtseva NV. Chronic treatment with dapagliflozin protects against mitochondrial dysfunction in the liver of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus. Mitochondrion 2021; 59: 246-54.
[http://dx.doi.org/10.1016/j.mito.2021.06.008] [PMID: 34144205]
[80]
Surinkaew P, Apaijai N, Sawaddiruk P, et al. Mitochondrial fusion promoter alleviates brain damage in rats with cardiac ischemia/reperfusion injury. J Alzheimers Dis 2020; 77(3): 993-1003.
[http://dx.doi.org/10.3233/JAD-200495] [PMID: 32804148]
[81]
Zhou K, Chen J, Wu J, et al. Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine 2019; 59: 152922.
[http://dx.doi.org/10.1016/j.phymed.2019.152922] [PMID: 30981186]
[82]
Nan J, Hu H, Sun Y, et al. TNFR2 stimulation promotes mitochondrial fusion via stat3- and NF-kB–dependent activation of OPA1 expression. Circ Res 2017; 121(4): 392-410.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311143] [PMID: 28637784]
[83]
Yu J, Wu J, Xie P, et al. Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology. PeerJ 2016; 4: e2659.
[http://dx.doi.org/10.7717/peerj.2659] [PMID: 27833818]
[84]
Liu X, Huang Z, Zou X, Yang Y, Qiu Y, Wen Y. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models. Toxicol Mech Methods 2015; 25(5): 347-54.
[http://dx.doi.org/10.3109/15376516.2015.1006492] [PMID: 25598344]
[85]
Reddy PH, Oliver DMA. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019; 8(5): 488.
[http://dx.doi.org/10.3390/cells8050488] [PMID: 31121890]
[86]
Li J, Kim SG, Blenis J. Rapamycin: One drug, many effects. Cell Metab 2014; 19(3): 373-9.
[http://dx.doi.org/10.1016/j.cmet.2014.01.001] [PMID: 24508508]
[87]
Zhang DM, Zhang T, Wang MM, et al. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med 2019; 137: 13-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.002] [PMID: 30978385]
[88]
Luo C, Zhang Y, Guo H, Han X, Ren J, Liu J. Ferulic acid attenuates hypoxia/reoxygenation injury by suppressing mitophagy through the PINK1/Parkin signaling pathway in H9c2 cells. Front Pharmacol 2020; 11: 103.
[http://dx.doi.org/10.3389/fphar.2020.00103] [PMID: 32161543]
[89]
Yang XY, Wang LQ, Li JG, Liang N, Wang Y, Liu JP. Chinese herbal medicine dengzhan shengmai capsule as adjunctive treatment for ischemic stroke: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2018; 36: 82-9.
[http://dx.doi.org/10.1016/j.ctim.2017.12.004] [PMID: 29458937]
[90]
Wu Q, Shang Y, Bai Y, Wu Y, Wang H, Shen T. Sufentanil preconditioning protects against myocardial ischemia/reperfusion injury via miR-125a/DRAM2 axis. Cell Cycle 2021; 20(4): 383-91.
[http://dx.doi.org/10.1080/15384101.2021.1875668] [PMID: 33475463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy