Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Research Article

Syntheses, Molecular Docking and Biological Evaluation of 2-(2- hydrazinyl)thiazoles as Potential Antioxidant, Anti-Inflammatory and Significant Anticancer Agents

Author(s): Dattatraya G. Raut*, Raghunath B. Bhosale, Anjana S. Lawand, Mahesh G. Hublikar, Vikas D. Kadu, Sandeep B. Patil and Prafulla B. Choudhari

Volume 16, Issue 2, 2022

Published on: 20 October, 2022

Page: [96 - 106] Pages: 11

DOI: 10.2174/2772270816666220902094019

Price: $65

Abstract

Background: Recently, researchers have worked on the development of new methods for the synthesis of bioactive heterocycles using polyethylene glycol as a green solvent. In this context, we report the synthesized 2-(2-hydrazinyl) thiazoles for their in vitro antioxidant, in vitro anti-inflammatory and in vitro anti-cancer activities.

Objective: The objective of the study was to develop novel antioxidant, anti-inflammatory and anti-cancer drugs.

Methods: At the outset, the condensation of substituted acetophenones 1, thiosemicarbazide 2, and α-haloketones 3 was carried out using PEG-400 (20 mL) in the presence of 5 mol% glacial acetic acid to afford thiosemicarbazones intermediate. Furthermore, these thiosemicarbazones were reacted with α-haloketones 3 to obtain appropriate 2-(2-hydrazinyl) thiazoles. The synthesized compounds were in vitro tested for their antioxidant, anti-inflammatory, and anti-cancer activity.

Results: In vitro evaluation report showed that nearly all molecules possessed potential antioxidant activity against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide radical (SOR) and hydrogen peroxide (H2O2) radical scavenging activity. Most 2-(2-hydrazinyl) thiazoles derivatives have shown potential anti-inflammatory activity as compared to diclofenac sodium as a reference standard. 2-(2-Hydrazinyl) thiazoles derivatives showed significant anticancer activity for human leukemia cell line K-562 compared to adriamycin as a reference standard.

Conclusion: All tested compounds showed potential 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activity. Among the tested series, 4b, 4d and 4e exhibited good hydrogen peroxide and 4b, 4e, 4f and 4g showed excellent superoxide radical scavenging activity. In addition, the 4b, 4e and 4g compounds revealed potent in vitro anti-inflammatory activity against standard diclofenac sodium drug. 2-(2-Hydrazinyl) thiazole derivatives, such as 4c and 4d, showed significant anticancer activity against human leukemia cell line K-562. Thus, these molecules provide an interesting template for the design and development of new antioxidant, anti-inflammatory, and anti-cancer agents.

Keywords: Antioxidant activity, anti-inflammatory activity, anticancer activity, PEG-400, 2-(2- Hydrazinyl)thiazoles, molecular docking, multicomponent reaction, hydrazones.

Graphical Abstract
[1]
Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999; 12(1): 40-79.
[http://dx.doi.org/10.1128/CMR.12.1.40] [PMID: 9880474]
[2]
de Oliveira Viana J, Monteiro AFM, Filho JMB, Scotti L, Scotti MT. The azoles in pharmacochemistry: Perspectives on the synthesis of new compounds and chemoinformatic contributions. Curr Pharm Des 2019; 25(44): 4702-16.
[http://dx.doi.org/10.2174/1381612825666191125090700] [PMID: 31763967]
[3]
Osorio E, Bravo K, Cardona W, Yepes A, Osorio EH, Coa JC. Antiaging activity, molecular docking, and prediction of percutaneous absorption parameters of quinoline–hydrazone hybrids. Med Chem Res 2019; 28(11): 1959-73.
[http://dx.doi.org/10.1007/s00044-019-02427-0]
[4]
Maltarollo VG, Resende MF, Kronenberger T, et al. In vitro and in silico studies of antioxidant activity of 2-thiazolylhydrazone derivatives. J Mol Graph Model 2019; 86: 106-12.
[http://dx.doi.org/10.1016/j.jmgm.2018.10.007] [PMID: 30347318]
[5]
Turan-Zitouni G, Özdemir A, Kaplancikli ZA, Benkli K, Chevallet P, Akalin G. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives. Eur J Med Chem 2008; 43(5): 981-5.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.001] [PMID: 17719146]
[6]
Makam P, Kankanala R, Prakash A, Kannan T. 2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies. Eur J Med Chem 2013; 69: 564-76.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.054] [PMID: 24095750]
[7]
Roy KK, Singh S, Sharma SK, Srivastava R, Chaturvedi V, Saxena AK. Synthesis and biological evaluation of substituted 4-arylthiazol-2-amino derivatives as potent growth inhibitors of replicating Mycobacterium tuberculosis H₃₇Rv. Bioorg Med Chem Lett 2011; 21(18): 5589-93.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.076] [PMID: 21783364]
[8]
Hublikar M, Kadu V, Dublad JK, et al. (E)-2-(2-Allylidenehydrazinyl)thiazole derivatives: Design, green synthesis, in silico and in vitro antimycobacterial and radical scavenging studies. Arch Pharm (Weinheim) 2020; 353(7): e2000003.
[http://dx.doi.org/10.1002/ardp.202000003] [PMID: 32372473]
[9]
Pandya DH, Sharma JA, Jalani HB, et al. Novel thiazole-thiophene conjugates as adenosine receptor antagonists: Synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 2015; 25(6): 1306-9.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.040] [PMID: 25686851]
[10]
Bharti SK, Nath G, Tilak R, Singh SK. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur J Med Chem 2010; 45(2): 651-60.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.008] [PMID: 19932927]
[11]
Vijesh AM, Isloor AM, Prabhu V, Ahmad S, Malladi S. Synthesis, characterization and anti-microbial studies of some novel 2,4-disubstituted thiazoles. Eur J Med Chem 2010; 45(11): 5460-4.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.048] [PMID: 20716467]
[12]
Chimenti F, Bizzarri B, Bolasco A, et al. Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents. Eur J Med Chem 2011; 46(1): 378-82.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.027] [PMID: 21084135]
[13]
Cukurovali A, Yilmaz I, Gur S, Kazaz C. Synthesis, antibacterial and antifungal activity of some new thiazolylhydrazone derivatives containing 3-substituted cyclobutane ring. Eur J Med Chem 2006; 41(2): 201-7.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.013] [PMID: 16378662]
[14]
Sarojini BK, Krishna BG, Darshanraj CG, Bharath BR, Manjunatha H. Synthesis, characterization, in vitro and molecular docking studies of new 2,5-dichloro thienyl substituted thiazole derivatives for antimicrobial properties. Eur J Med Chem 2010; 45(8): 3490-6.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.039] [PMID: 20451305]
[15]
Altıntop Mehlika Dilek, Özdemir Ahmet, Atlı Özlem, Cantürk Zerrin, Baysal Merve, Kaplancıklı Zafer Asım. Synthesis and evaluation of new thiazole derivatives as potential antimicrobial agents. Lett Drug Des Discov 2016; 13(9): 903-11.
[http://dx.doi.org/10.2174/1570180813666160226001021]
[16]
Hublikar M, Dixit P, Kadu V, et al. Synthesis of Some Novel (E)-Methyl 2, 4-Dimethyl-5-(3-Oxo-3-Phenylprop-1-En-1-Yl)-1H -Pyrrole-3-Carboxylate Derivatives as Antimicrobial Agent. Asian J Pharm Clin Res 2019; 12(2): 4-9.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i2.30275]
[17]
Moldovan CM, Oniga O, Pârvu A, et al. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur J Med Chem 2011; 46(2): 526-34.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.032] [PMID: 21163557]
[18]
Raut DG, Lawand AS, Kadu VD, et al. Synthesis of asymmetric thiazolyl pyrazolines as a potential antioxidant and anti-inflammatory agents. Polycycl Aromat Compd 2020; 1-10.
[http://dx.doi.org/10.1080/10406638.2020.1716028]
[19]
Chopra R, de Kock C, Smith P, Chibale K, Singh K. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities. Eur J Med Chem 2015; 100(1): 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.043] [PMID: 26057222]
[20]
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017; 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005]
[21]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 757-72.
[http://dx.doi.org/10.2147/CIA.S158513]
[22]
Pourmorad F, Ebrahimzadeh MA, Mahmoudi M, Yasini S. Antinociceptive activity of methanolic extract of Epilobium hirsutum. Pak J Biol Sci 2007; 10(16): 2764-7.
[http://dx.doi.org/10.3923/pjbs.2007.2764.2767] [PMID: 19070100]
[23]
Vafaeezadeh M, Hashemi MM. Polyethylene Glycol (PEG) as a green solvent for carbon-carbon bond formation reactions. J Mol Liq 2015; 207: 73-9.
[http://dx.doi.org/10.1016/j.molliq.2015.03.003]
[24]
Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 2005; 7(2): 64-82.
[http://dx.doi.org/10.1039/b413546f]
[25]
Raut DG, Kadu VD, Sonawane VD, Bhosale RB. Synthesis of thiazole scaffolds by novel method and their in vitro anthelmentic activity against Indian adult earthworm. Eur J Biomed Pharm Sci 2015; 2(4): 922-31.
[26]
Raut DG, Bhosale RB. One-pot PEG-mediated syntheses of 2-(2-Hydrazinyl) Thiazole derivatives: Novel route. J Sulfur Chem 2018; 39(1): 1-7.
[http://dx.doi.org/10.1080/17415993.2017.1371175]
[27]
Allec SI, Sun Y, Sun J, Chang CA, Wonga BM. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J Chem Theory Comput 2019; 15: 2807-15.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[28]
Bhattacharya S, Asati V, Mishra M, Das R, Kashaw V, Kashaw SK. Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. J Mol Struct 2021; 1227: 129511.
[http://dx.doi.org/10.1016/j.molstruc.2020.129511]
[29]
Kumar RS, Sivakumar T, Sundaram RS, et al. Antimicrobial and antioxidant activities of Careya arborea Roxb. Stem Bark. Iran J Pharmacol Ther 2006; 5(1): 35-41.
[30]
Raut DG, Patil SB, Choudhari PB, et al. POCl 3 mediated syntheses, pharmacological evaluation and molecular docking studies of some novel benzofused thiazole derivatives as a potential antioxidant and anti-inflammatory agents. Curr Chem Biol 2020; 14(1): 58-68.
[http://dx.doi.org/10.2174/2212796813666191118100520]
[31]
Kadu VD, Nadimetla DN, Hublikar MG, Raut DG, Bhosale RB. Water-mediated green and efficient synthesis of bis(indolyl)methanes using ammonium iron(II) sulfate. Lett Org Chem 2020; 17(1): 61-7.
[http://dx.doi.org/10.2174/1570178616666190522121135]
[32]
Jadhav SY, Shirame SP, Kulkarni SD, Patil SB, Pasale SK, Bhosale RB. PEG mediated synthesis and pharmacological evaluation of some fluoro substituted pyrazoline derivatives as antiinflammatory and analgesic agents. Bioorg Med Chem Lett 2013; 23(9): 2575-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.105] [PMID: 23541672]
[33]
El-Sayed MAAA-A, Abdel-Aziz NI, Abdel-Aziz AA-MAM, El-Azab AS, ElTahir KEH. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg Med Chem 2012; 20(10): 3306-16.
[http://dx.doi.org/10.1016/j.bmc.2012.03.044] [PMID: 22516672]
[34]
Bandgar BP, Gawande SS, Bodade RG, Gawande NM, Khobragade CN. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg Med Chem 2009; 17(24): 8168-73.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[35]
Kadu VD, Hublikar MG, Raut DG, Bhosale RB. Water-mediated ceric ammonium nitrate catalyzed C-C/C-N bond formation: Convenient access to polyfunctionalized pyrazoles via multicomponent reaction. Asian J Chem 2019; 31(5): 1189-94.
[http://dx.doi.org/10.14233/ajchem.2019.21947]
[36]
Raut DG, Patil SB, Kadu VD, Hublikar MG, Bhosale RB. Synthesis of asymmetric 1-thiocarbamoyl pyrazoles as potent anti- colon cancer, antioxidant and anti-inflammatory agent. Anticancer Agents Med Chem 2018; 18(15): 2117-23.
[http://dx.doi.org/10.2174/1871520618666181112122528] [PMID: 30417799]
[37]
Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006; 1: 1112-6.
[38]
NCI Protocols. In vitro methodology Available from: https://clinicaltrials.gov/ProvidedDocs/55/NCT01696955/Prot_SAP_000.pdf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy