Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome

Author(s): Linglong Xiao, Mengqi Wang, Yifeng Shi, Yangyang Xu, Yuan Gao, Wei Zhang, Yang Wu, Hao Deng, Wei Pan, Wei Wang* and Haitao Sun*

Volume 21, Issue 3, 2023

Published on: 24 October, 2022

Page: [669 - 686] Pages: 18

DOI: 10.2174/1570159X20666220830115018

Price: $65

Abstract

Intracerebral hemorrhage (ICH) is a neurological disease with high mortality and disability. Recent studies showed that white matter injury (WMI) plays an important role in motor dysfunction after ICH. WMI includes WMI proximal to the lesion and WMI distal to the lesion, such as corticospinal tract injury located at the cervical enlargement of the spinal cord after ICH. Previous studies have tended to focus only on gray matter (GM) injury after ICH, and fewer studies have paid attention to WMI, which may be one of the reasons for the poor outcome of previous drug treatments. Microglia and astrocyte-mediated neuroinflammation are significant mechanisms responsible for secondary WMI following ICH. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, has been shown to exacerbate neuroinflammation and brain injury after ICH. Moreover, NLRP3 inflammasome is activated in microglia and astrocytes and exerts a vital role in microglia and astrocytes-mediated neuroinflammation. We speculate that NLRP3 inflammasome activation is closely related to the polarization of microglia and astrocytes and that NLRP3 inflammasome activation may exacerbate WMI by polarizing microglia and astrocytes to the pro-inflammatory phenotype after ICH, while NLRP3 inflammasome inhibition may attenuate WMI by polarizing microglia and astrocytes to the anti-inflammatory phenotype following ICH. Therefore, NLRP3 inflammasome may act as leveraged regulatory fulcrums for microglia and astrocytes polarization to modulate WMI and WM repair after ICH. This review summarized the possible mechanisms by which neuroinflammation mediated by NLRP3 inflammasome exacerbates secondary WMI after ICH and discussed the potential therapeutic targets.

Keywords: Intracerebral hemorrhage, secondary white matter injury, neuroinflammation, NLRP3 inflammasome, microglia, astrocyte.

Graphical Abstract
[1]
Katsuki, H.; Hijioka, M. Intracerebral hemorrhage as an axonal tract injury disorder with inflammatory reactions. Biol. Pharm. Bull., 2017, 40(5), 564-568.
[http://dx.doi.org/10.1248/bpb.b16-01013] [PMID: 28458342]
[2]
Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet, 2009, 373(9675), 1632-1644.
[http://dx.doi.org/10.1016/S0140-6736(09)60371-8] [PMID: 19427958]
[3]
Ng, A.C.K.; Yao, M.; Cheng, S.Y.; Li, J.; Huang, J.D.; Wu, W.; Leung, G.K.K.; Sun, H. Protracted morphological changes in the corticospinal tract within the cervical spinal cord after intracerebral hemorrhage in the right striatum of mice. Front. Neurosci., 2020, 14, 506.
[http://dx.doi.org/10.3389/fnins.2020.00506] [PMID: 32581678]
[4]
Smith, E.E.; Gurol, M.E.; Eng, J.A.; Engel, C.R.; Nguyen, T.N.; Rosand, J.; Greenberg, S.M. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology, 2004, 63(9), 1606-1612.
[http://dx.doi.org/10.1212/01.WNL.0000142966.22886.20] [PMID: 15534243]
[5]
Chung, C.S.; Caplan, L.R.; Yamamoto, Y.; Chang, H.M.; Lee, S.J.; Song, H.J.; Lee, H.S.; Shin, H.K.; Yoo, K.M. Striatocapsular haemorrhage. Brain, 2000, 123(9), 1850-1862.
[http://dx.doi.org/10.1093/brain/123.9.1850] [PMID: 10960049]
[6]
Qureshi, A.I.; Tuhrim, S.; Broderick, J.P.; Batjer, H.H.; Hondo, H.; Hanley, D.F. Spontaneous intracerebral hemorrhage. N. Engl. J. Med., 2001, 344(19), 1450-1460.
[http://dx.doi.org/10.1056/NEJM200105103441907] [PMID: 11346811]
[7]
Wasserman, J.K.; Schlichter, L.C. White matter injury in young and aged rats after intracerebral hemorrhage. Exp. Neurol., 2008, 214(2), 266-275.
[http://dx.doi.org/10.1016/j.expneurol.2008.08.010] [PMID: 18848934]
[8]
Tao, C.; Hu, X.; Li, H.; You, C. White matter injury after intracerebral hemorrhage: Pathophysiology and therapeutic strategies. Front. Hum. Neurosci., 2017, 11, 422.
[http://dx.doi.org/10.3389/fnhum.2017.00422] [PMID: 28890692]
[9]
Li, J.; Xiao, L.; He, D.; Luo, Y.; Sun, H. Mechanism of white matter injury and promising therapeutic strategies of MSCs after intracerebral hemorrhage. Front. Aging Neurosci., 2021, 13, 632054.
[http://dx.doi.org/10.3389/fnagi.2021.632054] [PMID: 33927608]
[10]
Ren, H.; Kong, Y.; Liu, Z.; Zang, D.; Yang, X.; Wood, K.; Li, M.; Liu, Q. Selective NLRP3 (pyrin domain–containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke, 2018, 49(1), 184-192.
[http://dx.doi.org/10.1161/STROKEAHA.117.018904] [PMID: 29212744]
[11]
Yang, S.J.; Shao, G.F.; Chen, J.L.; Gong, J. The NLRP3 inflammasome: An important driver of neuroinflammation in hemorrhagic stroke. Cell. Mol. Neurobiol., 2018, 38(3), 595-603.
[http://dx.doi.org/10.1007/s10571-017-0526-9] [PMID: 28752408]
[12]
Heneka, M.T.; McManus, R.M.; Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci., 2018, 19(10), 610-621.
[http://dx.doi.org/10.1038/s41583-018-0055-7] [PMID: 30206330]
[13]
Luo, Y.; Reis, C.; Chen, S. NLRP3 inflammasome in the pathophysiology of hemorrhagic stroke: A review. Curr. Neuropharmacol., 2019, 17(7), 582-589.
[http://dx.doi.org/10.2174/1570159X17666181227170053] [PMID: 30592254]
[14]
Xiao, L.; Zheng, H.; Li, J.; Zeng, M.; He, D.; Liang, J.; Sun, K.; Luo, Y.; Li, F.; Ping, B.; Yuan, W.; Zhou, H.; Wang, Q.; Sun, H. Targeting NLRP3 inflammasome modulates gut microbiota, attenuates corticospinal tract injury and ameliorates neurobehavioral deficits after intracerebral hemorrhage in mice. Biomed. Pharmacother., 2022, 149, 112797.
[http://dx.doi.org/10.1016/j.biopha.2022.112797] [PMID: 35279596]
[15]
Jiang, Y.B.; Wei, K.Y.; Zhang, X.Y.; Feng, H.; Hu, R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci. Ther., 2019, 25(10), 1113-1125.
[http://dx.doi.org/10.1111/cns.13226] [PMID: 31578825]
[16]
Bedell, B.J.; Narayana, P.A. Volumetric analysis of white matter, gray matter, and CSF using fractional volume analysis. Magn. Reson. Med., 1998, 39(6), 961-969.
[http://dx.doi.org/10.1002/mrm.1910390614] [PMID: 9621920]
[17]
Herndon, R.C.; Lancaster, J.L.; Giedd, J.N.; Fox, P.T. Quantification of white matter and gray matter volumes from three-dimensional magnetic resonance volume studies using fuzzy classifiers. J. Magn. Reson. Imaging, 1998, 8(5), 1097-1105.
[http://dx.doi.org/10.1002/jmri.1880080515] [PMID: 9786148]
[18]
Kang, M.; Yao, Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci. Ther., 2019, 25(10), 1075-1084.
[http://dx.doi.org/10.1111/cns.13193] [PMID: 31410988]
[19]
Roncagliolo, M.; Schlageter, C.; León, C.; Couve, E.; Bonansco, C.; Eguibar, J.R. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats. Brain Res., 2006, 1067(1), 78-84.
[http://dx.doi.org/10.1016/j.brainres.2005.10.010] [PMID: 16360123]
[20]
Gerrish, A.C.; Thomas, A.G.; Dineen, R.A. Brain white matter tracts: Functional anatomy and clinical relevance. Semin. Ultrasound CT MR, 2014, 35(5), 432-444.
[http://dx.doi.org/10.1053/j.sult.2014.06.003] [PMID: 25217297]
[21]
Carreiras, M.; Seghier, M.L.; Baquero, S.; Estévez, A.; Lozano, A.; Devlin, J.T.; Price, C.J. An anatomical signature for literacy. Nature, 2009, 461(7266), 983-986.
[http://dx.doi.org/10.1038/nature08461] [PMID: 19829380]
[22]
Schmahmann, J.D.; Smith, E.E.; Eichler, F.S.; Filley, C.M. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci., 2008, 1142(1), 266-309.
[http://dx.doi.org/10.1196/annals.1444.017] [PMID: 18990132]
[23]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[24]
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol., 2014, 14(7), 463-477.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[25]
Zaki, M.H.; Lamkanfi, M.; Kanneganti, T.D. The Nlrp3 inflammasome: Contributions to intestinal homeostasis. Trends Immunol., 2011, 32(4), 171-179.
[http://dx.doi.org/10.1016/j.it.2011.02.002] [PMID: 21388882]
[26]
Feng, L.; Chen, Y.; Ding, R.; Fu, Z.; Yang, S.; Deng, X.; Zeng, J. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: Involvement of peroxynitrite. J. Neuroinflammation, 2015, 12(1), 190.
[http://dx.doi.org/10.1186/s12974-015-0409-2] [PMID: 26475134]
[27]
Ma, Q.; Chen, S.; Hu, Q.; Feng, H.; Zhang, J.H.; Tang, J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann. Neurol., 2014, 75(2), 209-219.
[http://dx.doi.org/10.1002/ana.24070] [PMID: 24273204]
[28]
Yao, S.T.; Cao, F.; Chen, J.L.; Chen, W.; Fan, R.M.; Li, G.; Zeng, Y.C.; Jiao, S.; Xia, X.P.; Han, C.; Ran, Q.S. NLRP3 is required for complement-mediated caspase-1 and IL-1beta activation in ICH. J. Mol. Neurosci., 2017, 61(3), 385-395.
[http://dx.doi.org/10.1007/s12031-016-0874-9] [PMID: 27933491]
[29]
Dutra, F.F.; Alves, L.S.; Rodrigues, D.; Fernandez, P.L.; de Oliveira, R.B.; Golenbock, D.T.; Zamboni, D.S.; Bozza, M.T. Hemolysis-induced lethality involves inflammasome activation by heme. Proc. Natl. Acad. Sci. USA, 2014, 111(39), E4110-E4118.
[http://dx.doi.org/10.1073/pnas.1405023111] [PMID: 25225402]
[30]
Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 2008, 9(8), 847-856.
[http://dx.doi.org/10.1038/ni.1631] [PMID: 18604214]
[31]
Muñoz-Planillo, R.; Kuffa, P.; Martínez-Colón, G.; Smith, B.L.; Rajendiran, T.M.; Núñez, G. K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153.
[http://dx.doi.org/10.1016/j.immuni.2013.05.016] [PMID: 23809161]
[32]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[33]
Iyer, S.S.; He, Q.; Janczy, J.R.; Elliott, E.I.; Zhong, Z.; Olivier, A.K.; Sadler, J.J.; Knepper-Adrian, V.; Han, R.; Qiao, L.; Eisenbarth, S.C.; Nauseef, W.M.; Cassel, S.L.; Sutterwala, F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 2013, 39(2), 311-323.
[http://dx.doi.org/10.1016/j.immuni.2013.08.001] [PMID: 23954133]
[34]
Lan, X.; Han, X.; Li, Q.; Yang, Q.W.; Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol., 2017, 13(7), 420-433.
[http://dx.doi.org/10.1038/nrneurol.2017.69] [PMID: 28524175]
[35]
Wang, J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol., 2010, 92(4), 463-477.
[http://dx.doi.org/10.1016/j.pneurobio.2010.08.001] [PMID: 20713126]
[36]
Wang, Y.; Lin, J.; Chen, Q.Z.; Zhu, N.; Jiang, D.Q.; Li, M.X.; Wang, Y. Overexpression of mitochondrial Hsp75 protects neural stem cells against microglia-derived soluble factor-induced neurotoxicity by regulating mitochondrial permeability transition pore opening in vitro. Int. J. Mol. Med., 2015, 36(6), 1487-1496.
[http://dx.doi.org/10.3892/ijmm.2015.2380] [PMID: 26500047]
[37]
Yue, X.; Qiao, D.; Wang, A.; Tan, X.; Li, Y.; Liu, C.; Wang, H. CD200 attenuates methamphetamine-induced microglial activation and dopamine depletion. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2012, 32(3), 415-421.
[http://dx.doi.org/10.1007/s11596-012-0072-0] [PMID: 22684568]
[38]
Zhu, N.; Lin, J.; Wang, K.; Wei, M.; Chen, Q.; Wang, Y. Huperzine A protects neural stem cells against Aβ-induced apoptosis in a neural stem cells and microglia co-culture system. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6425-6433.
[PMID: 26261518]
[39]
Brown, G.C.; Vilalta, A. How microglia kill neurons. Brain Res, 2015, 1628(Pt B), 288-297.
[http://dx.doi.org/10.1016/j.brainres.2015.08.031]
[40]
Xiong, X.Y.; Liu, L.; Yang, Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016, 142, 23-44.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.001] [PMID: 27166859]
[41]
Fumagalli, S.; Perego, C.; Pischiutta, F.; Zanier, E.R.; De Simoni, M.G. The ischemic environment drives microglia and macrophage function. Front. Neurol., 2015, 6, 81.
[http://dx.doi.org/10.3389/fneur.2015.00081] [PMID: 25904895]
[42]
Lampron, A.; Larochelle, A.; Laflamme, N.; Préfontaine, P.; Plante, M.M.; Sánchez, M.G.; Yong, V.W.; Stys, P.K.; Tremblay, M.È.; Rivest, S. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med., 2015, 212(4), 481-495.
[http://dx.doi.org/10.1084/jem.20141656] [PMID: 25779633]
[43]
Chen, Y.; Tian, H.; Yao, E.; Tian, Y.; Zhang, H.; Xu, L.; Yu, Z.; Fang, Y.; Wang, W.; Du, P.; Xie, M. Soluble epoxide hydrolase inhibition Promotes White Matter Integrity and Long-Term Functional Recovery after chronic hypoperfusion in mice. Sci. Rep., 2017, 7(1), 7758.
[http://dx.doi.org/10.1038/s41598-017-08227-z] [PMID: 28798352]
[44]
Qin, C.; Fan, W.H.; Liu, Q.; Shang, K.; Murugan, M.; Wu, L.J.; Wang, W.; Tian, D.S. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke, 2017, 48(12), 3336-3346.
[http://dx.doi.org/10.1161/STROKEAHA.117.018505] [PMID: 29114096]
[45]
Olah, M.; Amor, S.; Brouwer, N.; Vinet, J.; Eggen, B.; Biber, K.; Boddeke, H.W.G.M. Identification of a microglia phenotype supportive of remyelination. Glia, 2012, 60(2), 306-321.
[http://dx.doi.org/10.1002/glia.21266] [PMID: 22072381]
[46]
Zhao, X.; Wang, H.; Sun, G.; Zhang, J.; Edwards, N.J.; Aronowski, J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci., 2015, 35(32), 11281-11291.
[http://dx.doi.org/10.1523/JNEUROSCI.1685-15.2015] [PMID: 26269636]
[47]
Bouhlel, M.A.; Derudas, B.; Rigamonti, E.; Dièvart, R.; Brozek, J.; Haulon, S.; Zawadzki, C.; Jude, B.; Torpier, G.; Marx, N.; Staels, B.; Chinetti-Gbaguidi, G. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab., 2007, 6(2), 137-143.
[http://dx.doi.org/10.1016/j.cmet.2007.06.010] [PMID: 17681149]
[48]
Tentillier, N.; Etzerodt, A.; Olesen, M.N.; Rizalar, F.S.; Jacobsen, J.; Bender, D.; Moestrup, S.K.; Romero-Ramos, M. Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson’s disease model. J. Neurosci., 2016, 36(36), 9375-9390.
[http://dx.doi.org/10.1523/JNEUROSCI.1636-16.2016] [PMID: 27605613]
[49]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[50]
Wang, G.; Zhang, J.; Hu, X.; Zhang, L.; Mao, L.; Jiang, X.; Liou, A.K.F.; Leak, R.K.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab., 2013, 33(12), 1864-1874.
[http://dx.doi.org/10.1038/jcbfm.2013.146] [PMID: 23942366]
[51]
Yang, Y.; Liu, H.; Zhang, H.; Ye, Q.; Wang, J.; Yang, B.; Mao, L.; Zhu, W.; Leak, R.K.; Xiao, B.; Lu, B.; Chen, J.; Hu, X. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J. Neurosci., 2017, 37(18), 4692-4704.
[http://dx.doi.org/10.1523/JNEUROSCI.3233-16.2017] [PMID: 28389473]
[52]
Francos-Quijorna, I.; Amo-Aparicio, J.; Martinez-Muriana, A.; López-Vales, R. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia, 2016, 64(12), 2079-2092.
[http://dx.doi.org/10.1002/glia.23041] [PMID: 27470986]
[53]
Fu, X.; Zhou, G.; Wu, X.; Xu, C.; Zhou, H.; Zhuang, J.; Peng, Y.; Cao, Y.; Zeng, H.; Li, Y.; Li, J.; Gao, L.; Chen, G.; Wang, L.; Yan, F. Inhibition of P2X4R attenuates white matter injury in mice after intracerebral hemorrhage by regulating microglial phenotypes. J. Neuroinflammation, 2021, 18(1), 184.
[http://dx.doi.org/10.1186/s12974-021-02239-3] [PMID: 34425835]
[54]
Chen, Z.; Xu, N.; Dai, X.; Zhao, C.; Wu, X.; Shankar, S.; Huang, H.; Wang, Z. Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats. Brain Res. Bull., 2019, 150, 127-135.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.016] [PMID: 31129170]
[55]
Yang, H.; Ni, W.; Wei, P.; Li, S.; Gao, X.; Su, J.; Jiang, H.; Lei, Y.; Zhou, L.; Gu, Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2021, 41(5), 958-974.
[http://dx.doi.org/10.1177/0271678X20942613] [PMID: 32703113]
[56]
Li, Q.; Wan, J.; Lan, X.; Han, X.; Wang, Z.; Wang, J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab., 2017, 37(9), 3110-3123.
[http://dx.doi.org/10.1177/0271678X17709186] [PMID: 28534662]
[57]
Yang, Z.; Zhong, L.; Xian, R.; Yuan, B. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol. Immunol., 2015, 65(2), 267-276.
[http://dx.doi.org/10.1016/j.molimm.2014.12.018] [PMID: 25710917]
[58]
Xiao, L.; Zheng, H.; Li, J.; Wang, Q.; Sun, H. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets. Mol. Neurobiol., 2020, 57(12), 5130-5149.
[http://dx.doi.org/10.1007/s12035-020-02082-2] [PMID: 32856203]
[59]
Chen, W.; Guo, C.; Huang, S.; Jia, Z.; Wang, J.; Zhong, J.; Ge, H.; Yuan, J.; Chen, T.; Liu, X.; Hu, R.; Yin, Y.; Feng, H. MitoQ attenuates brain damage by polarizing microglia towards the M2 phenotype through inhibition of the NLRP3 inflammasome after ICH. Pharmacol. Res., 2020, 161, 105122.
[http://dx.doi.org/10.1016/j.phrs.2020.105122] [PMID: 32791262]
[60]
Scimemi, A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke. Neural Plast., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/7301623] [PMID: 29531526]
[61]
Tschoe, C.; Bushnell, C.D.; Duncan, P.W.; Alexander-Miller, M.A.; Wolfe, S.Q. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J. Stroke, 2020, 22(1), 29-46.
[http://dx.doi.org/10.5853/jos.2019.02236] [PMID: 32027790]
[62]
Lively, S.; Schlichter, L.C. Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats. Transl. Stroke Res., 2012, 3(S1)(Suppl. 1), 132-146.
[http://dx.doi.org/10.1007/s12975-012-0151-3] [PMID: 22707991]
[63]
Tejima, E.; Zhao, B.Q.; Tsuji, K.; Rosell, A.; van Leyen, K.; Gonzalez, R.G.; Montaner, J.; Wang, X.; Lo, E.H. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J. Cereb. Blood Flow Metab., 2007, 27(3), 460-468.
[http://dx.doi.org/10.1038/sj.jcbfm.9600354] [PMID: 16788715]
[64]
Wang, J.; Tsirka, S.E. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain, 2005, 128(7), 1622-1633.
[http://dx.doi.org/10.1093/brain/awh489] [PMID: 15800021]
[65]
Chiu, C.D.; Yao, N.W.; Guo, J.H.; Shen, C.C.; Lee, H.T.; Chiu, Y.P.; Ji, H.R.; Chen, X.; Chen, C.C.; Chang, C. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage. Oncotarget, 2017, 8(55), 94850-94861.
[http://dx.doi.org/10.18632/oncotarget.22022] [PMID: 29212271]
[66]
McKeon, R.J.; Schreiber, R.C.; Rudge, J.S.; Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci., 1991, 11(11), 3398-3411.
[http://dx.doi.org/10.1523/JNEUROSCI.11-11-03398.1991] [PMID: 1719160]
[67]
Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410.
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[68]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[69]
Jha, M.K.; Lee, W.H.; Suk, K. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem. Pharmacol., 2016, 103, 1-16.
[http://dx.doi.org/10.1016/j.bcp.2015.11.003] [PMID: 26556658]
[70]
Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240.
[http://dx.doi.org/10.1177/1073858418783959] [PMID: 29931997]
[71]
Zheng, J.; Lu, J.; Mei, S.; Wu, H.; Sun, Z.; Fang, Y.; Xu, S.; Wang, X.; Shi, L.; Xu, W.; Chen, S.; Yu, J.; Liang, F.; Zhang, J. Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: microglia-astrocyte involvement in remyelination. J. Neuroinflammation, 2021, 18(1), 43.
[http://dx.doi.org/10.1186/s12974-021-02101-6] [PMID: 33588866]
[72]
Mekhail, M.; Almazan, G.; Tabrizian, M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: A review. Prog. Neurobiol., 2012, 96(3), 322-339.
[http://dx.doi.org/10.1016/j.pneurobio.2012.01.008] [PMID: 22307058]
[73]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[74]
Bush, T.G.; Puvanachandra, N.; Horner, C.H.; Polito, A.; Ostenfeld, T.; Svendsen, C.N.; Mucke, L.; Johnson, M.H.; Sofroniew, M.V. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron, 1999, 23(2), 297-308.
[http://dx.doi.org/10.1016/S0896-6273(00)80781-3] [PMID: 10399936]
[75]
Zador, Z.; Stiver, S.; Wang, V.; Manley, G.T. Role of aquaporin-4 in cerebral edema and stroke. Handb. Exp. Pharmacol., 2009, 190(190), 159-170.
[http://dx.doi.org/10.1007/978-3-540-79885-9_7] [PMID: 19096776]
[76]
Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273.
[http://dx.doi.org/10.1002/glia.22891] [PMID: 26200799]
[77]
Liu, H.D.; Li, W.; Chen, Z.R.; Hu, Y.C.; Zhang, D.D.; Shen, W.; Zhou, M.L.; Zhu, L.; Hang, C.H. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res., 2013, 38(10), 2072-2083.
[http://dx.doi.org/10.1007/s11064-013-1115-z] [PMID: 23892989]
[78]
Cho, M.H.; Cho, K.; Kang, H.J.; Jeon, E.Y.; Kim, H.S.; Kwon, H.J.; Kim, H.M.; Kim, D.H.; Yoon, S.Y. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 2014, 10(10), 1761-1775.
[http://dx.doi.org/10.4161/auto.29647] [PMID: 25126727]
[79]
Zendedel, A.; Johann, S.; Mehrabi, S.; Joghataei, M.; Hassanzadeh, G.; Kipp, M.; Beyer, C. Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol. Neurobiol., 2016, 53(5), 3063-3075.
[http://dx.doi.org/10.1007/s12035-015-9203-5] [PMID: 25972240]
[80]
Lu, M.; Sun, X.L.; Qiao, C.; Liu, Y.; Ding, J.H.; Hu, G. Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol. Aging, 2014, 35(2), 421-430.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.015] [PMID: 24041971]
[81]
Du, R.H.; Wu, F.F.; Lu, M.; Shu, X.; Ding, J.H.; Wu, G.; Hu, G. Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol., 2016, 9, 178-187.
[http://dx.doi.org/10.1016/j.redox.2016.08.006] [PMID: 27566281]
[82]
Liu, H.; Wu, X.; Luo, J.; Zhao, L.; Li, X.; Guo, H.; Bai, H.; Cui, W.; Guo, W.; Feng, D.; Qu, Y. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp. Neurol., 2020, 329, 113302.
[http://dx.doi.org/10.1016/j.expneurol.2020.113302] [PMID: 32275928]
[83]
Ito, M.; Komai, K.; Mise-Omata, S.; Iizuka-Koga, M.; Noguchi, Y.; Kondo, T.; Sakai, R.; Matsuo, K.; Nakayama, T.; Yoshie, O.; Nakatsukasa, H.; Chikuma, S.; Shichita, T.; Yoshimura, A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature, 2019, 565(7738), 246-250.
[http://dx.doi.org/10.1038/s41586-018-0824-5] [PMID: 30602786]
[84]
Zhou, K.; Zhong, Q.; Wang, Y.C.; Xiong, X.Y.; Meng, Z.Y.; Zhao, T.; Zhu, W.Y.; Liao, M.F.; Wu, L.R.; Yang, Y.R.; Liu, J.; Duan, C.M.; Li, J.; Gong, Q.W.; Liu, L.; Yang, M.H.; Xiong, A.; Wang, J.; Yang, Q.W. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis. J. Cereb. Blood Flow Metab., 2017, 37(3), 967-979.
[http://dx.doi.org/10.1177/0271678X16648712] [PMID: 27174997]
[85]
Sen, T.; Saha, P.; Gupta, R.; Foley, L.M.; Jiang, T.; Abakumova, O.S.; Hitchens, T.K.; Sen, N.; Aberrant, E.R. Aberrant ER stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI. J. Neurosci., 2020, 40(2), 424-446.
[http://dx.doi.org/10.1523/JNEUROSCI.0718-19.2019] [PMID: 31694961]
[86]
Lee, G. The balance of Th17 versus treg cells in autoimmunity. Int. J. Mol. Sci., 2018, 19(3), 730.
[http://dx.doi.org/10.3390/ijms19030730] [PMID: 29510522]
[87]
Mori, S.; Leblond, C.P. Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J. Comp. Neurol., 1970, 139(1), 1-29.
[http://dx.doi.org/10.1002/cne.901390102] [PMID: 4191626]
[88]
Arai, K.; Lo, E.H. Experimental models for analysis of oligodendrocyte pathophysiology in stroke. Exp. Transl. Stroke Med., 2009, 1(1), 6.
[http://dx.doi.org/10.1186/2040-7378-1-6] [PMID: 20150984]
[89]
Bakiri, Y.; Burzomato, V.; Frugier, G.; Hamilton, N.B.; Káradóttir, R.; Attwell, D. Glutamatergic signaling in the brain’s white matter. Neuroscience, 2009, 158(1), 266-274.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.015] [PMID: 18314276]
[90]
Miron, V.E.; Boyd, A.; Zhao, J.W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M. ffrench-Constant, C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci., 2013, 16(9), 1211-1218.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[91]
Han, L.; Cai, W.; Mao, L.; Liu, J.; Li, P.; Leak, R.K.; Xu, Y.; Hu, X.; Chen, J. Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke, 2015, 46(9), 2628-2636.
[http://dx.doi.org/10.1161/STROKEAHA.115.010091] [PMID: 26243225]
[92]
Naruse, M.; Shibasaki, K.; Shimauchi-Ohtaki, H.; Ishizaki, Y. Microglial activation induces generation of oligodendrocyte progenitor cells from the subventricular zone after focal demyelination in the corpus callosum. Dev. Neurosci., 2018, 40(1), 54-63.
[http://dx.doi.org/10.1159/000486332] [PMID: 29393205]
[93]
Tang, T.; Liu, X.J.; Zhang, Z.Q.; Zhou, H.J.; Luo, J.K.; Huang, J.F.; Yang, Q.D.; Li, X.Q. Cerebral angiogenesis after collagenase-induced intracerebral hemorrhage in rats. Brain Res., 2007, 1175, 134-142.
[http://dx.doi.org/10.1016/j.brainres.2007.08.028] [PMID: 17888890]
[94]
Yuen, T.J.; Silbereis, J.C.; Griveau, A.; Chang, S.M.; Daneman, R.; Fancy, S.P.J.; Zahed, H.; Maltepe, E.; Rowitch, D.H. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 2014, 158(2), 383-396.
[http://dx.doi.org/10.1016/j.cell.2014.04.052] [PMID: 25018103]
[95]
Zhou, T.; Zheng, Y.; Sun, L.; Badea, S.R.; Jin, Y.; Liu, Y.; Rolfe, A.J.; Sun, H.; Wang, X.; Cheng, Z.; Huang, Z.; Zhao, N.; Sun, X.; Li, J.; Fan, J.; Lee, C.; Megraw, T.L.; Wu, W.; Wang, G.; Ren, Y. Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nat. Neurosci., 2019, 22(3), 421-435.
[http://dx.doi.org/10.1038/s41593-018-0324-9] [PMID: 30664769]
[96]
Chen, J.; Ning, R.; Zacharek, A.; Cui, C.; Cui, X.; Yan, T.; Venkat, P.; Zhang, Y.; Chopp, M. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells, 2016, 34(1), 102-113.
[http://dx.doi.org/10.1002/stem.2193] [PMID: 26299579]
[97]
Arboix, A.; Comes, E.; García-Eroles, L.; Massons, J.; Oliveres, M.; Balcells, M.; Targa, C. Site of bleeding and early outcome in primary intracerebral hemorrhage. Acta Neurol. Scand., 2002, 105(4), 282-288.
[http://dx.doi.org/10.1034/j.1600-0404.2002.1o170.x] [PMID: 11939940]
[98]
Mori, E.; Tabuchi, M.; Yamadori, A. Lacunar syndrome due to intracerebral hemorrhage. Stroke, 1985, 16(3), 454-459.
[http://dx.doi.org/10.1161/01.STR.16.3.454] [PMID: 4002260]
[99]
Tapia, J.F.; Kase, C.S.; Sawyer, R.H.; Mohr, J.P. Hypertensive putaminal hemorrhage presenting as pure motor hemiparesis. Stroke, 1983, 14(4), 505-506.
[http://dx.doi.org/10.1161/01.STR.14.4.505] [PMID: 6658923]
[100]
Hijioka, M.; Anan, J.; Matsushita, H.; Ishibashi, H.; Kurauchi, Y.; Hisatsune, A.; Seki, T.; Katsuki, H. Axonal dysfunction in internal capsule is closely associated with early motor deficits after intracerebral hemorrhage in mice. Neurosci. Res., 2016, 106, 38-46.
[http://dx.doi.org/10.1016/j.neures.2015.10.006] [PMID: 26511923]
[101]
Chen, W.; Guo, C.; Jia, Z.; Wang, J.; Xia, M.; Li, C.; Li, M.; Yin, Y.; Tang, X.; Chen, T.; Hu, R.; Chen, Y.; Liu, X.; Feng, H. Inhibition of mitochondrial ROS by MitoQ alleviates white matter injury and improves outcomes after intracerebral haemorrhage in mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/8285065] [PMID: 31998445]
[102]
Ran, Y.; Su, W.; Gao, F.; Ding, Z.; Yang, S.; Ye, L.; Chen, X.; Tian, G.; Xi, J.; Liu, Z. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition. Oxid. Med. Cell. Longev., 2021, 2021, 1-25.
[http://dx.doi.org/10.1155/2021/1552127] [PMID: 34630845]
[103]
Zhao, H.; Pan, P.; Yang, Y.; Ge, H.; Chen, W.; Qu, J.; Shi, J.; Cui, G.; Liu, X.; Feng, H.; Chen, Y. Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 163.
[http://dx.doi.org/10.1186/s12974-017-0940-4] [PMID: 28821266]
[104]
Calzaferri, F.; Ruiz-Ruiz, C.; Diego, A.M.G.; Pascual, R.; Méndez-López, I.; Cano-Abad, M.F.; Maneu, V.; Ríos, C.; Gandía, L.; García, A.G. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med. Res. Rev., 2020, 40(6), 2427-2465.
[http://dx.doi.org/10.1002/med.21710] [PMID: 32677086]
[105]
Block, F.; Dihné, M.; Loos, M. Inflammation in areas of remote changes following focal brain lesion. Prog. Neurobiol., 2005, 75(5), 342-365.
[http://dx.doi.org/10.1016/j.pneurobio.2005.03.004] [PMID: 15925027]
[106]
Zhang, Z.; Liu, W.; Huang, Y.; Luo, L.; Cai, X.; Liu, Y.; Ai, L.; Yan, J.; Lin, S.; Ye, J. NLRP3 deficiency attenuates secondary degeneration of visual cortical neurons following optic nerve injury. Neurosci. Bull., 2020, 36(3), 277-288.
[http://dx.doi.org/10.1007/s12264-019-00445-x] [PMID: 31768783]
[107]
Chu, X.; Wang, C.; Wu, Z.; Fan, L.; Tao, C.; Lin, J.; Chen, S.; Lin, Y.; Ge, Y. JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp. Eye Res., 2021, 202, 108335.
[http://dx.doi.org/10.1016/j.exer.2020.108335] [PMID: 33141050]
[108]
Li, X.; Yu, Z.; Zong, W.; Chen, P.; Li, J.; Wang, M.; Ding, F.; Xie, M.; Wang, W.; Luo, X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J. Neuroinflammation, 2020, 17(1), 263.
[http://dx.doi.org/10.1186/s12974-020-01942-x] [PMID: 32891159]
[109]
Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci., 2007, 28(9), 465-472.
[http://dx.doi.org/10.1016/j.tips.2007.07.002] [PMID: 17692395]
[110]
Franceschini, A.; Capece, M.; Chiozzi, P.; Falzoni, S.; Sanz, J.M.; Sarti, A.C.; Bonora, M.; Pinton, P.; Di Virgilio, F. The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J., 2015, 29(6), 2450-2461.
[http://dx.doi.org/10.1096/fj.14-268714] [PMID: 25690658]
[111]
Li, M.; Xia, M.; Chen, W.; Wang, J.; Yin, Y.; Guo, C.; Li, C.; Tang, X.; Zhao, H.; Tan, Q.; Chen, Y.; Jia, Z.; Liu, X.; Feng, H. Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice. Transl. Res., 2020, 217, 61-74.
[http://dx.doi.org/10.1016/j.trsl.2019.12.006] [PMID: 31951826]
[112]
Zhao, J.; Wang, H.; Huang, Y.; Zhang, H.; Wang, S.; Gaskin, F.; Yang, N.; Fu, S.M. Lupus nephritis: Glycogen synthase kinase 3β promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice. Arthritis Rheumatol., 2015, 67(4), 1036-1044.
[http://dx.doi.org/10.1002/art.38993] [PMID: 25512114]
[113]
Wang, Y.; Meng, C.; Zhang, J.; Wu, J.; Zhao, J. Inhibition of GSK-3β alleviates cerebral ischemia/reperfusion injury in rats by suppressing NLRP3 inflammasome activation through autophagy. Int. Immunopharmacol., 2019, 68, 234-241.
[http://dx.doi.org/10.1016/j.intimp.2018.12.042] [PMID: 30703695]
[114]
Li, X.; Liang, S.; Li, Z.; Li, S.; Xia, M.; Verkhratsky, A.; Li, B. Leptin increases expression of 5-HT2B receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation. Front. Psychiatry, 2019, 9, 734.
[http://dx.doi.org/10.3389/fpsyt.2018.00734] [PMID: 30666218]
[115]
Ward, R.; Li, W.; Abdul, Y.; Jackson, L.; Dong, G.; Jamil, S.; Filosa, J.; Fagan, S.C.; Ergul, A. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol. Res., 2019, 142, 237-250.
[http://dx.doi.org/10.1016/j.phrs.2019.01.035] [PMID: 30818045]
[116]
Fu, Q.; Li, J.; Qiu, L.; Ruan, J.; Mao, M.; Li, S.; Mao, Q. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int. Immunopharmacol., 2020, 82, 106317.
[http://dx.doi.org/10.1016/j.intimp.2020.106317] [PMID: 32087497]
[117]
Fletcher, J.; Murray, S.; Xiao, J. Brain-derived neurotrophic factor in central nervous system myelination: A new mechanism to promote myelin plasticity and repair. Int. J. Mol. Sci., 2018, 19(12), 4131.
[http://dx.doi.org/10.3390/ijms19124131] [PMID: 30572673]
[118]
Poduslo, J.F.; Curran, G.L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res., 1996, 36(2), 280-286.
[http://dx.doi.org/10.1016/0169-328X(95)00250-V] [PMID: 8965648]
[119]
Zhang, C.Y.Y.; Zeng, M.J.; Zhou, L.P.; Li, Y.Q.; Zhao, F.; Shang, Z.Y.; Deng, X.Y.; Ma, Z.Q.; Fu, Q.; Ma, S.P.; Qu, R. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF- κB/NLRP3 signal pathway in a rat model of depression. Int. Immunopharmacol., 2018, 64, 175-182.
[http://dx.doi.org/10.1016/j.intimp.2018.09.001] [PMID: 30195108]
[120]
An, P.; Xie, J.; Qiu, S.; Liu, Y.; Wang, J.; Xiu, X.; Li, L.; Tang, M. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci., 2019, 232, 116599.
[http://dx.doi.org/10.1016/j.lfs.2019.116599] [PMID: 31247210]
[121]
Liu, W.; Wang, H.; Wang, Y.; Li, H.; Ji, L. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats. Psychiatry Res., 2015, 228(3), 257-264.
[http://dx.doi.org/10.1016/j.psychres.2015.05.102] [PMID: 26144579]
[122]
Li, R.; Liu, Z.; Wu, X.; Yu, Z.; Zhao, S.; Tang, X. Lithium chloride promoted hematoma resolution after intracerebral hemorrhage through GSK-3β-mediated pathways-dependent microglia phagocytosis and M2-phenotype differentiation, angiogenesis and neurogenesis in a rat model. Brain Res. Bull., 2019, 152, 117-127.
[http://dx.doi.org/10.1016/j.brainresbull.2019.07.019] [PMID: 31325596]
[123]
Zhang, X.; Wang, R.; Hu, D.; Sun, X.; Fujioka, H.; Lundberg, K.; Chan, E.R.; Wang, Q.; Xu, R.; Flanagan, M.E.; Pieper, A.A.; Qi, X. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci. Adv., 2020, 6(49), eabb8680.
[http://dx.doi.org/10.1126/sciadv.abb8680] [PMID: 33277246]
[124]
Shao, Y.; Chen, C.; Zhu, T.; Sun, Z.; Li, S.; Gong, L.; Dong, X.; Shen, W.; Zeng, L.; Xie, Y.; Jiang, P. TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol. Dis., 2021, 160, 105534.
[http://dx.doi.org/10.1016/j.nbd.2021.105534] [PMID: 34673151]
[125]
Franke, H.; Günther, A.; Grosche, J.; Schmidt, R.; Rossner, S.; Reinhardt, R.; Faber-Zuschratter, H.; Schneider, D.; Illes, P. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J. Neuropathol. Exp. Neurol., 2004, 63(7), 686-699.
[http://dx.doi.org/10.1093/jnen/63.7.686] [PMID: 15290894]
[126]
Kilts, C.D. The ups and downs of oral lithium dosing. J. Clin. Psychiatry, 1998, 59(Suppl. 6), 21-26.
[PMID: 9674933]
[127]
Müller-Oerlinghausen, B.; Berghöfer, A.; Bauer, M. Bipolar disorder. Lancet, 2002, 359(9302), 241-247.
[http://dx.doi.org/10.1016/S0140-6736(02)07450-0] [PMID: 11812578]
[128]
Benedetti, F.; Bollettini, I.; Barberi, I.; Radaelli, D.; Poletti, S.; Locatelli, C.; Pirovano, A.; Lorenzi, C.; Falini, A.; Colombo, C.; Smeraldi, E. Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology, 2013, 38(2), 313-327.
[http://dx.doi.org/10.1038/npp.2012.172] [PMID: 22990942]
[129]
Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W.W.; Tang, B.; Wang, Y.; Gao, Y.; Zheng, P.; Bennett, M.V.L.; Chen, J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2853-2858.
[http://dx.doi.org/10.1073/pnas.1501441112] [PMID: 25691750]
[130]
Zhao, J.; Guo, X.; Wang, B.; Yang, Z.; Huang, T.; Guo, D.; Zhang, M.; Song, J. MCC950 inhibits NLRP3 inflammasome and alleviates axonal injures in early stages of diffuse axonal injury in rats. Neurochem. Res., 2020, 45(9), 2020-2031.
[http://dx.doi.org/10.1007/s11064-020-03063-6] [PMID: 32474832]
[131]
Marchetti, C.; Swartzwelter, B.; Gamboni, F.; Neff, C.P.; Richter, K.; Azam, T.; Carta, S.; Tengesdal, I.; Nemkov, T.; D’Alessandro, A.; Henry, C.; Jones, G.S.; Goodrich, S.A.; St Laurent, J.P.; Jones, T.M.; Scribner, C.L.; Barrow, R.B.; Altman, R.D.; Skouras, D.B.; Gattorno, M.; Grau, V.; Janciauskiene, S.; Rubartelli, A.; Joosten, L.A.B.; Dinarello, C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1530-E1539.
[http://dx.doi.org/10.1073/pnas.1716095115] [PMID: 29378952]
[132]
Toldo, S.; Mauro, A.G.; Cutter, Z.; Van Tassell, B.W.; Mezzaroma, E.; Del Buono, M.G.; Prestamburgo, A.; Potere, N.; Abbate, A. The NLRP3 inflammasome inhibitor, OLT1177 (dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J. Cardiovasc. Pharmacol., 2019, 73(4), 215-222.
[http://dx.doi.org/10.1097/FJC.0000000000000658] [PMID: 30747785]
[133]
Marchetti, C.; Swartzwelter, B.; Koenders, M.I.; Azam, T.; Tengesdal, I.W.; Powers, N.; de Graaf, D.M.; Dinarello, C.A.; Joosten, L.A.B. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther., 2018, 20(1), 169.
[http://dx.doi.org/10.1186/s13075-018-1664-2] [PMID: 30075804]
[134]
Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; D’Alessandro, A.; Dinarello, C.A.; Korte, M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2020, 117(50), 32145-32154.
[http://dx.doi.org/10.1073/pnas.2009680117] [PMID: 33257576]
[135]
Amo-Aparicio, J.; Garcia-Garcia, J.; Puigdomenech, M.; Francos-Quijorna, I.; Skouras, D.B.; Dinarello, C.A.; Lopez-Vales, R. Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury. Exp. Neurol., 2022, 347, 113889.
[http://dx.doi.org/10.1016/j.expneurol.2021.113889] [PMID: 34624330]
[136]
Zhang, C.; Guan, Q.; Shi, H.; Cao, L.; Liu, J.; Gao, Z.; Zhu, W.; Yang, Y.; Luan, Z.; Yao, R. A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res. Ther., 2021, 12(1), 462.
[http://dx.doi.org/10.1186/s13287-021-02532-1] [PMID: 34407865]
[137]
He, Y.; Hu, Z.; Ren, M.; Ding, C.; Chen, P.; Gu, Q.; Wu, Q. Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J. Mater. Sci. Mater. Med., 2014, 25(2), 561-571.
[http://dx.doi.org/10.1007/s10856-013-5073-4] [PMID: 24178983]
[138]
Li, H.; Chang, J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials, 2004, 25(24), 5473-5480.
[http://dx.doi.org/10.1016/j.biomaterials.2003.12.052] [PMID: 15142728]
[139]
Zhao, T.; Xu, K.; Wu, Q.; Wang, C.; Xiao, S.; Li, H.; He, T.; Wang, L.; Li, F.; Chen, Q. Duraplasty of PHBV/PLA/Col membranes promotes axonal regeneration by inhibiting NLRP3 complex and M1 macrophage polarization in rats with spinal cord injury. FASEB J., 2020, 34(9), 12147-12162.
[http://dx.doi.org/10.1096/fj.202000190RR] [PMID: 32686873]
[140]
Mousavi, M.; Hedayatpour, A.; Mortezaee, K.; Mohamadi, Y.; Abolhassani, F.; Hassanzadeh, G. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab. Brain Dis., 2019, 34(4), 1117-1130.
[http://dx.doi.org/10.1007/s11011-019-00433-0] [PMID: 31165391]
[141]
Liu, D.; Dong, Y.; Li, G.; Zou, Z.; Hao, G.; Feng, H.; Pan, P.; Liang, G. Melatonin attenuates white matter injury via reducing oligodendrocyte apoptosis after subarachnoid hemorrhage in mice. Turk Neurosurg., 2020, 30(5), 685-692.
[PMID: 32705666]
[142]
Aryanpour, R.; Zibara, K.; Pasbakhsh, P.; Jame’ei, S.B.; Namjoo, Z.; Ghanbari, A.; Mahmoudi, R.; Amani, S.; Kashani, I.R. 17β-Estradiol reduces demyelination in cuprizone-fed mice by promoting M2 microglia polarity and regulating NLRP3 inflammasome. Neuroscience, 2021, 463, 116-127.
[http://dx.doi.org/10.1016/j.neuroscience.2021.03.025] [PMID: 33794337]
[143]
Kiasalari, Z.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Azadi-Ahmadabadi, E.; Fakour, M.; Ghasemi-Tarie, R.; Jalalzade-Ogvar, S.; Khodashenas, V.; Tashakori-Miyanroudi, M.; Roghani, M. Sinomenine alleviates murine experimental autoimmune encephalomyelitis model of multiple sclerosis through inhibiting NLRP3 inflammasome. J. Mol. Neurosci., 2021, 71(2), 215-224.
[http://dx.doi.org/10.1007/s12031-020-01637-1] [PMID: 32812186]
[144]
Youdim, M.B.H.; Stephenson, G.; Shachar, D.B. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: A lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann. N. Y. Acad. Sci., 2004, 1012(1), 306-325.
[http://dx.doi.org/10.1196/annals.1306.025] [PMID: 15105275]
[145]
Bandyopadhyay, S.; Huang, X.; Cho, H.; Greig, N.H.; Youdim, M.B.; Rogers, J.T. Metal specificity of an iron-responsive element in Alzheimer’s APP mRNA 5′untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. J. Neural Transm. Suppl., 2006, 71(71), 237-247.
[http://dx.doi.org/10.1007/978-3-211-33328-0_25] [PMID: 17447434]
[146]
Wang, Q.; Zhang, X.; Chen, S.; Zhang, X.; Zhang, S.; Youdium, M.; Le, W. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener. Dis., 2011, 8(5), 310-321.
[http://dx.doi.org/10.1159/000323469] [PMID: 21346313]
[147]
Xie, Q.; Gu, Y.; Hua, Y.; Liu, W.; Keep, R.F.; Xi, G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke, 2014, 45(1), 290-292.
[http://dx.doi.org/10.1161/STROKEAHA.113.003033] [PMID: 24172580]
[148]
Yang, H. Gao, X.J.; Li, Y.J.; Su, J.B.; e, T.Z.; Zhang, X.; Ni, W.; Gu, Y.X. Minocycline reduces intracerebral hemorrhage–induced white matter injury in piglets. CNS Neurosci. Ther., 2019, 25(10), 1195-1206.
[http://dx.doi.org/10.1111/cns.13220] [PMID: 31556245]
[149]
Balami, J.S.; Buchan, A.M. Complications of intracerebral haemorrhage. Lancet Neurol., 2012, 11(1), 101-118.
[http://dx.doi.org/10.1016/S1474-4422(11)70264-2] [PMID: 22172625]
[150]
Fang, H.; Wang, P.F.; Zhou, Y.; Wang, Y.C.; Yang, Q.W. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J. Neuroinflammation, 2013, 10(1), 794.
[http://dx.doi.org/10.1186/1742-2094-10-27] [PMID: 23414417]
[151]
Chen, S.; Yang, Q.; Chen, G.; Zhang, J.H. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl. Stroke Res., 2015, 6(1), 4-8.
[http://dx.doi.org/10.1007/s12975-014-0384-4] [PMID: 25533878]
[152]
Duan, X.; Wen, Z.; Shen, H.; Shen, M.; Chen, G. Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid. Med. Cell. Longev., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/1203285] [PMID: 27190572]
[153]
Bobinger, T.; Burkardt, P.B.; Huttner, H.; Manaenko, A. Programmed cell death after intracerebral hemorrhage. Curr. Neuropharmacol., 2018, 16(9), 1267-1281.
[http://dx.doi.org/10.2174/1570159X15666170602112851] [PMID: 28571544]
[154]
Frank, M.G.; Weber, M.D.; Fonken, L.K.; Hershman, S.A.; Watkins, L.R.; Maier, S.F. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain Behav. Immun., 2016, 55, 215-224.
[http://dx.doi.org/10.1016/j.bbi.2015.10.009] [PMID: 26482581]
[155]
Minutoli, L.; Puzzolo, D.; Rinaldi, M.; Irrera, N.; Marini, H.; Arcoraci, V.; Bitto, A.; Crea, G.; Pisani, A.; Squadrito, F.; Trichilo, V.; Bruschetta, D.; Micali, A.; Altavilla, D. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis Ischemia/Reperfusion injury. Oxid. Med. Cell. Longev., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/2183026] [PMID: 27127546]
[156]
Rubartelli, A. DAMP-mediated activation of NLRP3-inflammasome in brain sterile inflammation: The fine line between healing and neurodegeneration. Front. Immunol., 2014, 5, 99.
[http://dx.doi.org/10.3389/fimmu.2014.00099] [PMID: 24672523]
[157]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[158]
Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507.
[http://dx.doi.org/10.1002/jnr.22500] [PMID: 20936692]
[159]
Li, Y.; Xu, P.; Wang, Y.; Zhang, J.; Yang, M.; Chang, Y.; Zheng, P.; Huang, H.; Cao, X. Different intensity exercise preconditions affect cardiac function of exhausted rats through regulating TXNIP/] TRX/NF-ĸBp65/NLRP3 inflammatory pathways. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/5809298] [PMID: 32595731]
[160]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213.
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[161]
Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by? -glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927.
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[162]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy