Research Article

Understanding the Molecular Mechanisms of Betel miRNAs on Human Health

Author(s): Toral Manvar, Naman Mangukia, Saumya Patel and Rakesh Rawal*

Volume 11, Issue 1, 2022

Published on: 12 May, 2022

Page: [45 - 56] Pages: 12

DOI: 10.2174/2211536611666220318142031

Price: $65

Abstract

Background: Since ancient times, "betel leaf" (Piper betle) has been revered for its religious, cultural, and medicinal properties. Phytochemicals from the Piper betle are effective in a variety of conditions, including cancer. To date, however, no genomic study or evidence has been found to elucidate the regulatory mechanism that underpins its therapeutic properties. This is the first study of its kind to predict Piper betle miRNAs and also the first genomics source representation of Piper betle. According to previous research, miRNAs from the plants we eat can regulate gene expression. In line with this, our in-silico study revealed that Piper betle and human cross-kingdom control occurs.

Methods: This study demonstrates the prediction and in-silico validation of Piper betle miRNAs from NGS-derived transcript sequences. The cross-kingdom regulation, which can also be understood as inter- species RNA regulation, was studied to identify human mRNA targets controlled by Piper betle miRNAs. Functional annotation and gene-disease association of human targets were performed to understand the role of Piper betle miRNAs in human health and disease. The protein-protein interaction and expression study of targets was further carried out to decipher their role in cancer development.

Results: Identified six Piper betle miRNAs belonging to miR156, miR164, miR172, and miR535 families were discovered to target 198 human mRNAs involved in various metabolic and disease processes. Angiogenesis and the cell surface signaling pathway were the most enriched gene ontology correlated with targets, both of which play a critical role in disease mechanisms, especially in the case of carcinoma. In an analysis of gene-disease interactions, 40 genes were found to be related to cancer. According to a protein-protein interaction, the CDK6 gene, which is thought to be a central regulator of cell cycle progression, was found as a hub protein, affecting the roles of CBFB, SAMD9, MDM4, AXIN2, and NOTCH2 oncogenes. Further investigation revealed that pbe-miRNA164a can be used as a regulator to minimise disease severity in Acute Myeloid Leukemia, where CDK6 expression is highest compared to normal cells.

Conclusion: The predicted pbe-miRNA164a in this study can be a promising suppressor of CDK6 gene involved in tumour angiogenesis. In vivo validation of the pbe-miRNA164a mimic could pave the way for new opportunities to fight cancer and leverage the potential of Piper betle in the healthcare sector.

Keywords: Piper betle, miRNAs, eukaryotic cross kingdom interaction, gene-disease association, functional analysis, cancer, protein-protein interaction network, gene expression.

Graphical Abstract
[1]
Vaucheret H, Chupeau Y. Ingested plant miRNAs regulate gene expression in animals. Cell Res 2012; 22(1): 3-5.
[http://dx.doi.org/10.1038/cr.2011.164] [PMID: 22025251]
[2]
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11): 857-66.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[3]
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259-69.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[4]
Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regula-tion by microRNA. Cell Res 2012; 22(1): 107-26.
[http://dx.doi.org/10.1038/cr.2011.158] [PMID: 21931358]
[5]
Kumar D, Kumar S, Ayachit G, et al. Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: A sys-tems biology approach. Int J Mol Sci 2017; 18(6): 1191.
[http://dx.doi.org/10.3390/ijms18061191] [PMID: 28587194]
[6]
Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018; 15(1): 1-21.
[7]
Patel M, Patel S, Mangukia N, et al. Ocimum basilicum miRNOME revisited: A cross kingdom approach. Genomics 2019; 111(4): 772-85.
[http://dx.doi.org/10.1016/j.ygeno.2018.04.016] [PMID: 29775783]
[8]
Wang Y, Peng M, Chen Y, et al. Analysis of Panax ginseng miRNAs and their target prediction based on high-throughput sequencing. Planta Med 2019; 85(14-15): 1168-76.
[http://dx.doi.org/10.1055/a-0989-7302] [PMID: 31434113]
[9]
Sanchita TR, Trivedi R, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: Cross-kingdom gene regulation. RNA Biol 2018; 15(12): 1433-9.
[http://dx.doi.org/10.1080/15476286.2018.1551693] [PMID: 30474479]
[10]
Wang W, Liu D, Zhang X, Chen D, Cheng Y, Shen F. Plant microRNAs in cross-kingdom regulation of gene expression. Int J Mol Sci 2018; 19(7): 2007.
[http://dx.doi.org/10.3390/ijms19072007] [PMID: 29996470]
[11]
Liu YC, Chen WL, Kung WH, Huang HD. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics 2017; 18(2)(Suppl. 2): 112.
[http://dx.doi.org/10.1186/s12864-017-3502-3] [PMID: 28361700]
[12]
Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26(2): 217-28.
[http://dx.doi.org/10.1038/cr.2016.13] [PMID: 26794868]
[13]
Li M, Chen T, Wang R, et al. Plant MIR156 regulates intestinal growth in mammals by targeting the Wnt/β-catenin pathway. Am J Physiol Cell Physiol 2019; 317(3): C434-48.
[http://dx.doi.org/10.1152/ajpcell.00030.2019] [PMID: 31166713]
[14]
Dwivedi V, Tripathi S. Review study on potential activity of Piper betle. J Pharmacogn Phytochem 2014; 3(4): 93-8.
[15]
Durani LW, Khor SC, Tan JK, Chua KH, Mohd Yusof YA, Makpol S. Piper betle L. modulates senescence-associated genes expression in replicative senescent human diploid fibroblasts. BioMed Res Int 2017; 2017: 6894026.
[http://dx.doi.org/10.1155/2017/6894026] [PMID: 28596968]
[16]
Bajpai V, Sharma D, Kumar B, Madhusudanan KP. Profiling of Piper betle Linn. cultivars by direct analysis in real time mass spectromet-ric technique. Biomed Chromatogr 2010; 24(12): 1283-6.
[http://dx.doi.org/10.1002/bmc.1437] [PMID: 21077247]
[17]
Ahuja SC, Ahuja U. Betel leaf and betel nut in India: History and uses. Asian Agrihist 2011; 15: 13-35.
[18]
Norton SA. Betel: consumption and consequences. J Am Acad Dermatol 1998; 38(1): 81-8.
[http://dx.doi.org/10.1016/S0190-9622(98)70543-2] [PMID: 9448210]
[19]
Das S, Parida R, Sriram Sandeep I, Nayak S, Mohanty S. Biotechnological intervention in betelvine (Piper betle L.): A review on recent advances and future prospects. Asian Pac J Trop Med 2016; 9(10): 938-46.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.029] [PMID: 27794386]
[20]
Jana BL. Gram banglar arthakari phasal-paan (In Bengali). “Betel leaf: A cash crop of villages of Bengal”. asaboni. Flat 1995; 203: 184.
[21]
Bhattacharya S, Subramanian M, Roychowdhury S, et al. Radioprotective property of the ethanolic extract of Piper betel Leaf. J Radiat Res (Tokyo) 2005; 46(2): 165-71.
[http://dx.doi.org/10.1269/jrr.46.165] [PMID: 15988134]
[22]
Gundala SR, Aneja R. Piper betel leaf: A reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties. Cancer Prev Res (Phila) 2014; 7(5): 477-86.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0355] [PMID: 24449055]
[23]
Kumar N, Misra P, Dube A, Bhattacharya S, Dikshit M, Ranade S. Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharma-cological activities and prospects for drug discovery. Curr Sci 2010; 99: 922-32.
[24]
Paranjpe R, Gundala SR, Lakshminarayana N, et al. Piper betel leaf extract: Anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management. Carcinogenesis 2013; 34(7): 1558-66.
[http://dx.doi.org/10.1093/carcin/bgt066] [PMID: 23430955]
[25]
Salehi B, Zakaria ZA, Gyawali R, et al. Piper species: A comprehensive review on their phytochemistry, biological activities and applica-tions. Molecules 2019; 24(7): 1364.
[http://dx.doi.org/10.3390/molecules24071364] [PMID: 30959974]
[26]
Chakraborty JB, Mahato SK, Joshi K, et al. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mito-chondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance. Cancer Sci 2012; 103(1): 88-99.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02107.x] [PMID: 21943109]
[27]
Guha P. Betel leaf: the neglected green gold of India. J Hum Ecol 2006; 19(2): 87-93.
[http://dx.doi.org/10.1080/09709274.2006.11905861]
[28]
Thomas SJ, MacLennan R. Slaked lime and betel nut cancer in Papua New Guinea. Lancet 1992; 340(8819): 577-8.
[http://dx.doi.org/10.1016/0140-6736(92)92109-S] [PMID: 1355157]
[29]
Toprani R, Patel D. Betel leaf: Revisiting the benefits of an ancient Indian herb. South Asian J Cancer 2013; 2(3): 140-1.
[http://dx.doi.org/10.4103/2278-330X.114120] [PMID: 24455591]
[30]
Bhide SV, Zariwala MB, Amonkar AJ, Azuine MA. Chemopreventive efficacy of a betel leaf extract against benzo[a]pyrene-induced forestomach tumors in mice. J Ethnopharmacol 1991; 34(2-3): 207-13.
[http://dx.doi.org/10.1016/0378-8741(91)90039-G] [PMID: 1795525]
[31]
Widowati W, Mozef T, Risdian C, Yellianty Y. Anticancer and free radical scavenging potency of Catharanthus roseus, Dendrophthoe petandra, Piper betle and Curcuma mangga extracts in breast cancer cell lines. Oxid Antioxid Med Sci 2013; 2(2): 137-42.
[http://dx.doi.org/10.5455/oams.100413.or.038]
[32]
Bandyopadhyay S, Roy KC, Ray M, et al. Herbal composition for treating CD33+ acute and chronic myeloid leukemia and a method thereof. United States patent US 6,852,344, 2005.
[33]
Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 2016; 11(10): e0163962.
[http://dx.doi.org/10.1371/journal.pone.0163962] [PMID: 27706213]
[34]
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114-20.
[http://dx.doi.org/10.1093/bioinformatics/btu170] [PMID: 24695404]
[35]
Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for ref-erence generation and analysis. Nat Protoc 2013; 8(8): 1494-512.
[http://dx.doi.org/10.1038/nprot.2013.084] [PMID: 23845962]
[36]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28(23): 3150-2.
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[37]
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[38]
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res 2008. 36(Web Server issue)( Suppl. 2): W70-4.
[PMID: 18424795]
[39]
Meyers BC, Axtell MJ, Bartel B, et al. Criteria for annotation of plant MicroRNAs. Plant Cell 2008; 20(12): 3186-90.
[http://dx.doi.org/10.1105/tpc.108.064311] [PMID: 19074682]
[40]
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res 2005; 15(5): 336-60.
[http://dx.doi.org/10.1038/sj.cr.7290302] [PMID: 15916721]
[41]
Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 2006; 63(2): 246-54.
[http://dx.doi.org/10.1007/s00018-005-5467-7] [PMID: 16395542]
[42]
Liu B, Fang L, Liu F, Wang X, Chen J, Chou KC. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One 2015; 10(3): e0121501.
[http://dx.doi.org/10.1371/journal.pone.0121501] [PMID: 25821974]
[43]
Krzywinski M, Schein J, Birol I, et al. Circos: An information aesthetic for comparative genomics. Genome Res 2009; 19(9): 1639-45.
[http://dx.doi.org/10.1101/gr.092759.109] [PMID: 19541911]
[44]
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44(D1): D457-62.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[45]
Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[PMID: 27924018]
[46]
Landrum MJ, Lee JM, Benson M, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018; 46(D1): D1062-7.
[http://dx.doi.org/10.1093/nar/gkx1153] [PMID: 29165669]
[47]
Apweiler R, Bairoch A, Wu CH, et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res 2004; 32(Database issue)(Suppl. 1): D115-9.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[48]
Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res 2021; 49(D1): D1138-43.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[49]
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011; 27(3): 431-2.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[50]
Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: The human gene integrator. Database (Oxford) 2010; 2010: baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[51]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(Database issue): D447-52.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[52]
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive anal-yses. Nucleic Acids Res 2017; 45(W1): W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[53]
Dezulian T, Remmert M, Palatnik JF, Weigel D, Huson DH. Identification of plant microRNA homologs. Bioinformatics 2006; 22(3): 359-60.
[http://dx.doi.org/10.1093/bioinformatics/bti802] [PMID: 16317073]
[54]
Blum M, Chang HY, Chuguransky S, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49(D1): D344-54.
[http://dx.doi.org/10.1093/nar/gkaa977] [PMID: 33156333]
[55]
Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene ex-pression. FEBS J 2005; 272(9): 2118-31.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04653.x] [PMID: 15853797]
[56]
Liang H, Zhang S, Fu Z, et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem 2015; 26(5): 505-12.
[http://dx.doi.org/10.1016/j.jnutbio.2014.12.002] [PMID: 25704478]
[57]
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 2004; 20(17): 2911-7.
[http://dx.doi.org/10.1093/bioinformatics/bth374] [PMID: 15217813]
[58]
Zeng C, Wang W, Zheng Y, et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res 2010; 38(3): 981-95.
[http://dx.doi.org/10.1093/nar/gkp1035] [PMID: 19942686]
[59]
Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 2010; 62(6): 960-76.
[PMID: 20230504]
[60]
Jia L, Zhang D, Qi X, Ma B, Xiang Z, He N. Identification of the conserved and novel miRNAs in Mulberry by high-throughput sequenc-ing. PLoS One 2014; 9(8): e104409.
[http://dx.doi.org/10.1371/journal.pone.0104409] [PMID: 25118991]
[61]
Carra A, Mica E, Gambino G, et al. Cloning and characterization of small non-coding RNAs from grape. Plant J 2009; 59(5): 750-63.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03906.x] [PMID: 19453456]
[62]
Jeong DH, Park S, Zhai J, et al. Massive analysis of rice small RNAs: Mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 2011; 23(12): 4185-207.
[http://dx.doi.org/10.1105/tpc.111.089045] [PMID: 22158467]
[63]
Zhang H, Li Y, Liu Y, et al. Role of plant MicroRNA in cross-species regulatory networks of humans. BMC Syst Biol 2016; 10(1): 60.
[http://dx.doi.org/10.1186/s12918-016-0292-1] [PMID: 27502923]
[64]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. nature 2000; 407(6801): 249-57.
[65]
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[66]
Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med 2015; 5(4): a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[67]
Shen L, Shi Q, Wang W. Double agents: Genes with both oncogenic and tumor-suppressor functions. Oncogenesis 2018; 7(3): 25.
[http://dx.doi.org/10.1038/s41389-018-0034-x] [PMID: 29540752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy