Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Obesity and Insulin Resistance: A Review of Molecular Interactions

Author(s): Habib Yaribeygi *, Mina Maleki , Thozhukat Sathyapalan , Tannaz Jamialahmadi and Amirhossein Sahebkar *

Volume 21 , Issue 3 , 2021

Published on: 12 August, 2020

Page: [182 - 193] Pages: 12

DOI: 10.2174/1566524020666200812221527

Price: $65

Abstract

The prevalence of insulin resistance and diabetes mellitus is rising globally in epidemic proportions. Diabetes and its complications contribute to significant morbidity and mortality. An increase in sedentary lifestyle and consumption of a more energydense diet increased the incidence of obesity which is a significant risk factor for type 2 diabetes. Obesity acts as a potent upstream event that promotes molecular mechanisms involved in insulin resistance and diabetes mellitus. However, the exact molecular mechanisms between obesity and diabetes are not clearly understood. In the current study, we have reviewed the molecular interactions between obesity and type 2 diabetes.

Keywords: Diabetes mellitus, obesity, oxidative stress, adipokine, adiponectin, adipocyte, Glut-4, insulin signal transduction.

[1]
Abraham TM, Pencina KM, Pencina MJ, Fox CS. Trends in diabetes incidence: the Framingham Heart Study. Diabetes Care 2015; 38(3): 482-7.
[http://dx.doi.org/10.2337/dc14-1432] [PMID: 25552418]
[2]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[3]
Al-Saeed AH, Constantino MI, Molyneaux L, et al. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: the impact of youth-onset type 2 diabetes. Diabetes Care 2016; 39(5): 823-9.
[http://dx.doi.org/10.2337/dc15-0991] [PMID: 27006511]
[4]
Chew B-H, Mohd-Sidik S, Shariff-Ghazali S. Negative effects of diabetes-related distress on health-related quality of life: an evaluation among the adult patients with type 2 diabetes mellitus in three primary healthcare clinics in Malaysia. Health Qual Life Outcomes 2015; 13(1): 187.
[http://dx.doi.org/10.1186/s12955-015-0384-4] [PMID: 26596372]
[5]
Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism 2018; 87: 48-55.
[http://dx.doi.org/10.1016/j.metabol.2018.07.001] [PMID: 30253864]
[6]
Yaribeygi H, Atkin SL, Sahebkar A. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. J Cell Physiol 2019; 234(6): 8402-10.
[http://dx.doi.org/10.1002/jcp.27754] [PMID: 30417488]
[7]
Tesauro M, Mazzotta FA. Pathophysiology of diabetesTransplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. Elsevier 2020; pp. 37-47.
[http://dx.doi.org/10.1016/B978-0-12-814833-4.00003-4]
[8]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[9]
Yki-Järvinen H, Westerbacka J. The fatty liver and insulin resistance. Curr Mol Med 2005; 5(3): 287-95.
[http://dx.doi.org/10.2174/1566524053766031] [PMID: 15892648]
[10]
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018; 98(4): 2133-223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[11]
Polsky S, Ellis SL. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2015; 22(4): 277-82.
[http://dx.doi.org/10.1097/MED.0000000000000170] [PMID: 26087341]
[12]
Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 2016; 17(6): 928.
[http://dx.doi.org/10.3390/ijms17060928] [PMID: 27304953]
[13]
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804-14.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[14]
Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013; 7(1): 14-24.
[http://dx.doi.org/10.1007/s11684-013-0262-6] [PMID: 23471659]
[15]
Hu F. Obesity epidemiology. Oxford University Press 2008.
[http://dx.doi.org/10.1093/acprof:oso/9780195312911.001.0001]
[16]
Liu Y-J, Araujo S, Recker RR, Deng HW. Molecular and genetic mechanisms of obesity: implications for future management. Curr Mol Med 2003; 3(4): 325-40.
[http://dx.doi.org/10.2174/1566524033479735] [PMID: 12776988]
[17]
Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12): 1752-61.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[18]
de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci 2018; 192: 26-32.
[http://dx.doi.org/10.1016/j.lfs.2017.11.019] [PMID: 29155300]
[19]
Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet 2016; 387(10031): 1947-56.
[http://dx.doi.org/10.1016/S0140-6736(16)00271-3] [PMID: 26868660]
[20]
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 2015; 4(3): 363-70.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[21]
De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol 2016; 22(2): 681-703.
[http://dx.doi.org/10.3748/wjg.v22.i2.681] [PMID: 26811617]
[22]
Purnell JQ. Definitions, classification, and epidemiology of obesity, in Endotext MDText com, Inc 2018.
[23]
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 2017; 376(3): 254-66.
[http://dx.doi.org/10.1056/NEJMra1514009] [PMID: 28099824]
[24]
Pi-Sunyer FX. Medical hazards of obesity. Annals of internal medicine 1993; 119(7): 655-60.
[http://dx.doi.org/10.7326/0003-4819-119-7_Part_2-199310011-00006]
[25]
Yaribeygi H, Butler AE, Sahebkar A. Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. J Cell Physiol 2019; 234(8): 12508-15.
[http://dx.doi.org/10.1002/jcp.28110] [PMID: 30623433]
[26]
Riyahi F, Yaribeygi H. Diabetes and Role of Exercise on its Control; A systematic Review Health research journal 2016; 1(2): 113-21.
[27]
White MF. Insulin signaling in health and disease. Science 2003; 302(5651): 1710-1.
[http://dx.doi.org/10.1126/science.1092952] [PMID: 14657487]
[28]
Færch K, Vistisen D, Pacini G, et al. Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation. Diabetes 2016; 65(11): 3473-81.
[http://dx.doi.org/10.2337/db16-0240] [PMID: 27504013]
[29]
Hall JE. Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences 2015.
[30]
Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol Syst Biol 2009; 5(1): 243.
[http://dx.doi.org/10.1038/msb.2008.78] [PMID: 19225456]
[31]
Ahmed Z, Smith BJ, Kotani K, Wilden P, Pillay TS. APS, an adapter protein with a PH and SH2 domain, is a substrate for the insulin receptor kinase. Biochem J 1999; 341(Pt 3): 665-8.
[http://dx.doi.org/10.1042/bj3410665] [PMID: 10417330]
[32]
De Meyts P. The insulin receptor and its signal transduction network, in Endotext MDText com, Inc 2016.
[33]
Suzuki T, Bridges D, Nakada D, et al. Inhibition of AMPK catabolic action by GSK3. Mol Cell 2013; 50(3): 407-19.
[http://dx.doi.org/10.1016/j.molcel.2013.03.022] [PMID: 23623684]
[34]
Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 2002; 277(29): 26530-9.
[http://dx.doi.org/10.1074/jbc.M201494200] [PMID: 12006586]
[35]
Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 2012.14e1
[http://dx.doi.org/10.1017/S1462399411002109] [PMID: 22233681]
[36]
Sampson SR, Cooper DR. Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89(1-2): 32-47.
[http://dx.doi.org/10.1016/j.ymgme.2006.04.017] [PMID: 16798038]
[37]
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116(7): 1784-92.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[38]
Association AD. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37(Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[39]
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840-6.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[40]
de Faria Maraschin J. Classification of diabetesDiabetes. Springer 2013; pp. 12-9.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_2]
[41]
O’Neal KS, Johnson JL, Panak RL. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr 2016; 29(4): 249-52.
[http://dx.doi.org/10.2337/ds15-0047] [PMID: 27899877]
[42]
Ganjali S, Sahebkar A, Mahdipour E, et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. The ScientificWorldJournal 2014.
[http://dx.doi.org/10.1155/2014/898361]
[43]
Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 2013; 27(3): 374-9.
[http://dx.doi.org/10.1002/ptr.4715] [PMID: 22610853]
[44]
Panahi Y, Hosseini MS, Khalili N, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother 2016; 82: 578-82.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037] [PMID: 27470399]
[45]
Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J 2016; 283(14): 2640-52.
[http://dx.doi.org/10.1111/febs.13598] [PMID: 26587781]
[46]
Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008; 29(1): 42-61.
[http://dx.doi.org/10.1210/er.2007-0015] [PMID: 18048764]
[47]
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 2016; 17(3): 327.
[http://dx.doi.org/10.3390/ijms17030327] [PMID: 26950115]
[48]
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica 2012.
[http://dx.doi.org/10.6064/2012/857516]
[49]
Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 2010; 107(5): 579-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225698] [PMID: 20814028]
[50]
Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012; 18(1): 59-68.
[http://dx.doi.org/10.1016/j.molmed.2011.07.010] [PMID: 21889406]
[51]
Panzhinskiy E, Hua Y, Culver B, Ren J, Nair S. Endoplasmic reticulum stress upregulates protein tyrosine phosphatase 1B and impairs glucose uptake in cultured myotubes. Diabetologia 2013; 56(3): 598-607.
[http://dx.doi.org/10.1007/s00125-012-2782-z] [PMID: 23178931]
[52]
Özcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306(5695): 457-61.
[http://dx.doi.org/10.1126/science.1103160] [PMID: 15486293]
[53]
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333-6.
[http://dx.doi.org/10.1038/nature01137] [PMID: 12447443]
[54]
Jiao P, Ma J, Feng B, et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways. Obesity (Silver Spring) 2011; 19(3): 483-91.
[http://dx.doi.org/10.1038/oby.2010.200] [PMID: 20829802]
[55]
Hotamisligil GS. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes 2008; 32(7)(Suppl. 7): S52-4.
[http://dx.doi.org/10.1038/ijo.2008.238] [PMID: 19136991]
[56]
Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016; 65(9): 1238-46.
[http://dx.doi.org/10.1016/j.metabol.2016.05.002] [PMID: 27506731]
[57]
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018; 19(6): 770-85.
[http://dx.doi.org/10.1111/obr.12673] [PMID: 29514392]
[58]
Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005; 37(8): 1595-608.
[http://dx.doi.org/10.1016/j.biocel.2005.04.003] [PMID: 15878838]
[59]
Kodama Y, Brenner DA. c-Jun N-terminal kinase signaling in the pathogenesis of nonalcoholic fatty liver disease: Multiple roles in multiple steps. Hepatology 2009; 49(1): 6-8.
[http://dx.doi.org/10.1002/hep.22710] [PMID: 19111006]
[60]
Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 2005; 54(Suppl. 2): S73-8.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S73] [PMID: 16306344]
[61]
Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2012; 2: 799.
[http://dx.doi.org/10.1038/srep00799] [PMID: 23150771]
[62]
Park EC, Kim SI, Hong Y, et al. Inhibition of CYP4A reduces hepatic endoplasmic reticulum stress and features of diabetes in mice. Gastroenterology 2014; 147(4): 860-9.
[http://dx.doi.org/10.1053/j.gastro.2014.06.039] [PMID: 24983671]
[63]
Liang L, Chen J, Zhan L, et al. Endoplasmic reticulum stress impairs insulin receptor signaling in the brains of obese rats. PLoS One 2015; 10(5): e0126384.
[http://dx.doi.org/10.1371/journal.pone.0126384] [PMID: 25978724]
[64]
Kim O-K, Jun W, Lee J. Mechanism of ER stress and inflammation for hepatic insulin resistance in obesity. Ann Nutr Metab 2015; 67(4): 218-27.
[http://dx.doi.org/10.1159/000440905] [PMID: 26452040]
[65]
Yaribeygi H, Mohammadi MT, Sahebkar A. PPAR-α agonist improves hyperglycemia-induced oxidative stress in pancreatic cells by potentiating antioxidant defense system. Drug Res (Stuttg) 2018; 68(6): 355-60.
[http://dx.doi.org/10.1055/s-0043-121143] [PMID: 29433142]
[66]
Yaribeygi H, Faghihi N, Mohammadi MT, Sahebkar A. Effects of atorvastatin on myocardial oxidative and nitrosative stress in diabetic rats. Comp Clin Pathol 2018; 27(3): 691-7.
[http://dx.doi.org/10.1007/s00580-018-2652-2]
[67]
Yaribeygi H, Mohammadi MT, Sahebkar A. Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomed Pharmacother 2018; 98: 333-7.
[http://dx.doi.org/10.1016/j.biopha.2017.12.077] [PMID: 29274590]
[68]
Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: a mechanistic review CNS Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS Neurological Disorders) 2018; 17(3): 207-15.
[http://dx.doi.org/10.2174/1871527317666180425122557]
[69]
Yaribeygi H, Mohammadi MT, Rezaee R, Sahebkar A. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J Cell Biochem 2018; 119(7): 6080-93.
[http://dx.doi.org/10.1002/jcb.26806] [PMID: 29575259]
[70]
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6(3): 456-80.
[http://dx.doi.org/10.4239/wjd.v6.i3.456] [PMID: 25897356]
[71]
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50(5): 567-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[72]
Yaribeygi H, Zare V, Butler AE, Barreto GE, Sahebkar A. Antidiabetic potential of saffron and its active constituents. J Cell Physiol 2019; 234(6): 8610-7.
[http://dx.doi.org/10.1002/jcp.27843] [PMID: 30515777]
[73]
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 2016; 24(5): 547-53.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[74]
Muñoz M, López-Oliva ME, Rodríguez C, et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol 2020.28101330
[http://dx.doi.org/10.1016/j.redox.2019.101330] [PMID: 31563085]
[75]
Den Hartigh LJ, Omer M, Goodspeed L, et al. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity. Arterioscler Thromb Vasc Biol 2017; 37(3): 466-75.
[http://dx.doi.org/10.1161/ATVBAHA.116.308749] [PMID: 28062496]
[76]
Chan P-C, Hsiao FC, Chang HM, Wabitsch M, Hsieh PS. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J 2016; 30(6): 2282-97.
[http://dx.doi.org/10.1096/fj.201500127] [PMID: 26932930]
[77]
Lieb DC, Brotman JJ, Hatcher MA, et al. Adipose tissue 12/15 lipoxygenase pathway in human obesity and diabetes. J Clin Endocrinol Metab 2014; 99(9): E1713-20.
[http://dx.doi.org/10.1210/jc.2013-4461] [PMID: 24955608]
[78]
Neels JG. A role for 5-lipoxygenase products in obesity-associated inflammation and insulin resistance. Adipocyte 2013; 2(4): 262-5.
[http://dx.doi.org/10.4161/adip.24835] [PMID: 24052903]
[79]
Tomankova V, Anzenbacher P, Anzenbacherova E. Effects of obesity on liver cytochromes P450 in various animal models Biomedical Papers of the Medical Faculty of Palacky University in Olomouc 2017; 161(2)
[http://dx.doi.org/10.5507/bp.2017.026]
[80]
Klisic A, Aleksandra K, Gordana K, et al. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population. Eat Weight Disord 2018; 25(1): 9-15.
[PMID: 29470797]
[81]
An H, Du X, Huang X, et al. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl Psychiatry 2018; 8(1): 258.
[http://dx.doi.org/10.1038/s41398-018-0303-7] [PMID: 30498208]
[82]
Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract 2015; 24(3): 201-15.
[http://dx.doi.org/10.1159/000375305] [PMID: 25791371]
[83]
Mohseni R, Arab Sadeghabadi Z, Goodarzi MT, Teimouri M, Nourbakhsh M, Razzaghy Azar M. Evaluation of Mn-superoxide dismutase and catalase gene expression in childhood obesity: its association with insulin resistance. J Pediatr Endocrinol Metab 2018; 31(7): 727-32.
[http://dx.doi.org/10.1515/jpem-2017-0322] [PMID: 29953407]
[84]
Dooley J, Tian L, Schonefeldt S, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 2016; 48(5): 519-27.
[http://dx.doi.org/10.1038/ng.3531] [PMID: 26998692]
[85]
Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004; 53(Suppl. 3): S16-21.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S16] [PMID: 15561905]
[86]
Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus Antioxidants redox signaling 2017; 26(10): 501-18.
[http://dx.doi.org/10.1089/ars.2016.6755]
[87]
Weir GC, Bonner-Weir S. Glucose driven changes in beta cell identity are important for function and possibly autoimmune vulnerability during the progression of type 1 diabetes. Front Genet 2017; 8: 2.
[http://dx.doi.org/10.3389/fgene.2017.00002] [PMID: 28174593]
[88]
Lupi R, Del Prato S. β-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes Metab 2008; 34(Suppl. 2): S56-64.
[http://dx.doi.org/10.1016/S1262-3636(08)73396-2] [PMID: 18640587]
[89]
Tersey SA, Levasseur EM, Syed F, et al. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice. FASEB J 2018; 32(11)
[http://dx.doi.org/10.1096/fj.201800150RR] [PMID: 29812970]
[90]
Pepin É, Al-Mass A, Attané C, et al. Pancreatic β-cell dysfunction in diet-induced obese mice: roles of AMP-kinase, protein kinase Cε, mitochondrial and cholesterol metabolism, and alterations in gene expression. PLoS One 2016; 11(4): e0153017.
[http://dx.doi.org/10.1371/journal.pone.0153017] [PMID: 27043434]
[91]
Kevin NK, Vinicius FC, Rodrigo C. Paulo Ivo Homem de B Jr, Philip N. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev 2015; 2015: 181643.
[http://dx.doi.org/10.1155/2015/181643]
[92]
Galassetti P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxidative medicine and cellular longevity 2012.
[http://dx.doi.org/10.1155/2012/943706]
[93]
Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol 2016; 56(2): R33-54.
[http://dx.doi.org/10.1530/JME-15-0232] [PMID: 26576641]
[94]
Rakshit K, Hsu TW, Matveyenko AV. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia 2016; 59(4): 734-43.
[http://dx.doi.org/10.1007/s00125-015-3859-2] [PMID: 26762333]
[95]
Cox AR, Lam CJ, Rankin MM, et al. Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia 2016; 59(6): 1231-41.
[http://dx.doi.org/10.1007/s00125-016-3922-7] [PMID: 27003683]
[96]
Saisho Y, et al. Does beta cell mass adaptively increase in response to obesity in humans? Diabetes 2007; 56.
[97]
Yamamoto J, Imai J, Izumi T, et al. Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism. Nat Commun 2017; 8(1): 1930.
[http://dx.doi.org/10.1038/s41467-017-01869-7] [PMID: 29208957]
[98]
Inaishi J, Saisho Y, Sato S, et al. Effects of obesity and diabetes on α-and β-cell mass in surgically resected human pancreas. J Clin Endocrinol Metab 2016; 101(7): 2874-82.
[http://dx.doi.org/10.1210/jc.2016-1374] [PMID: 27070277]
[99]
Linnemann AK, Baan M, Davis DB. Pancreatic β-cell proliferation in obesity. Adv Nutr 2014; 5(3): 278-88.
[http://dx.doi.org/10.3945/an.113.005488] [PMID: 24829474]
[100]
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-7.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[101]
Montgomery MK. Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe? Biology (Basel) 2019; 8(2): 33.
[http://dx.doi.org/10.3390/biology8020033] [PMID: 31083560]
[102]
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[103]
Patti M-E, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 2010; 31(3): 364-95.
[http://dx.doi.org/10.1210/er.2009-0027] [PMID: 20156986]
[104]
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316(2): E268-85.
[http://dx.doi.org/10.1152/ajpendo.00314.2018] [PMID: 30601700]
[105]
Qi W, Keenan HA, Li Q, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 2017; 23(6): 753-62.
[http://dx.doi.org/10.1038/nm.4328] [PMID: 28436957]
[106]
Tien T, Zhang J, Muto T, Kim D, Sarthy VP, Roy S. High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 2017; 58(7): 2915-21.
[http://dx.doi.org/10.1167/iovs.16-21355] [PMID: 28586916]
[107]
Kowluru RA, Mishra M. Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Expert Opin Ther Targets 2018; 22(3): 233-45.
[http://dx.doi.org/10.1080/14728222.2018.1439921] [PMID: 29436254]
[108]
Sa-Nguanmoo P, Tanajak P, Kerdphoo S, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol 2017; 333: 43-50.
[http://dx.doi.org/10.1016/j.taap.2017.08.005] [PMID: 28807765]
[109]
Lahera V, de Las Heras N, López-Farré A, Manucha W, Ferder L. Role of mitochondrial dysfunction in hypertension and obesity. Curr Hypertens Rep 2017; 19(2): 11.
[http://dx.doi.org/10.1007/s11906-017-0710-9] [PMID: 28233236]
[110]
Heo J-W, No MH, Park DH, et al. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle. Korean J Physiol Pharmacol 2017; 21(6): 567-77.
[http://dx.doi.org/10.4196/kjpp.2017.21.6.567] [PMID: 29200899]
[111]
Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005; 54(1): 8-14.
[http://dx.doi.org/10.2337/diabetes.54.1.8] [PMID: 15616005]
[112]
Putti R, Migliaccio V, Sica R, Lionetti L. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source. Front Physiol 2016; 6: 426.
[http://dx.doi.org/10.3389/fphys.2015.00426] [PMID: 26834644]
[113]
Dai W, Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front Endocrinol (Lausanne) 2019; 10: 570.
[http://dx.doi.org/10.3389/fendo.2019.00570] [PMID: 31551926]
[114]
Constantin-Teodosiu D, Constantin D, Pelsers MM. Mitochondrial DNA copy number associates with insulin sensitivity and aerobic capacity, and differs between sedentary, overweight middle-aged males with and without type 2 diabetes. Int J Obes 2019; 44(4): 929-36.
[PMID: 31641211]
[115]
Wang CH, Wang CC, Huang HC, Wei YH. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J 2013; 280(4): 1039-50.
[http://dx.doi.org/10.1111/febs.12096] [PMID: 23253816]
[116]
Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H. Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinol Metab Clin North Am 2008; 37(3): 713-31.
[http://dx.doi.org/10.1016/j.ecl.2008.06.006] [PMID: 18775360]
[117]
Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diab Rep 2008; 8(3): 173-8.
[http://dx.doi.org/10.1007/s11892-008-0030-1] [PMID: 18625112]
[118]
Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 2013; 9(2): 191-200.
[http://dx.doi.org/10.5114/aoms.2013.33181] [PMID: 23671428]
[119]
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234(10): 16987-97.
[http://dx.doi.org/10.1002/jcp.28420] [PMID: 30825205]
[120]
Conde J, Scotece M, Gómez R, et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 2011; 37(6): 413-20.
[http://dx.doi.org/10.1002/biof.185] [PMID: 22038756]
[121]
Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 2006; 186(1): 5-16.
[http://dx.doi.org/10.1111/j.1748-1716.2005.01502.x] [PMID: 16497175]
[122]
Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med 2008; 14(11-12): 741-51.
[http://dx.doi.org/10.2119/2008-00058.Rabe] [PMID: 19009016]
[123]
Permana PA, Menge C, Reaven PD. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 2006; 341(2): 507-14.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.012] [PMID: 16427608]
[124]
Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116(6): 1494-505.
[http://dx.doi.org/10.1172/JCI26498] [PMID: 16691291]
[125]
López-Jaramillo P, Gómez-Arbeláez D, López-López J, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig 2014; 18(1): 37-45.
[http://dx.doi.org/10.1515/hmbci-2013-0053] [PMID: 25389999]
[126]
Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm (Lond) 2018; 15(1): 9.
[http://dx.doi.org/10.1186/s12950-018-0185-8] [PMID: 29760587]
[127]
ZENG. J. and G.-Y. YANG. Recent advances in the study of the relationship and mechanism between the adipocytokines and insulin resistance. J Chengdu Med Coll 2011; 1: 029.
[128]
Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(5): 367-77.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[129]
Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN inflammation 2013.
[http://dx.doi.org/10.1155/2013/139239]
[130]
Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 2004; 15(11): 2792-800.
[http://dx.doi.org/10.1097/01.ASN.0000141966.69934.21] [PMID: 15504932]
[131]
Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes 2015; 6(15): 1296-308.
[http://dx.doi.org/10.4239/wjd.v6.i15.1296] [PMID: 26557957]
[132]
Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 2016; 23(1): 87.
[http://dx.doi.org/10.1186/s12929-016-0303-y] [PMID: 27912756]
[133]
Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006; 74: 443-77.
[http://dx.doi.org/10.1016/S0083-6729(06)74018-3] [PMID: 17027526]
[134]
Denis GV, Sebastiani P, Andrieu G, et al. Relationships among obesity, Type 2 diabetes, and plasma cytokines in African American Women. Obesity (Silver Spring) 2017; 25(11): 1916-20.
[http://dx.doi.org/10.1002/oby.21943] [PMID: 28840653]
[135]
Rakotoarivelo V, Lacraz G, Mayhue M, et al. Inflammatory cytokine profiles in visceral and subcutaneous adipose tissues of obese patients undergoing bariatric surgery reveal lack of correlation with obesity or diabetes. EBioMedicine 2018; 30: 237-47.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.004] [PMID: 29548899]
[136]
Kang YE, Kim JM, Joung KH, et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 2016; 11(4)e0154003
[http://dx.doi.org/10.1371/journal.pone.0154003] [PMID: 27101398]
[137]
Kahn BB, Pedersen O. Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 1993; 132(1): 13-22.
[http://dx.doi.org/10.1210/endo.132.1.8419118] [PMID: 8419118]
[138]
Atkinson BJ, Griesel BA, King CD, Josey MA, Olson AL. Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes 2013; 62(7): 2249-58.
[http://dx.doi.org/10.2337/db12-1146] [PMID: 23474483]
[139]
MacLaren R, Cui W, Simard S, Cianflone K. Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue. J Lipid Res 2008; 49(2): 308-23.
[http://dx.doi.org/10.1194/jlr.M700199-JLR200] [PMID: 17986714]
[140]
Kovacs P, Hanson RL, Lee YH, et al. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians. Diabetes 2003; 52(12): 3005-9.
[http://dx.doi.org/10.2337/diabetes.52.12.3005] [PMID: 14633864]
[141]
Seraphim PM, Nunes MT, Machado UF. GLUT4 protein expression in obese and lean 12-month-old rats: insights from different types of data analysis. Braz J Med Biol Res 2001; 34(10): 1353-62.
[http://dx.doi.org/10.1590/S0100-879X2001001000018] [PMID: 11593313]
[142]
Saravani R, Nafiseh N, Hamid RG. Association of perilipin and insulin receptor substrate-1 genes polymorphism with lipid profiles, central obesity, and type 2 diabetes in a sample of an Iranian population. Iran Red Crescent Med J 2017; 19(6): e55100.
[http://dx.doi.org/10.5812/ircmj.55100]
[143]
Kubota N, Kubota T, Kajiwara E, et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun 2016; 7: 12977.
[http://dx.doi.org/10.1038/ncomms12977] [PMID: 27708333]
[144]
Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018; 14(11): 1483-96.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[145]
Wu Y, Zhang Z, Liao X, Qi L, Liu Y, Wang Z. Effect of high-fat diet-induced obesity on the Akt/FoxO/Smad signaling pathway and the follicular development of the mouse ovary. Mol Med Rep 2016; 14(4): 3894-900.
[http://dx.doi.org/10.3892/mmr.2016.5671] [PMID: 27574010]
[146]
Bougnères P. Genetics of obesity and type 2 diabetes: tracking pathogenic traits during the predisease period. Diabetes 2002; 51(Suppl. 3): S295-303.
[http://dx.doi.org/10.2337/diabetes.51.2007.S295] [PMID: 12475766]
[147]
McCormack S, Grant SF. Genetics of obesity and type 2 diabetes in African. Am J Obes 2013.
[http://dx.doi.org/10.1155/2013/396416]
[148]
Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 2016; 118(11): 1723-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306825] [PMID: 27230638]
[149]
Ingelsson E, McCarthy MI. Human genetics of obesity and type 2 diabetes mellitus: past, present, and future. Circulation. Circ Genom Precis Med 2018; 11(6): e002090.
[http://dx.doi.org/10.1161/CIRCGEN.118.002090] [PMID: 29899044]
[150]
Basile KJ, Matthew EJ, Qianghua X. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies. Int J Endocrinol 2014.
[http://dx.doi.org/10.1155/2014/769671]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy