Perspective Article

代谢油墨乳酸调节表观瘤环境:致癌过程中肿瘤微环境和大环境的协调作用。

卷 21, 期 3, 2021

发表于: 21 May, 2020

页: [177 - 181] 页: 5

弟呕挨: 10.2174/1566524020666200521075252

摘要

肿瘤异质性受多种因素影响,包括遗传,表观遗传和代谢表观基因调控的轴。近年来,代谢表观基因组重编程已被认为是许多肿瘤的标志之一,它似乎受微观环境和宏观环境因素(包括饮食,微生物群和环境压力)的驱动。从表观上看,组蛋白赖氨酸残基可通过各种翻译后修饰(PTM)进行修饰,例如乙酰化,酰化,甲基化和乳化。此外,建议将乳酸化作为PTM的一种新形式,该形式使用乳酸底物作为表观遗传组蛋白重组组蛋白的代谢油墨。因此,需要进行临床前和临床尝试来破坏代谢表观基因组重编程的途径,该途径会将促肿瘤微环境转变为抗肿瘤微环境。本文重点介绍了肿瘤微环境中的代谢表观基因调控事件,包括乳糖化及其代谢底物乳酸。

关键词: 代谢物,表观基因组,癌症,微环境,饮食,乳酸。

Next »
[1]
Al-Zoughbi W, Huang J, Paramasivan GS, et al. Tumor macroenvironment and metabolism. Semin Oncol 2014; 41(2): 281-95.
[http://dx.doi.org/10.1053/j.seminoncol.2014.02.005] [PMID: 24787299]
[2]
O’Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 2016; 13(12): 691-706.
[http://dx.doi.org/10.1038/nrgastro.2016.165] [PMID: 27848961]
[3]
Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[4]
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017; 14(1): 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[5]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Nilendu P, Sarode SC, Jahagirdar D, et al. Mutual concessions and compromises between stromal cells and cancer cells: driving tumor development and drug resistance. Cell Oncol (Dordr) 2018; 41(4): 353-67.
[http://dx.doi.org/10.1007/s13402-018-0388-2] [PMID: 30027403]
[7]
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating non-cellular components of microenvironmental heterogeneity: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19(1): 3-12.
[http://dx.doi.org/10.1080/15384047.2017.1394538] [PMID: 29219656]
[8]
Lebelo MT, Joubert AM, Visagie MH. Warburg effect and its role in tumourigenesis. Arch Pharm Res 2019; 42(10): 833-47.
[http://dx.doi.org/10.1007/s12272-019-01185-2] [PMID: 31473944]
[9]
Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013; 153(1): 56-69.
[http://dx.doi.org/10.1016/j.cell.2013.03.004] [PMID: 23540690]
[10]
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016; 17(8): 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[11]
Su XB, Pillus L. Functions for diverse metabolic activities in heterochromatin. Proc Natl Acad Sci USA 2016; 113(11): E1526-35.
[http://dx.doi.org/10.1073/pnas.1518707113] [PMID: 26936955]
[12]
Tran TQ, Lowman XH, Kong M. Molecular Pathways: Metabolic Control of Histone Methylation and Gene Expression in Cancer. Clin Cancer Res 2017; 23(15): 4004-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2506] [PMID: 28404599]
[13]
Wong CC, Qian Y, Yu J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36(24): 3359-74.
[http://dx.doi.org/10.1038/onc.2016.485] [PMID: 28092669]
[14]
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2017; 18(2): 90-101.
[http://dx.doi.org/10.1038/nrm.2016.140] [PMID: 27924077]
[15]
Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol 2018; 217(7): 2247-59.
[http://dx.doi.org/10.1083/jcb.201803061] [PMID: 29760106]
[16]
Trefely S, Doan MT, Snyder NW. Crosstalk between cellular metabolism and histone acetylation. Methods Enzymol 2019; 626: 1-21.
[http://dx.doi.org/10.1016/bs.mie.2019.07.013] [PMID: 31606071]
[17]
Kulkarni RA, Montgomery DC, Meier JL. Epigenetic regulation by endogenous metabolite pharmacology. Curr Opin Chem Biol 2019; 51: 30-9.
[http://dx.doi.org/10.1016/j.cbpa.2019.02.002] [PMID: 30884380]
[18]
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019; 574(7779): 575-80.
[http://dx.doi.org/10.1038/s41586-019-1678-1] [PMID: 31645732]
[19]
Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol 2020.101454101454
[http://dx.doi.org/10.1016/j.redox.2020.101454] [PMID: 32113910]
[20]
Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem Biol 2020; 27(2): 206-213.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.11.005] [PMID: 31767537]
[21]
Liberti MV, Locasale JW. Histone Lactylation: A New Role for Glucose Metabolism. Trends Biochem Sci 2020; 45(3): 179-82.
[http://dx.doi.org/10.1016/j.tibs.2019.12.004] [PMID: 31901298]
[22]
Hardbower DM, Asim M, Luis PB, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci USA 2017; 114(5): E751-60.
[http://dx.doi.org/10.1073/pnas.1614958114] [PMID: 28096401]
[23]
Singh K, Coburn LA, Asim M, et al. Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 2018; 78(15): 4303-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0116] [PMID: 29853605]
[24]
Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016; 354(6311): 481-4.
[http://dx.doi.org/10.1126/science.aaf6284] [PMID: 27708054]
[25]
Wang Z, Yip LY, Lee JHJ, et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 2019; 25(5): 825-37.
[http://dx.doi.org/10.1038/s41591-019-0423-5] [PMID: 31061538]
[26]
Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 2016; 41(5): 460-71.
[http://dx.doi.org/10.1016/j.tibs.2016.02.003] [PMID: 26935843]
[27]
Carrer A, Parris JL, Trefely S, et al. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J Biol Chem 2017; 292(8): 3312-22.
[http://dx.doi.org/10.1074/jbc.M116.750620] [PMID: 28077572]
[28]
Nordgren KK, Skildum AJ. The deep end of the metabolite pool: influences on epigenetic regulatory mechanisms in cancer. Eur J Clin Invest 2015; 45(Suppl. 1): 9-15.
[http://dx.doi.org/10.1111/eci.12361] [PMID: 25524581]
[29]
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559-63.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
[30]
Vinasco K, Mitchell HM, Kaakoush NO, Castaño-Rodríguez N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1872(2)188309
[http://dx.doi.org/10.1016/j.bbcan.2019.07.004] [PMID: 31394110]
[31]
Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. eLife 2019.8e50663
[http://dx.doi.org/10.7554/eLife.50663] [PMID: 31663852]
[32]
Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000; 60(4): 916-21.
[PMID: 10706105]
[33]
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496(7444): 238-42.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[34]
Sciacovelli M, Gonçalves E, Johnson TI, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016; 537(7621): 544-7.
[http://dx.doi.org/10.1038/nature19353] [PMID: 27580029]
[35]
Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 2016; 7: 11960.
[http://dx.doi.org/10.1038/ncomms11960] [PMID: 27357947]
[36]
Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. J Biol Chem 2016; 291(38): 20188-97.
[http://dx.doi.org/10.1074/jbc.M116.738799] [PMID: 27510037]
[37]
Chisolm DA, Weinmann AS. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annu Rev Immunol 2018; 36: 221-46.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053127] [PMID: 29328786]
[38]
Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518(7539): 413-6.
[http://dx.doi.org/10.1038/nature13981] [PMID: 25487152]

© 2024 Bentham Science Publishers | Privacy Policy