Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Cannabidiol Partially Blocks the Excessive Sleepiness in Hypocretindeficient Rats: Preliminary Data

Author(s): Eric Murillo-Rodríguez*, Diana Millán-Aldaco, Marcela Palomero-Rivero, Daniela Morales-Lara, Raphael Mechoulam and René Drucker-Colín

Volume 18, Issue 9, 2019

Page: [705 - 712] Pages: 8

DOI: 10.2174/1871527318666191021143300

Price: $65

conference banner
Abstract

Background: Excessive daytime sleepiness and cataplexy are among the symptoms of narcolepsy, a sleep disorder caused by the loss of hypocretin/orexin (HCRT/OX) neurons placed into the Hypothalamus (LH). Several treatments for managing narcolepsy include diverse drugs to induce alertness, such as antidepressants, amphetamine, or modafinil, etc. Recent evidence has shown that cannabidiol (CBD), a non-psychotropic derived from Cannabis sativa, shows positive therapeutic effects in neurodegenerative disorders, including Parkinson´s disease. Furthermore, CBD provokes alertness and enhances wake-related neurochemicals in laboratory animals. Thus, it is plausible to hypothesize that excessive somnolence observed in narcolepsy might be blocked by CBD.

Objective: Here, we determined whether the systemic injection of CBD (5mg/kg, i.p.) would block the excessive sleepiness in a narcoleptic model.

Methods: To test this idea, the neurotoxin hypocretin-2-saporin (HCRT2/SAP) was bilaterally injected into the LH of rats to eliminate HCRT leading to the establishment of narcoleptic-like behavior. Since excessive somnolence in HCRT2/SAP lesioned rats has been observed during the lights-off period, CBD was administered at the beginning of the dark phase.

Results: Hourly analysis of sleep data showed that CBD blocked the sleepiness during the lights-off period across 7h post-injection in lesioned rats.

Conclusion: Taking together, these preliminary findings suggest that CBD might prevent sleepiness in narcolepsy.

Keywords: Cannabidiol, lateral hypothalamus, narcolepsy, rapid eye movement sleep, hypocretin-deficient rats, neurodegenerative disorder.

Graphical Abstract
[1]
Pavlova KM, Latreille V. Sleep disorders. Am J Med 2019; 132(3): 292-9.
[http://dx.doi.org/10.1016/j.amjmed.2018.09.021] [PMID: 30292731]
[2]
Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019; 20(2): 83-93.
[http://dx.doi.org/10.1038/s41583-018-0097-x] [PMID: 30546103]
[3]
Miyagawa T, Tokunaga K. Genetics of narcolepsy. Hum Genome Var 2019; 6(1): 4.
[4]
Mignot EJM. History of narcolepsy at Stanford University. Immunol Res 2014; 58(2-3): 315-39.
[http://dx.doi.org/10.1007/s12026-014-8513-4] [PMID: 24825774]
[5]
Chow M, Cao M. The hypocretin/orexin system in sleep disorders: Preclinical insights and clinical progress. Nat Sci Sleep 2016; 8: 81-6.
[PMID: 27051324]
[6]
Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev 2019; 43: 23-36.
[http://dx.doi.org/10.1016/j.smrv.2018.09.006] [PMID: 30503715]
[7]
Gerashchenko D, Kohls MD, Greco M, et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci 2001; 21(18): 7273-83.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07273.2001] [PMID: 11549737]
[8]
Golden EC, Lipford MC. Narcolepsy: Diagnosis and management. Cleve Clin J Med 2018; 85(12): 959-69.
[http://dx.doi.org/10.3949/ccjm.85a.17086] [PMID: 30526757]
[9]
Sakai N, Matsumura M, Lin L, Mignot E, Nishino S. HPLC analysis of CSF hypocretin-1 in type 1 and 2 narcolepsy. Sci Rep 2019; 9(1): 477.
[http://dx.doi.org/10.1038/s41598-018-36942-8] [PMID: 30679597]
[10]
Sagawa Y, Sato M, Sakai N, et al. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice. Neuropharmacology 2016; 110(Pt A): 268-76.
[11]
Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ. Hypocretin-2 saporin lesions of the Ventrolateral Peri-Aquaductal Gray (VLPAG) increase rem sleep in hypocretin knockout mice. PLoS One 2009; 4(7) e6346
[12]
Morse AM, Kelly-Pieper K, Kothare SV. Management of excessive daytime sleepiness in narcolepsy with baclofen. Pediatr Neurol 2019; 93: 39-42.
[PMID: 30595352]
[13]
Nepovimova E, Janockova J, Misik J, et al. Orexin supplementation in narcolepsy treatment: A review. Med Res Rev 2018; 39(3): 961-75.
[PMID: 30426515]
[14]
Thorpy MJ, Shapiro C, Mayer G, et al. A randomized study of solriamfetol for excessive sleepiness in narcolepsy. Ann Neurol 2019; 85(3): 359-70.
[http://dx.doi.org/10.1002/ana.25423] [PMID: 30694576]
[15]
Romaguera A, Torrens M, Papaseit E, Arellano AL, Farré M. Concurrent use of cannabis and alcohol: Neuropsychiatric effect consequences. CNS Neurol Disord Drug Targets 2017; 16(5): 592-7.
[http://dx.doi.org/10.2174/1871527316666170419161839] [PMID: 28440194]
[16]
Busardò FP, Pellegrini M, Klein J, di Luca NM. Neurocognitive correlates in driving under the influence of cannabis. CNS Neurol Disord Drug Targets 2017; 16(5): 534-40.
[http://dx.doi.org/10.2174/1871527316666170424115455] [PMID: 28440193]
[17]
De Luca MA, Di Chiara G, Cadoni C, et al. Cannabis; epidemiological, neurobiological and psychopathological issues: An update. CNS Neurol Disord Drug Targets 2017; 16(5): 598-609.
[http://dx.doi.org/10.2174/1871527316666170413113246] [PMID: 28412916]
[18]
Biswas P, Mishra P, Bose D, Durgbanshi A. Cannabis: A neurological remedy or a drug of abuse in India. CNS Neurol Disord Drug Targets 2017; 16(5): 576-84.
[http://dx.doi.org/10.2174/1871527316666170424115008] [PMID: 28440191]
[19]
Mannucci C, Navarra M, Calapai F, et al. Neurological aspects of medical use of cannabidiol. CNS Neurol Disord Drug Targets 2017; 16(5): 541-53.
[http://dx.doi.org/10.2174/1871527316666170413114210] [PMID: 28412918]
[20]
Peres FF, Diana MC, Levin R, et al. Cannabidiol administered during peri-adolescence prevents behavioral abnormalities in an animal model of schizophrenia. Front Pharmacol 2018; 9: 901.
[http://dx.doi.org/10.3389/fphar.2018.00901] [PMID: 30186164]
[21]
Scherma M, Masia P, Deidda M, Fratta W, Tanda G, Fadda P. New perspectives on the use of cannabis in the treatment of psychiatric disorders. Medicines (Basel) 2018; 5(4): 107.
[http://dx.doi.org/10.3390/medicines5040107] [PMID: 30279403]
[22]
Billakota S, Devinsky O, Marsh E. Cannabinoid therapy in epilepsy. Curr Opin Neurol 2019; 32(2): 220-6.
[http://dx.doi.org/10.1097/WCO.0000000000000660] [PMID: 30676535]
[23]
Patra PH, Barker-Haliski M, White HS, et al. Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia 2019; 60(2): 303-14.
[http://dx.doi.org/10.1111/epi.14629] [PMID: 30588604]
[24]
Barchel D, Stolar O, De-Haan T, et al. Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and co-morbidities. Front Pharmacol 2019; 9: 1521.
[http://dx.doi.org/10.3389/fphar.2018.01521] [PMID: 30687090]
[25]
Poleg S, Golubchik P, Offen D, Weizman A. Cannabidiol as a suggested candidate for treatment of autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89: 90-6.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.030] [PMID: 30171992]
[26]
Mechoulam R, Peters M, Murillo-Rodríguez E, Hanus LO. Cannabidiol-recent advances. Chem Biodivers 2007; 4(8): 1678-92.
[27]
Murillo-Rodríguez E, Sarro-Ramírez A, Sánchez D, et al. Potential effects of cannabidiol as a wake-promoting agent. Curr Neuropharmacol 2014; 12(3): 269-72.
[http://dx.doi.org/10.2174/1570159X11666131204235805]
[28]
Murillo-Rodríguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S. An overview of the clinical uses, pharmacology, and safety of modafinil. ACS Chem Neurosci 2018; 9(2): 151-8.
[http://dx.doi.org/10.1021/acschemneuro.7b00374] [PMID: 29115823]
[29]
Iffland K, Grotenhermen F. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res 2017; 2(1): 139-54.
[http://dx.doi.org/10.1089/can.2016.0034] [PMID: 28861514]
[30]
Szaflarski JP, Bebin EM, Comi AM, et al. CBD EAP study group. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results. Epilepsia 2018; 59(8): 1540-8.
[http://dx.doi.org/10.1111/epi.14477] [PMID: 29998598]
[31]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. Cambridge: Academic Press 2007.
[32]
Gerashchenko D, Murillo-Rodriguez E, Lin L, et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol 2003; 184(2): 1010-6.
[http://dx.doi.org/10.1016/S0014-4886(03)00388-1] [PMID: 14769395]
[33]
Arias-Carrión O, Murillo-Rodriguez E, Xu M, Blanco-Centurion C, Drucker-Colín R, Shiromani PJ. Transplantation of hypocretin neurons into the pontine reticular formation: Preliminary results. Sleep 2004; 27(8): 1465-70.
[http://dx.doi.org/10.1093/sleep/27.8.1465] [PMID: 15683135]
[34]
Arias-Carrión O, Drucker-Colín R, Murillo-Rodríguez E. Survival rates through time of hypocretin grafted neurons within their projection site. Neurosci Lett 2006; 404(1-2): 93-7.
[http://dx.doi.org/10.1016/j.neulet.2006.05.017] [PMID: 16762505]
[35]
Arias-Carrión O, Murillo-Rodríguez E. Effects of hypocretin/orexin cell transplantation on narcoleptic-like sleep behavior in rats. PLoS One 2014; 9 e95342
[36]
Murillo-Rodriguez E, Arankowsky-Sandoval G, Barros JA, et al. Sleep and neurochemical modulation by targeting the histone methylation/demethylation inhibition. Front Neurosci 2019; 13: 237.
[http://dx.doi.org/10.3389/fnins.2019.00237] [PMID: 30930741]
[37]
Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, et al. Systemic injections of cannabidiol enhance acetylcholine levels from basal forebrain in rats. Neurochem Res 2018; 43(8): 1511-8.
[http://dx.doi.org/10.1007/s11064-018-2565-0] [PMID: 29876791]
[38]
De-la-Cruz M, Millán-Aldaco D, Soriano-Nava DM, Drucker-Colín R, Murillo-Rodríguez E. The artificial sweetener Splenda intake promotes changes in expression of c-Fos and NeuN in hypothalamus and hippocampus of rats. Brain Res 2018; 1700: 181-9.
[http://dx.doi.org/10.1016/j.brainres.2018.09.006] [PMID: 30201258]
[39]
Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006; 26(31): 8092-100.
[http://dx.doi.org/10.1523/JNEUROSCI.2181-06.2006] [PMID: 16885223]
[40]
Kacar Bayram A, Per H, Ismailoğullari S, Canpolat M, Gumus H, Aksu M. Efficiency of a combination of pharmacological treatment and nondrug interventions in childhood narcolepsy. Neuropediatrics 2016; 47(6): 380-7.
[http://dx.doi.org/10.1055/s-0036-1588019] [PMID: 27564079]
[41]
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2017; 152: 89-113.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.002] [PMID: 26721620]
[42]
Neikrug AB, Crawford MR, Ong JC. Behavioral sleep medicine services for hypersomnia disorders: A survey study. Behav Sleep Med 2017; 15(2): 158-71.
[http://dx.doi.org/10.1080/15402002.2015.1120201] [PMID: 26788889]
[43]
Lammers GJ. Drugs used in narcolepsy and other hypersomnias. Sleep Med Clin 2018; 13(2): 183-9.
[http://dx.doi.org/10.1016/j.jsmc.20000018.02.009] [PMID: 29759269]
[44]
Moresco M, Pizza F, Antelmi E, Plazzi G. Sodium oxybate treatment in pediatric type 1 narcolepsy. Curr Drug Metab 2018; 19(13): 1073-9.
[http://dx.doi.org/10.2174/1389200219666180305153134] [PMID: 29512449]
[45]
Mignot EJM. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 2012; 9(4): 739-52.
[http://dx.doi.org/10.1007/s13311-012-0150-9] [PMID: 23065655]
[46]
Marín Agudelo HA, Jiménez Correa U, Carlos Sierra J, Pandi-Perumal SR, Schenck CH. Cognitive behavioral treatment for narcolepsy: Can it complement pharmacotherapy? Sleep Sci 2014; 7(1): 30-42.
[http://dx.doi.org/10.1016/j.slsci.2014.07.023] [PMID: 26483898]
[47]
Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: Implications for neuropsychiatric pathology. Psychopharmacology (Berl) 2018; 235(2): 447-58.
[http://dx.doi.org/10.1007/s00213-017-4766-7] [PMID: 29063964]
[48]
Koubeissi M. Anticonvulsant effects of cannabidiol in Dravet syndrome. Epilepsy Curr 2017; 17(5): 281-2.
[http://dx.doi.org/10.5698/1535-7597.17.5.281] [PMID: 29225539]
[49]
McGuire P, Robson P, Cubala WJ, et al. Cannabidiol (cbd) as an adjunctive therapy in schizophrenia: A multicenter randomized controlled trial. Am J Psychiatry 2018; 175(3): 225-31.
[http://dx.doi.org/10.1176/appi.ajp.2017.17030325] [PMID: 29241357]
[50]
Russo EB. Cannabis therapeutics and the future of neurology. Front Integr Nuerosci 2018; 12: 51.
[http://dx.doi.org/10.3389/fnint.2018.00051] [PMID: 30405366]
[51]
Mijangos-Moreno S, Poot-Aké A, Arankowsky-Sandoval G, Murillo-Rodríguez E. Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci Res 2014; 84: 60-3.
[http://dx.doi.org/10.1016/j.neures.2014.04.006] [PMID: 24800644]
[52]
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R. Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS Lett 2006; 580(18): 4337-45.
[http://dx.doi.org/10.1016/j.febslet.2006.04.102] [PMID: 16844117]
[53]
Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Mechoulam R, Drucker-Colín R. Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci 2011; 88(11-12): 504-11.
[http://dx.doi.org/10.1016/j.lfs.2011.01.013] [PMID: 21262236]
[54]
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R. The nonpsychoactive Cannabis constituent cannabidiol is a wake-inducing agent. Behav Neurosci 2008; 122(6): 1378-82.
[http://dx.doi.org/10.1037/a0013278] [PMID: 19045957]
[55]
Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, et al. Sleep and neurochemical modulation by DZNep and GSK-J1: Potential link with histone methylation status. Front Neurosci 2019; 13: 237.
[http://dx.doi.org/10.3389/fnins.2019.00237] [PMID: 30930741]
[56]
Urbano FJ, Bisagno V, Garcia-Rill E. Arousal and drug abuse. Behav Brain Res 2017; 333: 276-81.
[http://dx.doi.org/10.1016/j.bbr.2017.07.013] [PMID: 28729115]
[57]
Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017; 44: 101-9.
[http://dx.doi.org/10.1016/j.conb.2017.03.018] [PMID: 28433001]
[58]
Abad VC, Guilleminault C. New developments in the management of narcolepsy. Nat Sci Sleep 2017; 9: 39-57.
[http://dx.doi.org/10.2147/NSS.S103467] [PMID: 28424564]
[59]
Tyree SM, de Lecea L. Optogenetic investigation of arousal circuits. Int J Mol Sci 2017; 18(8): 1773.
[http://dx.doi.org/10.3390/ijms18081773] [PMID: 28809797]
[60]
Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med 2013; 63(2): 91-104.
[PMID: 23582416]
[61]
Murillo-Rodriguez E, Pastrana-Trejo JC, Salas-Crisóstomo M, de-la-Cruz M. The endocannabinoid system modulating levels of consciousness, emotions and likely dream contents. CNS Neurol Disord Drug Targets 2017; 16(4): 370-9.
[http://dx.doi.org/10.2174/1871527316666170223161908] [PMID: 28240187]
[62]
Pichini S, Busardo FP. Editorial: Cannabis: Neurological correlates in abuse and medical use. CNS Neurol Disord Drug Targets 2017; 16(5): 524-6.
[http://dx.doi.org/10.2174/187152731605170810115956] [PMID: 28847308]
[63]
Orsolini L, Papanti D, Corkery J, et al. Is there a teratogenicity risk associated with cannabis and synthetic cannabimimetics’ (‘spice’) intake? CNS Neurol Disord Drug Targets 2017; 16(5): 585-91.
[http://dx.doi.org/10.2174/1871527316666170413101257] [PMID: 28412917]
[64]
Martinotti G, Santacroce R, Papanti D, Elgharably Y, Prilutskaya M, Corazza O. Synthetic cannabinoids: Psychopharmacology, clinical aspects, psychotic onset. CNS Neurol Disord Drug Targets 2017; 16(5): 567-75.
[http://dx.doi.org/10.2174/1871527316666170413101839] [PMID: 28412921]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy