Review Article

提高MEK抑制剂抗肿瘤疗效的纳米修饰策略

卷 21, 期 3, 2020

页: [228 - 251] 页: 24

弟呕挨: 10.2174/1389450120666190807143245

价格: $65

摘要

RAS-RAF-MEK-ERK信号通路(MAPK信号通路)在30%以上的人类癌症中高度激活。这一途径的异常激活主要是由于RAS或RAF基因的功能获得突变。此外,丝裂原激活蛋白激酶(MEK)在肿瘤发生、细胞增殖和凋亡抑制中的关键作用,使MEK抑制剂(MEKi)成为MAPK通路相关肿瘤靶向治疗的有吸引力的候选药物。几个高度选择性和有效的非ATP竞争的变构MEKi已经被开发出来,并导致了临床结果的实质性改善。然而,由于复杂通路的串扰和较差的药物溶解度,药物的疗效和反应率受到限制。纳米修饰在过去的几十年里为提高药物的疗效做出了巨大的贡献。本综述主要阐述MEK激酶在MAPK通路中的重要生物学地位,以突出MEKi的不可替代地位和临床地位。此外,还简要综述了增强药物疗效的纳米修复策略,以及纳米技术在MEKi相关的肿瘤治疗领域中的应用进展。最后,指出了阻碍纳米MEKi发展的障碍,并展望了纳米MEKi的发展前景。这篇内容丰富的报告为MEKi的临床发展奠定了基础,并概述了个性化癌症治疗的一种合理的前线治疗方法。

关键词: 纳米医药,修复策略,MAPK信号通路,MEK抑制剂,增强药物疗效,癌症的靶向诊疗。

图形摘要
[1]
Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther 2011; 10(3): 385-94.
[PMID: 21388974]
[2]
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-54.
[PMID: 12068308]
[3]
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 2014; 13(12): 928-42.
[PMID: 25435214]
[4]
Zhang X, Liu G, Ding L, et al. HOXA3 promotes tumor growth of human colon cancer through activating EGFR/Ras/Raf/MEK/ERK signaling pathway. J Cell Biochem 2018; 119(3): 2864-74.
[PMID: 29073728]
[5]
Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett 2017; 13(3): 1041-7.
[PMID: 28454211]
[6]
Dummer R, Ramelyte E, Schindler S, Thürigen O, Levesque MP, Koelblinger P. MEK inhibition and immune responses in advanced melanoma. OncoImmunology 2017; 6(8) :e1335843
[PMID: 28919996]
[7]
Kim C, Giaccone G. MEK inhibitors under development for treatment of non-small-cell lung cancer. Expert Opin Investig Drugs 2018; 27(1): 17-30.
[PMID: 29216787]
[8]
Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK inhibitors in the treatment of metastatic melanoma and solid tumors. Am J Clin Dermatol 2017; 18(6): 745-54.
[PMID: 28537004]
[9]
Mahapatra DK, Asati V, Bharti SK. MEK inhibitors in oncology: a patent review (2015-Present). Expert Opin Ther Pat 2017; 27(8): 887-906.
[PMID: 28594589]
[10]
Brighton HE, Angus SP, Bo T, et al. New mechanisms of resistance to MEK inhibitors in melanoma revealed by intravital imaging. Cancer Res 2018; 78(2): 542-57.
[PMID: 29180473]
[11]
Lu H, Liu S, Zhang G, et al. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 2017; 550(7674): 133-6.
[PMID: 28953887]
[12]
Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471):eaau0417
[PMID: 30541787]
[13]
Lai X, Friedman A. Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Syst Biol 2017; 11(1): 70-87.
[PMID: 28724377]
[14]
Martin CA, Cullinane C, Kirby L, et al. Palbociclib synergizes with BRAF and MEK inhibitors in treatment naïve melanoma but not after the development of BRAF inhibitor resistance. Int J Cancer 2018; 142(10): 2139-52.
[PMID: 29243224]
[15]
Lowery MA, Bradley M, Chou JF, et al. Binimetinib plus Gemcitabine and Cisplatin Phase I/II Trial in Patients with Advanced Biliary Cancers. Clin Cancer Res 2019; 25(3): 937-45.
[PMID: 30563938]
[16]
Tekchandani P, Kurmi BD, Paliwal SR. Nanomedicine to deal with cancer cell biology in multi-drug resistance. Mini Rev Med Chem 2017; 17(18): 1793-810.
[PMID: 26891930]
[17]
Layek B, Sadhukha T, Panyam J, Prabha S. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther 2018; 17(6): 1196-206.
[PMID: 29592881]
[18]
Xiao YF, An FF, Chen JX, et al. The nanoassembly of an intrinsically cytotoxic near-infrared dye for multifunctionally synergistic theranostics. Small 2019; 15:1903121
[19]
An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017; 7(15): 3667-89.
[PMID: 29109768]
[20]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[PMID: 28202367]
[21]
Shahabipour F, Barati N, Johnston TP, Derosa G, Maffioli P, Sahebkar A. Exosomes: Nanoparticulate tools for RNA interference and drug delivery. J Cell Physiol 2017; 232(7): 1660-8.
[PMID: 28063231]
[22]
Yang M, Gu Y, Tang X, Wang T, Liu J. Advancement of lipid-based nanocarriers and combination application with physical penetration technique. Curr Drug Deliv 2019; 16(4): 312-24.
[PMID: 30657039]
[23]
Dong P, Rakesh KP, Manukumar HM, et al. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg Chem 2019; 85: 325-36.
[PMID: 30658232]
[24]
Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016; 6(9): 1306-23.
[PMID: 27375781]
[25]
Nakamura T, Harashima H. Integration of nano drug-delivery system with cancer immunotherapy. Ther Deliv 2017; 8(11): 987-1000.
[PMID: 29061103]
[26]
Stewart JM, Keselowsky BG. Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114: 161-74.
[PMID: 28532690]
[27]
Chen W, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater 2017; 29(5): 1603864-70.
[PMID: 27882622]
[28]
Xiao Y, An FF, Chen J, Xiong S, Zhang XH. The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. J Mater Chem B Mater Biol Med 2018; 6: 3692-702.
[29]
Sheng R, An FF, Wang Z, Li M, Cao A. Assembly of plasmid dna with pyrene-amines cationic amphiphiles into nanoparticles and their visible lysosome localization. RSC Advances 2015; 5: 12338-45.
[30]
Chen Y, Liu YC, Sung YC, et al. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep 2017; 7: 44123-34.
[PMID: 28276530]
[31]
Cheng Y, Zhang W, Fan H, Xu P. Water-soluble nano-pearl powder promotes MC3T3-E1 cell differentiation by enhancing autophagy via the MEK/ERK signaling pathway. Mol Med Rep 2018; 18(1): 993-1000.
[PMID: 29845241]
[32]
Micro TG, Manufacturing N. Micromachines (Basel) 2017; 8: 297-8.
[33]
Chen Q, Yang Y, Lin X, et al. Platinum(iv) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem Commun 2018; 54: 5369-72.
[34]
Ritt DA, Abreu-Blanco MT, Bindu L, et al. Inhibition of Ras/Raf/MEK/ERK Pathway Signaling by a Stress-Induced Phospho-Regulatory Circuit. Mol Cell 2016; 64(5): 875-87.
[PMID: 27889448]
[35]
Gonzalez-Hormazabal P, Musleh M, Bustamante M, et al. Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes (Basel) 2018; 10(1): 20-9.
[PMID: 30597917]
[36]
Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24(1): 21-44.
[PMID: 16393692]
[37]
Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene 2007; 26(22): 3100-12.
[PMID: 17496909]
[38]
Ma Y, Wang L, Neitzel LR, et al. The mapk pathway regulates intrinsic resistance to bet inhibitors in colorectal cancer. Clin Cancer Res 2017; 23(8): 2027-37.
[PMID: 27678457]
[39]
Giltnane JM, Balko JM. Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov Med 2014; 17(95): 275-83.
[PMID: 24882719]
[40]
Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer 2018; 124: 53-64.
[PMID: 30268480]
[41]
Reinhardt J, Landsberg J, Schmid-Burgk JL, et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of cd73 during immunotherapy. Cancer Res 2017; 77(17): 4697-709.
[PMID: 28652246]
[42]
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503(7477): 548-51.
[PMID: 24256730]
[43]
Wan PT, Garnett MJ, Roe SM, et al. Cancer genome project. mechanism of activation of the raf-erk signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116(6): 855-67.
[PMID: 15035987]
[44]
An F, Zhang X. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017; 7(15): 3667-89.
[45]
Zhu Y, Li Z, Wang P. Factors affecting the separation performance of proteins in capillary electrophoresis. J Chromatogr B 2018; 1083: 63-7.
[46]
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26(22): 3291-310.
[PMID: 17496923]
[47]
Fukuda M, Gotoh I, Gotoh Y, Nishida E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 1996; 271(33): 20024-8.
[PMID: 8702720]
[48]
Ohren JF, Chen H, Pavlovsky A, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 2004; 11(12): 1192-7.
[PMID: 15543157]
[49]
Hou P, Liu D, Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer 2011; 18(6): 687-97.
[PMID: 21937738]
[50]
Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66(2): 105-43.
[PMID: 22569528]
[51]
Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22(2): 153-83.
[PMID: 11294822]
[52]
Murugan AK, Dong J, Xie J, Xing M. MEK1 mutations, but not ERK2 mutations, occur in melanomas and colon carcinomas, but none in thyroid carcinomas. Cell Cycle 2009; 8(13): 2122-4.
[PMID: 19411838]
[53]
Marks JL, Gong Y, Chitale D, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 2008; 68(14): 5524-8.
[PMID: 18632602]
[54]
Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270(46): 27489-94.
[PMID: 7499206]
[55]
Lorusso PM, Adjei AA, Varterasian M, et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 2005; 23(23): 5281-93.
[PMID: 16009947]
[56]
Wright CJ, McCormack PL. Trametinib: first global approval. Drugs 2013; 73(11): 1245-54.
[PMID: 23846731]
[57]
Flaherty KT, Robert C, Hersey P, et al. METRIC study group. improved survival with mek inhibition in braf-mutated melanoma. N Engl J Med 2012; 367(2): 107-14.
[PMID: 22663011]
[58]
Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 2011; 17(5): 989-1000.
[PMID: 21245089]
[59]
Rice KD, Aay N, Anand NK, et al. Novel carboxamide-based allosteric mek inhibitors: discovery and optimization efforts toward xl518 (gdc-0973). ACS Med Chem Lett 2012; 3(5): 416-21.
[PMID: 24900486]
[60]
Ascierto PA, McArthur GA, Dréno B, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 2016; 17(9): 1248-60.
[PMID: 27480103]
[61]
Shirley M. Encorafenib and binimetinib: first global approvals. Drugs 2018; 78(12): 1277-84.
[PMID: 30117021]
[62]
Barrett SD, Bridges AJ, Dudley DT, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg Med Chem Lett 2008; 18(24): 6501-4.
[PMID: 18952427]
[63]
Seto T, Hirai F, Saka H, et al. Safety and tolerability of selumetinib as a monotherapy, or in combination with docetaxel as second-line therapy, in Japanese patients with advanced solid malignancies or non-small cell lung cancer. Jpn J Clin Oncol 2018; 48(1): 31-42.
[PMID: 29136201]
[64]
Jänne PA, van den Heuvel MM, Barlesi F, et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with kras-mutant advanced non-small cell lung cancer: the select-1 randomized clinical trial. JAMA 2017; 317(18): 1844-53.
[PMID: 28492898]
[65]
Haasbach E, Müller C, Ehrhardt C, et al. The MEK-inhibitor CI-1040 displays a broad anti-influenza virus activity in vitro and provides a prolonged treatment window compared to standard of care in vivo. Antiviral Res 2017; 142: 178-84.
[PMID: 28377100]
[66]
Srinivas NR. Pharmacology of pimasertib, a selective mek1/2 inhibitor. Eur J Drug Metab Pharmacokinet 2018; 43(4): 373-82.
[PMID: 29488172]
[67]
Van Laethem JL, Riess H, Jassem J, et al. Phase i/ii study of refametinib (bay 86-9766) in combination with gemcitabine in advanced pancreatic cancer. Target Oncol 2017; 12(1): 97-109.
[PMID: 27975152]
[68]
Wada M, Horinaka M, Yamazaki T, Katoh N, Sakai T. The dual RAF/MEK inhibitor CH5126766/RO5126766 may be a potential therapy for RAS-mutated tumor cells. PLoS One 2014; 9(11): e113217-32.
[PMID: 25422890]
[69]
Ang JE, Pal A, Asad YJ, et al. modulation of plasma metabolite biomarkers of the mapk pathway with mek inhibitor ro4987655: pharmacodynamic and predictive potential in metastatic melanoma. Mol Cancer Ther 2017; 16(10): 2315-23.
[PMID: 28637716]
[70]
Takahashi RH, Ma S, Robinson SJ, Yue Q, Choo EF, Khojasteh SC. Elucidating the mechanisms of formation for two unusual cytochrome p450-mediated fused ring metabolites of gdc-0623, a mapk/erk kinase inhibitor. Drug Metab Dispos 2015; 43(12): 1929-33.
[PMID: 26438627]
[71]
Jasek-Gajda E, Gajda M, Jasińska M, Litwin JA, Lis GJ. TAK-733, a selective mek inhibitor, enhances voreloxin-induced apoptosis in myeloid leukemia cells. Anticancer Res 2018; 38(11): 6147-56.
[PMID: 30396931]
[72]
Cohen RB, Aamdal S, Nyakas M, et al. A phase I dose-finding, safety and tolerability study of AZD8330 in patients with advanced malignancies. Eur J Cancer 2013; 49(7): 1521-9.
[PMID: 23433846]
[73]
Deng M, Qin Y, Chen X, et al. Combination of celecoxib and PD184161 exerts synergistic inhibitory effects on gallbladder cancer cell proliferation. Oncol Lett 2017; 13(5): 3850-8.
[PMID: 28521485]
[74]
Daouti S, Higgins B, Kolinsky K, et al. Preclinical in vivo evaluation of efficacy, pharmacokinetics, and pharmacodynamics of a novel MEK1/2 kinase inhibitor RO5068760 in multiple tumor models. Mol Cancer Ther 2010; 9(1): 134-44.
[PMID: 20053779]
[75]
Ong Q, Guo S, Zhang K, Cui B. U0126 protects cells against oxidative stress independent of its function as a MEK inhibitor. ACS Chem Neurosci 2015; 6(1): 130-7.
[PMID: 25544156]
[76]
Kim DJ, Lee MH, Reddy K, et al. CInQ-03, a novel allosteric MEK inhibitor, suppresses cancer growth in vitro and in vivo. Carcinogenesis 2013; 34(5): 1134-43.
[PMID: 23354306]
[77]
Wang W, Zhou J, Zhao L, Chen S. Combination of SL327 and Sunitinib Malate leads to an additive anti-cancer effect in doxorubicin resistant thyroid carcinoma cells. Biomed Pharmacother 2017; 88: 985-90.
[PMID: 28178630]
[78]
Zhao Y, Ge CC, Wang J, et al. MEK inhibitor, PD98059, promotes breast cancer cell migration by inducing β-catenin nuclear accumulation. Oncol Rep 2017; 38(5): 3055-63.
[PMID: 29048617]
[79]
Han S, Zhou V, Pan S, et al. Identification of coumarin derivatives as a novel class of allosteric MEK1 inhibitors. Bioorg Med Chem Lett 2005; 15(24): 5467-73.
[PMID: 16199156]
[80]
Choo EF, Belvin M, Chan J, et al. Preclinical disposition and pharmacokinetics-pharmacodynamic modeling of biomarker response and tumour growth inhibition in xenograft mouse models of G-573, a MEK inhibitor. Xenobiotica 2010; 40(11): 751-62.
[PMID: 20836753]
[81]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[PMID: 27834398]
[82]
Li Y, Zhang H. Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J Biomed Nanotechnol 2019; 15(1): 1-27.
[PMID: 30480512]
[83]
Sengupta S. Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends Cancer 2017; 3(8): 551-60.
[PMID: 28780932]
[84]
Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscopy. J Mol Biol 1964; 8: 660-8.
[PMID: 14187392]
[85]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[PMID: 22484195]
[86]
Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008; 25(1): 55-71.
[PMID: 17551809]
[87]
Northfelt DW, Dezube BJ, Thommes JA, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 1998; 16(7): 2445-51.
[PMID: 9667262]
[88]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[PMID: 23036225]
[89]
Wu CH, Lan CH, Wu KL, et al. Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. Int J Oncol 2018; 52(2): 389-401.
[PMID: 29207071]
[90]
Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017; 530(1-2): 387-400.
[PMID: 28774852]
[91]
Wu PT, Lin CL, Lin CW, Chang NC, Tsai WB, Yu J. Methylene-blue-encapsulated liposomes as photodynamic therapy nano agents for breast cancer cells. Nanomaterials (Basel) 2018; 9(1): 14-25.
[PMID: 30583581]
[92]
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9): 688-701.
[PMID: 16900224]
[93]
Masetti R, Pession A. First-line treatment of acute lymphoblastic leukemia with pegasparaginase. Biologics 2009; 3: 359-68.
[PMID: 19707421]
[94]
Abe S, Otsuki M. Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma. Curr Med Chem Anticancer Agents 2002; 2(6): 715-26.
[PMID: 12678722]
[95]
Nicolas J, Couvreur P. [Polymer nanoparticles for the delivery of anticancer drug] Med Sci (Paris) 2017; 33(1): 11-7.
[PMID: 28120750]
[96]
Liao W, Chen L, Yu B, et al. Cell-based evaluation of a novel Dictyophora indusiata polysaccharide against oxidative-induced erythrocyte hemolysis. Cell Mol Biol 2016; 62(1): 38-44.
[PMID: 26828985]
[97]
Li N, Wu D, Hu N, et al. effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. J Agric Food Chem 2018; 66(13): 3572-80.
[PMID: 29554797]
[98]
Repenko T, Rix A, Ludwanowski S, et al. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat Commun 2017; 8(1): 470-7.
[PMID: 28883395]
[99]
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 2009; 4: 99-105.
[PMID: 19516888]
[100]
Satouchi M, Okamoto I, Sakai H, et al. Efficacy and safety of weekly nab-paclitaxel plus carboplatin in patients with advanced non-small cell lung cancer. Lung Cancer 2013; 81(1): 97-101.
[PMID: 23545279]
[101]
Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369(18): 1691-703.
[PMID: 24131140]
[102]
Kottschade LA, Suman VJ, Amatruda T III, et al. A phase II trial of nab-paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group Study, N057E(1). Cancer 2011; 117(8): 1704-10.
[PMID: 21472717]
[103]
Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017; 113: 211-28.
[PMID: 28087380]
[104]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[PMID: 22944304]
[105]
Arnarson T, Elworthy PH. Effects of structural variations of non-ionic surfactants on micellar properties and solubilization: surfactants based on erucyl and behenyl (C22) alcohols. J Pharm Pharmacol 1980; 32(6): 381-5.
[PMID: 6106667]
[106]
Rios-Doria J, Carie A, Costich T, et al. A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs. J Drug Deliv 2012; 2012: 951741-8.
[PMID: 22518317]
[107]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 2010; 5(3): 485-505.
[PMID: 20394539]
[108]
Kim DW, Kim SY, Kim HK, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 2007; 18(12): 2009-14.
[PMID: 17785767]
[109]
Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008; 108(2): 241-50.
[PMID: 17476588]
[110]
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22(9): 1401-21.
[PMID: 28832535]
[111]
Svenson S, Tomalia DA. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 2005; 57(15): 2106-29.
[PMID: 16305813]
[112]
Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005; 23(12): 1517-26.
[PMID: 16333296]
[113]
Buhleier E, Wehner W. VÖGtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978; 1978: 155-8.
[114]
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2016; 4(3): 375-90.
[PMID: 26806314]
[115]
Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999; 10(8): 767-76.
[PMID: 10573209]
[116]
Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 2004; 15(6): 1174-81.
[PMID: 15546182]
[117]
Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 2011; 79(2): 232-40.
[PMID: 21496485]
[118]
Xu L, Kittrell S, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer mediates selective uptake and high expression of genes in head and neck cancer cells. Nanomedicine (Lond) 2016; 11(22): 2959-73.
[PMID: 27781559]
[119]
Bharti S, Kaur G, Jain S, Gupta S, Tripathi SK. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. J Drug Target 2019; 27(8): 813-29.
[PMID: 30601068]
[120]
Tadyszak K, Wychowaniec JK, Litowczenko J. Biomedical applications of graphene-based structures. Nanomaterials (Basel) 2018; 8(11): 944-63.
[PMID: 30453490]
[121]
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2018; 23(2): 235-50.
[PMID: 29031623]
[122]
Zhao Q, Lin Y, Han N, et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv 2017; 24(sup1): 94-107.
[PMID: 29124979]
[123]
Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017; 46(19): 6024-45.
[PMID: 28848978]
[124]
Liu J, Chang B, Li Q, et al. Redox-responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin-promoted cancer stemness, metastasis, and drug resistance. Adv Sci (Weinh) 2019; 6(7): 1801987-2002.
[PMID: 31139556]
[125]
Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5(11): 1249-63.
[PMID: 26379790]
[126]
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev 1999; 99(9): 2293-352.
[PMID: 11749483]
[127]
Perez-Rodriguez J, Lai S, Ehst BD, Fine DM, Bluemke DA. Nephrogenic systemic fibrosis: incidence, associations, and effect of risk factor assessment--report of 33 cases. Radiology 2009; 250(2): 371-7.
[PMID: 19188312]
[128]
McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced mr imaging. Radiology 2015; 275(3): 772-82.
[PMID: 25742194]
[129]
Perlman O, Azhari H. Ultrasonic computed tomography imaging of iron oxide nanoparticles. Phys Med Biol 2017; 62(3): 825-42.
[PMID: 28072576]
[130]
Wei H, Bruns OT, Kaul MG, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci USA 2017; 114(9): 2325-30.
[PMID: 28193901]
[131]
Li Y, Zhang H. Fe3O4-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management. Nanomedicine (Lond) 2019; 14(11): 1493-512.
[PMID: 31215317]
[132]
Li Y, Chang Y, Lian X, et al. Silver nanoparticles for enhanced cancer theranostics: in vitro and in vivo perspectives. J Biomed Nanotechnol 2018; 14(9): 1515-42.
[PMID: 29958548]
[133]
Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016; 10(2): 2591-9.
[PMID: 26845515]
[134]
Laurenti M, Lamberti A, Genchi GG, et al. Graphene Oxide Finely Tunes the Bioactivity and Drug Delivery of Mesoporous ZnO Scaffolds. ACS Appl Mater Interfaces 2019; 11(1): 449-56.
[PMID: 30525399]
[135]
Tee JK, Ng LY, Koh HY, Leong DT, Ho HK. Titanium dioxide nanoparticles enhance leakiness and drug permeability in primary human hepatic sinusoidal endothelial cells. Int J Mol Sci 2018; 20(1): 35-52.
[PMID: 30577655]
[136]
Bilan R, Nabiev I, Sukhanova A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem 2016; 17(22): 2103-14.
[PMID: 27535363]
[137]
Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017; 14(6): 347-64.
[PMID: 28094261]
[138]
Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008; 452(7187): 580-9.
[PMID: 18385732]
[139]
Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 2013; 10(9): 507-18.
[PMID: 23881033]
[140]
Smith AM, Mancini MC, Nie S. Bioimaging: second window for in vivo imaging. Nat Nanotechnol 2009; 4(11): 710-1.
[PMID: 19898521]
[141]
Zhang L, Jean SR, Ahmed S, et al. Multifunctional quantum dot DNA hydrogels. Nat Commun 2017; 8(1): 381-9.
[PMID: 28851869]
[142]
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[PMID: 28814860]
[143]
Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 2003; 519: 29-49.
[PMID: 12675206]
[144]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[PMID: 16935749]
[145]
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179-91.
[PMID: 26061298]
[146]
Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem 2015; 15(15): 1525-31.
[PMID: 25877093]
[147]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[PMID: 24531078]
[148]
Liu Y, Kim YJ, Siriwon N, Rohrs JA, Yu Z, Wanga P. Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature. Biotechnol Bioeng 2018; 115(6): 1403-15.
[PMID: 29457630]
[149]
Sun Z, Li R, Sun J, et al. Matrix Metalloproteinase cleavable nanoparticles for tumor microenvironment and tumor cell dual-targeting drug delivery. ACS Appl Mater Interfaces 2017; 9(46): 40614-27.
[PMID: 29095595]
[150]
Das M, Solanki A, Joshi A, Devkar R, Seshadri S, Thakore S. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery. Carbohydr Polym 2019; 206: 694-705.
[PMID: 30553374]
[151]
Fernandes C, Suares D, Yergeri MC. Tumor microenvironment targeted nanotherapy. Front Pharmacol 2018; 9: 1230-54.
[PMID: 30429787]
[152]
Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016; 85: 152-67.
[PMID: 26871891]
[153]
Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release 2007; 123(1): 19-26.
[PMID: 17826863]
[154]
Zhao G, Long L, Zhang L, et al. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 2017; 7(1): 3383-92.
[PMID: 28611459]
[155]
Dalela M, Shrivastav TG, Kharbanda S, Singh H. pH-Sensitive biocompatible nanoparticles of paclitaxel-conjugated poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl Mater Interfaces 2015; 7(48): 26530-48.
[PMID: 26528585]
[156]
Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010; 144(2): 259-66.
[PMID: 20188131]
[157]
Xu X, Wu J, Liu Y, et al. Ultra-ph-responsive and tumor-penetrating nanoplatform for targeted sirna delivery with robust anti-cancer efficacy. Angew Chem Int Ed Engl 2016; 55(25): 7091-4.
[PMID: 27140428]
[158]
Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[PMID: 23415642]
[159]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[PMID: 25287120]
[160]
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9(11): 923-8.
[PMID: 20935658]
[161]
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74-83.
[PMID: 30243297]
[162]
Chen B, Dai W, He B, et al. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 2017; 7(3): 538-58.
[PMID: 28255348]
[163]
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19(1): 74-97.
[PMID: 30686257]
[164]
Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Lett 2015; 4: 552-5.
[165]
Wang L, Li B, Xu F, et al. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery. Carbohydr Polym 2017; 174: 904-14.
[PMID: 28821147]
[166]
Xia H, Zhao Y, Tong R. Ultrasound-mediated polymeric micelle drug delivery. Adv Exp Med Biol 2016; 880: 365-84.
[PMID: 26486348]
[167]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[PMID: 24150417]
[168]
Mendez R, Banerjee S. Sonication-based basic protocol for liposome synthesis. Methods Mol Biol 2017; 1609: 255-60.
[PMID: 28660588]
[169]
Ong SG, Chitneni M, Lee KS, Ming LC, Yuen KH. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics 2016; 8(4): 36-47.
[PMID: 28009829]
[170]
Costa AP, Xu X, Burgess DJ. Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharm Res 2014; 31(1): 97-103.
[PMID: 23881305]
[171]
Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973; 298(4): 1015-9.
[PMID: 4738145]
[172]
Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 1976; 443(3): 629-34.
[PMID: 963074]
[173]
Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22(6): 2543-50.
[PMID: 16519453]
[174]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995; 70(2): 95-111.
[PMID: 7651973]
[175]
Schubert R. Liposome preparation by detergent removal. Methods Enzymol 2003; 367: 46-70.
[PMID: 14611058]
[176]
Piacentini E, Dragosavac M, Giorno L. pharmaceutical particles design by membrane emulsification: preparation methods and applications in drug delivery. Curr Pharm Des 2017; 23(2): 302-18.
[PMID: 27855607]
[177]
Mishima K, Matsuyama K, Tanabe D, et al. Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. AIChE J 2000; 46: 857-65.
[178]
Colombo C, Morosi L, Bello E, et al. PEGylated nanoparticles obtained through emulsion polymerization as paclitaxel carriers. Mol Pharm 2016; 13(1): 40-6.
[PMID: 26623665]
[179]
Lim J, Jung U, Joe WT, Kim ET, Pyun J, Char K. High sulfur content polymer nanoparticles obtained from interfacial polymerization of sodium polysulfide and 1,2,3-trichloropropane in water. Macromol Rapid Commun 2015; 36(11): 1103-7.
[PMID: 25847485]
[180]
Huang L, Wu J, Liu M, et al. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. J Colloid Interface Sci 2017; 508: 396-404.
[PMID: 28843929]
[181]
Yang L, Wu X, Liu F, Duan Y, Li S. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res 2009; 26(10): 2332-42.
[PMID: 19669098]
[182]
Gill KK, Kaddoumi A, Nazzal S. Mixed micelles of PEG(2000)-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Eur J Pharm Sci 2012; 46(1-2): 64-71.
[PMID: 22369858]
[183]
Huang X, Liao W, Zhang G, Kang S, Zhang CY. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine 2017; 12: 2215-26.
[PMID: 28356738]
[184]
Chen L, Mei L, Feng D, et al. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf B Biointerfaces 2018; 163: 146-54.
[PMID: 29291500]
[185]
Singh I, Rehni AK, Kalra R, Joshi G, Kumar M. Dendrimers and their pharmaceutical applications--a review. Pharmazie 2008; 63(7): 491-6.
[PMID: 18717480]
[186]
Metwally AA, Hathout RM. Computer-assisted drug formulation design: novel approach in drug delivery. Mol Pharm 2015; 12(8): 2800-10.
[PMID: 26107396]
[187]
Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf B Biointerfaces 2015; 136: 878-84.
[PMID: 26547315]
[188]
Thakkar S, Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur J Pharm Sci 2017; 107: 148-67.
[PMID: 28690099]
[189]
Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm 2018; 546(1-2): 194-214.
[PMID: 29778825]
[190]
Nikolaou M, Krasia-Christoforou T. Electrohydrodynamic methods for the development of pulmonary drug delivery systems. Eur J Pharm Sci 2018; 113: 29-40.
[PMID: 28865687]
[191]
Li Y, Yang Y, An F, Liu Z, Zhang X, Zhang X. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. Nanotechnology 2013; 24(1): 015103-11.
[PMID: 23221098]
[192]
McGrath AJ, Chien YH, Cheong S, et al. Gold over branched palladium nanostructures for photothermal cancer therapy. ACS Nano 2015; 9(12): 12283-91.
[PMID: 26549201]
[193]
Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 2017; 8(1): 902-14.
[PMID: 29026068]
[194]
Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 2017; 12(9): 877-82.
[PMID: 28650437]
[195]
Moradpour Z, Barghi L. Novel approaches for efficient delivery of tyrosine kinase inhibitors. J Pharm Pharm Sci 2019; 22(1): 37-48.
[PMID: 30636671]
[196]
Hossain DM, Panda AK, Chakrabarty S, et al. MEK inhibition prevents tumour-shed transforming growth factor-β-induced T-regulatory cell augmentation in tumour milieu. Immunology 2015; 144(4): 561-73.
[PMID: 25284464]
[197]
López-Dávila V, Magdeldin T, Welch H, Dwek MV, Uchegbu I, Loizidou M. Efficacy of DOPE/DC-cholesterol liposomes and GCPQ micelles as AZD6244 nanocarriers in a 3D colorectal cancer in vitro model. Nanomedicine (Lond) 2016; 11(4): 331-44.
[PMID: 26786002]
[198]
Tham HP, Xu K, Lim WQ, et al. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano 2018; 12(12): 11936-48.
[PMID: 30444343]
[199]
Kulkarni A, Natarajan SK, Chandrasekar V, Pandey PR, Sengupta S. Combining immune checkpoint inhibitors and kinase-inhibiting supramolecular therapeutics for enhanced anticancer efficacy. ACS Nano 2016; 10(10): 9227-42.
[PMID: 27656909]
[200]
Ke Y, Xiang C. Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy. Int J Nanomedicine 2018; 13: 8339-54.
[PMID: 30584304]
[201]
Zhang Y, Zhan X, Peng S, et al. Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem. Nanomedicine (Lond) 2018; 14(5): 1679-93.
[PMID: 29684526]
[202]
Liu H, Zhang Y, Zheng S, et al. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells. Biochem Biophys Res Commun 2016; 477(4): 1031-7.
[PMID: 27392714]
[203]
Zhu Y, Yang Q, Yang M, et al. Protein Corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano 2017; 11(4): 3690-704.
[PMID: 28314099]
[204]
Jiang JH, Pi J, Jin H, Cai JY. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S297-307.
[PMID: 30183382]
[205]
Zhu R, Wang Z, Liang P, et al. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy. Acta Biomater 2017; 63: 163-80.
[PMID: 28923539]
[206]
Mert I, Chhina J, Allo G, et al. Synergistic effect of MEK inhibitor and metformin combination in low grade serous ovarian cancer. Gynecol Oncol 2017; 146(2): 319-26.
[PMID: 28545687]
[207]
Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463-82.
[PMID: 28374786]
[208]
Gao S, Tang G, Hua D, et al. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 2019; 7: 709-29.
[209]
Mital N, Kaur G. Topical drug delivery systems: a patent review AU - Singh Malik, Deepinder. Expert Opin Ther Pat 2016; 26: 213-28.
[210]
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016; 10(7): 836-60.
[PMID: 27027670]
[211]
Vladisavljević GT, Khalid N, Neves MA, et al. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 2013; 65(11-12): 1626-63.
[PMID: 23899864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy