Effect of the Histone Deacetylases Inhibitors on the Differentiation of Stem Cells in Bone Damage Repairing and Regeneration

Author(s): Qing Zhao, Kun Ji, Tiancong Wang, Guifeng Li, Wei Lu*, Jun Ji*

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 1 , 2020

Become EABM
Become Reviewer


Tissue damage repairing and regeneration is a research hot topic. Tissue engineering arises at the historic moment which is a defect repair compound composed of seed cells, tissue engineering scaffolds, and inducing factors. Stem cells have a limited growth period in vitro culture, and they have a pattern of replicating ageing, and these disadvantages are limiting the applications of stem cells in basic research and clinical treatment. The enhancement of stem cell differentiation ability is a difficult problem to overcome, and it is possible to enhance the differentiation ability of stem cells through histone modification so as to provide a more robust foundation for damage repairing and regeneration. Studies have shown that Histone Deacetylases (HDAC) inhibitors can improve mesenchymal stem cells in vitro induced in different directions, conversion efficiency, increasing the feasibility and safety of stem cell therapy and tissue engineering, to offer reference to promote the stem cell therapy in clinical application. Therefore, this paper mainly focusing on the usage and achievements of the deacetylase inhibitors in stem cell differentiation studies and their use and prospects in repair of bone tissue defects.

Keywords: Tissue engineering, histone acetylation, histone deacetylases inhibitors, cell differentiation, stem cells, seed cells.

Zhao Y, Fan T, Chen J, et al. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces 2019; 174: 70-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.003] [PMID: 30439640]
Holzapfel BM, Rudert M, Hutmacher DW. [Scaffold-based Bone Tissue Engineering]. Orthopade 2017; 46(8): 701-10. [Scaffoldbased Bone Tissue Engineering].
[http://dx.doi.org/10.1007/s00132-017-3444-0] [PMID: 28725934]
Yoon DS, Choi Y, Jang Y, et al. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 2014; 32(12): 3219-31.
[http://dx.doi.org/10.1002/stem.1811] [PMID: 25132403]
Yam GH, Peh GS, Singhal S, Goh BT, Mehta JS. Dental stem cells: A future asset of ocular cell therapy. Expert Rev Mol Med 2015; 17e20.
[http://dx.doi.org/110.1017/erm.2015.16] [PMID: 26553416]
Fessler EB, Chibane FL, Wang Z, Chuang DM. Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des 2013; 19(28): 5105-20.
[http://dx.doi.org/10.2174/1381612811319280009] [PMID: 23448466]
Botrugno OA, Santoro F, Minucci S. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer. Cancer Lett 2009; 280(2): 134-44.
[http://dx.doi.org/10.1016/j.canlet.2009.02.027] [PMID: 19345000]
Cai MH, Xu XG, Yan SL, et al. Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci Rep 2018; 8(1): 1621.
[http://dx.doi.org/10.1038/s41598-018-20004-0] [PMID: 29374219]
Jamaladdin S, Kelly RD, O’Regan L, et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci USA 2014; 111(27): 9840-5.
[http://dx.doi.org/10.1073/pnas.1321330111] [PMID: 24958871]
Jo HR, Wang SE, Kim YS, Lee CH, Son H. Oleanolic acid promotes neuronal differentiation and histone deacetylase 5 phosphorylation in rat hippocampal neurons. Mol Cells 2017; 40(7): 485-94.
[PMID: 28681592 ]
Wein MN, Spatz J, Nishimori S, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res 2015; 30(3): 400-11.
[http://dx.doi.org/10.1002/jbmr.2381] [PMID: 25271055]
Katayama S, Morii A, Makanga JO, Suzuki T, Miyata N, Inazu T. HDAC8 regulates neural differentiation through embryoid body formation in P19 cells. Biochem Biophys Res Commun 2018; 498(1): 45-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.195] [PMID: 29499194]
Damdimopoulou P, Rodin S, Stenfelt S, Antonsson L, Tryggvason K, Hovatta O. Human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 2016; 31: 2-12.
[http://dx.doi.org/10.1016/j.bpobgyn.2015.08.010] [PMID: 26602389]
Vougiouklakis T, Nakamura Y, Saloura V. Critical roles of protein methyltransferases and demethylases in the regulation of embryonic stem cell fate. Epigenetics 2017; 12(12): 1015-27.
[http://dx.doi.org/10.1080/15592294.2017.1391430] [PMID: 29099285]
Hosseinkhani M, Hasegawa K, Ono K, et al. Trichostatin A induces myocardial differentiation of monkey ES cells. Biochem Biophys Res Commun 2007; 356(2): 386-91.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.151] [PMID: 17368572]
Qiao Y, Wang R, Yang X, Tang K, Jing N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 2015; 290(4): 2508-20.
[http://dx.doi.org/10.1074/jbc.M114.603761] [PMID: 25519907]
Jergil M, Forsberg M, Salter H, et al. Short-time gene expression response to valproic acid and valproic acid analogs in mouse embryonic stem cells. Toxicol Sci 2011; 121(2): 328-42.
[http://dx.doi.org/10.1093/toxsci/kfr070] [PMID: 21427059]
Kim YE, Park JA, Park SK, Kang HB, Kwon HJ, Lee Y. Enhancement of transgene expression by HDAC inhibitors in mouse embryonic stem cells. Dev Reprod 2013; 17(4): 379-87.
[http://dx.doi.org/10.12717/DR.2013.17.4.379] [PMID: 25949154]
Urvalek AM, Gudas LJ. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem 2014; 289(28): 19519-30.
[http://dx.doi.org/10.1074/jbc.M114.556555] [PMID: 24821725]
Mahapatra PS, Singh R, Kumar K, et al. Valproic acid assisted reprogramming of fibroblasts for generation of pluripotent stem cells in buffalo (Bubalus bubalis). Int J Dev Biol 2017; 61(1-2): 81-8.
[http://dx.doi.org/10.1387/ijdb.160006sb] [PMID: 27528045]
Yang J, Tang Y, Liu H, Guo F, Ni J, Le W. Suppression of histone deacetylation promotes the differentiation of human pluripotent stem cells towards neural progenitor cells. BMC Biol 2014; 12: 95.
[http://dx.doi.org/10.1186/s12915-014-0095-z] [PMID: 25406762]
Codazzi F, Hu A, Rai M, et al. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum Mol Genet 2016; 25(22): 4847-55.
[http://dx.doi.org/10.1093/hmg/ddw308] [PMID: 28175303]
Megaloikonomos PD, Panagopoulos GN, Bami M, et al. Harvesting, isolation and differentiation of rat adipose-derived stem cells. Curr Pharm Biotechnol 2018; 19(1): 19-29.
[http://dx.doi.org/10.2174/1389201019666180418101323] [PMID: 29667552]
Hu X, Fu Y, Zhang X, et al. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells. Dev Growth Differ 2014; 56(3): 206-13.
[http://dx.doi.org/10.1111/dgd.12119] [PMID: 24494796]
Jang S, Jeong HS. Data for the effect of histone deacetylase inhibitors on voltage- and ligand-gated ion channel gene expression in neurogenic induced-human adipose tissue-derived mesenchymal stem cells. Data Brief 2018; 17: 1314-9.
[http://dx.doi.org/10.1016/j.dib.2018.02.058] [PMID: 29876485]
Tögel F, Westenfelder C. Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn 2007; 236(12): 3321-31.
[http://dx.doi.org/10.1002/dvdy.21258] [PMID: 17685479]
Mahapatra S, Firpo MT, Bacanamwo M. Inhibition of DNA methyltransferases and histone deacetylases induces bone marrow-derived multipotent adult progenitor cells to differentiate into endothelial cells. ; (): -.
Dhoke NR, Kalabathula E, Kaushik K, Geesala R, Sravani B, Das A. Histone deacetylases differentially regulate the proliferative phenotype of mouse bone marrow stromal and hematopoietic stem/progenitor cells. Stem Cell Res (Amst) 2016; 17(1): 170-80.
[http://dx.doi.org/10.1016/j.scr.2016.07.001] [PMID: 27394013]
Zhan Y, He Z, Liu X, et al. Aspirin-induced attenuation of adipogenic differentiation of bone marrow mesenchymal stem cells is accompanied by the disturbed epigenetic modification. Int J Biochem Cell Biol 2018; 98: 29-42.
[http://dx.doi.org/10.1016/j.biocel.2018.02.010] [PMID: 29471042]
Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Rev Rep 2016; 12(5): 511-23.
[http://dx.doi.org/10.1007/s12015-016-9661-9] [PMID: 27240827]
Jin H, Park JY, Choi H, Choung PH. HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng Part A 2013; 19(5-6): 613-24.
[http://dx.doi.org/10.1089/ten.tea.2012.0163] [PMID: 23013422]
Paino F, La Noce M, Tirino V, et al. Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: Evidence for HDAC2 involvement. Stem Cells 2014; 32(1): 279-89.
[http://dx.doi.org/10.1002/stem.1544] [PMID: 24105979]
Mrozik K, Gronthos S, Shi S, Bartold PM. A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol Biol 2017; 1537: 413-27.
[http://dx.doi.org/10.1007/978-1-4939-6685-1_24] [PMID: 27924608]
Seo B-M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
Zhang J, Li ZG, Si YM, Chen B, Meng J. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation 2014; 88(4-5): 97-105.
[http://dx.doi.org/10.1016/j.diff.2014.10.001] [PMID: 25498523]
Li L, Liu W, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death Dis 2018; 9(5): 480.
[http://dx.doi.org/10.1038/s41419-018-0480-6] [PMID: 29691366]
Yuan L, Sun J, Cheng F, et al. Acetyltransferase MORF regulates osteogenic differentiation potential of periodontal ligament stem cells. J Pract Stomatol 2016; 32(6): 778-82.
Shuang L, et al. The effect of epigenetics and its regulation on periodontal disease. Int J Stomatol 2017.
de Boer J, Licht R, Bongers M, van der Klundert T, Arends R, van Blitterswijk C. Inhibition of histone acetylation as a tool in bone tissue engineering. Tissue Eng 2006; 12(10): 2927-37.
[http://dx.doi.org/10.1089/ten.2006.12.2927] [PMID: 17518660]
Fu Y, Zhang P, Ge J, et al. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol 2014; 54: 68-77.
[http://dx.doi.org/10.1016/j.biocel.2014.07.003] [PMID: 25019367]
Huynh NC, Everts V, Ampornaramveth RS. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep 2017; 7: 33-40.
[http://dx.doi.org/10.1016/j.bonr.2017.08.001] [PMID: 28856178]
Razidlo DF, Whitney TJ, Casper ME, et al. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One 2010; 5(7)e11492
[http://dx.doi.org/10.1371/journal.pone.0011492] [PMID: 20628553 ]
Xia H, Lin X, Gao W, et al. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater 2018; 3(7): 174-93.
Wang J, Wang CD, Zhang N, et al. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 2016; 7e2221.
[http://dx.doi.org/10.1038/cddis.2016.112] [PMID: 27171263]
Lautz TB, Naiditch JA, Clark S, Chu F, Madonna MB. Efficacy of class I and II vs. class III histone deacetylase inhibitors in neuroblastoma. J Pediatr Surg 2012; 47(6): 1267-71.
[http://dx.doi.org/10.1016/j.jpedsurg.2012.03.039] [PMID: 22703804]
Shimizu E, Selvamurugan N, Westendorf JJ, Partridge NC. Parathyroid hormone regulates histone deacetylases in osteoblasts. Ann N Y Acad Sci 2007; 1116: 349-53.
[http://dx.doi.org/10.1196/annals.1402.037] [PMID: 17656568]
Mishra R, Bishop T, Valerio IL, Fisher JP, Dean D. The potential impact of bone tissue engineering in the clinic. Regen Med 2016; 11(6): 571-87.
[http://dx.doi.org/10.2217/rme-2016-0042] [PMID: 27549369]
Pirraco RP, Iwata T, Yoshida T, et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Lab Invest 2014; 94(6): 663-73.
[http://dx.doi.org/10.1038/labinvest.2014.55] [PMID: 24709778]
Huynh NC, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone 2017; 95: 76-84.
[http://dx.doi.org/10.1016/j.bone.2016.11.017] [PMID: 27871909]
Xu S, De Veirman K, Evans H, et al. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 2013; 34(5): 699-709.
[http://dx.doi.org/10.1038/aps.2012.182] [PMID: 23564084]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [24 - 31]
Pages: 8
DOI: 10.2174/1574888X14666190905155516
Price: $65

Article Metrics

PDF: 15