Differential S-acylation of Enveloped Viruses

Author(s): Larisa V. Kordyukova*, Marina V. Serebryakova, Vladislav V. Khrustalev, Michael Veit

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.

Keywords: Enveloped viruses, influenza virus, S-acylation, palmitate, stearate, MALDI-TOF MS, DHHC-acyl-transferases.

[1]
Hentschel, A.; Zahedi, R.P.; Ahrends, R. Protein lipid modifications-More than just a greasy ballast. Proteomics, 2016, 16(5), 759-782.
[http://dx.doi.org/10.1002/pmic.201500353] [PMID: 26683279]
[2]
Resh, M.D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res., 2016, 63, 120-131.
[http://dx.doi.org/10.1016/j.plipres.2016.05.002] [PMID: 27233110]
[3]
Sobocińska, J.; Roszczenko-Jasińska, P.; Ciesielska, A.; Kwiatkowska, K. Protein palmitoylation and its role in bacterial and viral infections. Front. Immunol., 2018, 8, 2003.
[http://dx.doi.org/10.3389/fimmu.2017.02003] [PMID: 29403483]
[4]
Zaballa, M-E.; van der Goot, F.G. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit. Rev. Biochem. Mol. Biol., 2018, 53(4), 420-451.
[http://dx.doi.org/10.1080/10409238.2018.1488804] [PMID: 29999430]
[5]
Schmidt, M.F.; Schlesinger, M.J. Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell, 1979, 17(4), 813-819.
[http://dx.doi.org/10.1016/0092-8674(79)90321-0] [PMID: 226266]
[6]
Roth, A.F.; Wan, J.; Bailey, A.O.; Sun, B.; Kuchar, J.A.; Green, W.N.; Phinney, B.S.; Yates, J.R., III; Davis, N.G. Global analysis of protein palmitoylation in yeast. Cell, 2006, 125(5), 1003-1013.
[http://dx.doi.org/10.1016/j.cell.2006.03.042] [PMID: 16751107]
[7]
Turnbull, D.; Hemsley, P.A. Fats and function: protein lipid modifications in plant cell signalling. Curr. Opin. Plant Biol., 2017, 40, 63-70.
[http://dx.doi.org/10.1016/j.pbi.2017.07.007] [PMID: 28772175]
[8]
Nile, A.H.; Hannoush, R.N. Fatty acylation of Wnt proteins. Nat. Chem. Biol., 2016, 12(2), 60-69.
[http://dx.doi.org/10.1038/nchembio.2005] [PMID: 26784846]
[9]
Fukata, Y.; Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci., 2010, 11(3), 161-175.
[http://dx.doi.org/10.1038/nrn2788] [PMID: 20168314]
[10]
Resh, M.D. Palmitoylation of proteins in cancer. Biochem. Soc. Trans., 2017, 45(2), 409-416.
[http://dx.doi.org/10.1042/BST20160233] [PMID: 28408481]
[11]
Blanc, M.; Blaskovic, S.; van der Goot, F.G. Palmitoylation, pathogens and their host. Biochem. Soc. Trans., 2013, 41(1), 84-88.
[http://dx.doi.org/10.1042/BST20120337] [PMID: 23356263]
[12]
Veit, M. Palmitoylation of virus proteins. Biol. Cell, 2012, 104(9), 493-515.
[http://dx.doi.org/10.1111/boc.201200006] [PMID: 22548323]
[13]
Lin, D.T.S.; Davis, N.G.; Conibear, E. Targeting the Ras palmitoylation/depalmitoylation cycle in cancer. Biochem. Soc. Trans., 2017, 45(4), 913-921.
[http://dx.doi.org/10.1042/BST20160303] [PMID: 28630138]
[14]
Rocks, O.; Gerauer, M.; Vartak, N.; Koch, S.; Huang, Z-P.; Pechlivanis, M.; Kuhlmann, J.; Brunsveld, L.; Chandra, A.; Ellinger, B.; Waldmann, H.; Bastiaens, P.I. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell, 2010, 141(3), 458-471.
[http://dx.doi.org/10.1016/j.cell.2010.04.007] [PMID: 20416930]
[15]
Blaskovic, S.; Blanc, M.; van der Goot, F.G. What does S-palmitoylation do to membrane proteins? FEBS J., 2013, 280(12), 2766-2774.
[http://dx.doi.org/10.1111/febs.12263] [PMID: 23551889]
[16]
Chamberlain, L.H.; Shipston, M.J. The physiology of protein S-acylation. Physiol. Rev., 2015, 95(2), 341-376.
[http://dx.doi.org/10.1152/physrev.00032.2014] [PMID: 25834228]
[17]
Anderson, A.M.; Ragan, M.A. Palmitoylation: a protein S-acylation with implications for breast cancer. NPJ Breast Cancer, 2016, 2(1), 16028.
[http://dx.doi.org/10.1038/npjbcancer.2016.28] [PMID: 28721385]
[18]
Collins, M.O.; Woodley, K.T.; Choudhary, J.S. Global, site-specific analysis of neuronal protein S-acylation. Sci. Rep., 2017, 7(1), 4683.
[http://dx.doi.org/10.1038/s41598-017-04580-1] [PMID: 28680068]
[19]
Blaskovic, S.; Adibekian, A.; Blanc, M.; van der Goot, G.F. Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem. Phys. Lipids, 2014, 180, 44-52.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.02.001] [PMID: 24534427]
[20]
Martin, D.D.O.; Hayden, M.R. Post-translational myristoylation at the cross roads of cell death, autophagy and neurodegeneration. Biochem. Soc. Trans., 2015, 43(2), 229-234.
[http://dx.doi.org/10.1042/BST20140281] [PMID: 25849922]
[21]
Maurer-Stroh, S.; Eisenhaber, B.; Eisenhaber, F. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol., 2002, 317(4), 541-557.
[http://dx.doi.org/10.1006/jmbi.2002.5426] [PMID: 11955008]
[22]
Korycka, J.; Łach, A.; Heger, E.; Bogusławska, D.M.; Wolny, M.; Toporkiewicz, M.; Augoff, K.; Korzeniewski, J.; Sikorski, A.F. Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur. J. Cell Biol., 2012, 91(2), 107-117.
[http://dx.doi.org/10.1016/j.ejcb.2011.09.013] [PMID: 22178113]
[23]
Gottlieb, C.D.; Linder, M.E. Structure and function of DHHC protein S-acyltransferases. Biochem. Soc. Trans., 2017, 45(4), 923-928.
[http://dx.doi.org/10.1042/BST20160304] [PMID: 28630137]
[24]
Maurer-Stroh, S.; Eisenhaber, F. Myristoylation of viral and bacterial proteins. Trends Microbiol., 2004, 12(4), 178-185.
[http://dx.doi.org/10.1016/j.tim.2004.02.006] [PMID: 15051068]
[25]
Blanc, M.; David, F.; Abrami, L.; Migliozzi, D.; Armand, F.; Bürgi, J.; van der Goot, F.G. SwissPalm: protein Palmitoylation database. F1000 Res., 2015, 4, 261.
[http://dx.doi.org/10.12688/f1000research.6464.1] [PMID: 26339475]
[26]
Yount, J.S.; Karssemeijer, R.A.; Hang, H.C. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J. Biol. Chem., 2012, 287(23), 19631-19641.
[http://dx.doi.org/10.1074/jbc.M112.362095] [PMID: 22511783]
[27]
Venne, A.S.; Kollipara, L.; Zahedi, R.P. The next level of complexity: crosstalk of posttranslational modifications. Proteomics, 2014, 14(4-5), 513-524.
[http://dx.doi.org/10.1002/pmic.201300344] [PMID: 24339426]
[28]
Kordyukova, L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res., 2017, 227, 183-199.
[http://dx.doi.org/10.1016/j.virusres.2016.09.014] [PMID: 27773768]
[29]
Zhou, W.; Resh, M.D. Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J. Virol., 1996, 70(12), 8540-8548.
[PMID: 8970978]
[30]
Veit, M.; Thaa, B. Association of influenza virus proteins with membrane rafts. Adv. Virol., 2011.2011370606
[http://dx.doi.org/10.1155/2011/370606] [PMID: 22312341]
[31]
Rossman, J.S.; Lamb, R.A. Influenza virus assembly and budding. Virology, 2011, 411(2), 229-236.
[http://dx.doi.org/10.1016/j.virol.2010.12.003] [PMID: 21237476]
[32]
Gao, X.; Hannoush, R.N. A Decade of Click Chemistry in Protein Palmitoylation: impact on Discovery and New Biology. Cell Chem. Biol., 2018, 25(3), 236-246.
[http://dx.doi.org/10.1016/j.chembiol.2017.12.002] [PMID: 29290622]
[33]
Drisdel, R.C.; Green, W.N. Labeling and quantifying sites of protein palmitoylation. Biotechniques, 2004, 36(2), 276-285.
[http://dx.doi.org/10.2144/04362RR02] [PMID: 14989092]
[34]
Forrester, M.T.; Hess, D.T.; Thompson, J.W.; Hultman, R.; Moseley, M.A.; Stamler, J.S.; Casey, P.J. Site-specific analysis of protein S-acylation by resin-assisted capture. J. Lipid Res., 2011, 52(2), 393-398.
[http://dx.doi.org/10.1194/jlr.D011106] [PMID: 21044946]
[35]
Wan, J.; Roth, A.F.; Bailey, A.O.; Davis, N.G. Palmitoylated proteins: Purification and identification. Nat. Protoc., 2007, 2(7), 1573-1584.
[http://dx.doi.org/10.1038/nprot.2007.225] [PMID: 17585299]
[36]
Martin, B.R.; Cravatt, B.F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods, 2009, 6(2), 135-138.
[http://dx.doi.org/10.1038/nmeth.1293] [PMID: 19137006]
[37]
Percher, A.; Ramakrishnan, S.; Thinon, E.; Yuan, X.; Yount, J.S.; Hang, H.C. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4302-4307.
[http://dx.doi.org/10.1073/pnas.1602244113] [PMID: 27044110]
[38]
Senyilmaz, D.; Virtue, S.; Xu, X.; Tan, C.Y.; Griffin, J.L.; Miller, A.K.; Vidal-Puig, A.; Teleman, A.A. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature, 2015, 525(7567), 124-128.
[http://dx.doi.org/10.1038/nature14601] [PMID: 26214738]
[39]
Ong, S-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 2002, 1(5), 376-386.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200] [PMID: 12118079]
[40]
Serwa, R.A.; Abaitua, F.; Krause, E.; Tate, E.W.; O’Hare, P. Systems analysis of protein fatty acylation in herpes simplex virus-infected cells using chemical proteomics. Chem. Biol., 2015, 22(8), 1008-1017.
[http://dx.doi.org/10.1016/j.chembiol.2015.06.024] [PMID: 26256475]
[41]
Colquhoun, D.R.; Lyashkov, A.E.; Ubaida Mohien, C.; Aquino, V.N.; Bullock, B.T.; Dinglasan, R.R.; Agnew, B.J.; Graham, D.R.M. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection. Proteomics, 2015, 15(12), 2066-2077.
[http://dx.doi.org/10.1002/pmic.201500063] [PMID: 25914232]
[42]
Greaves, J.; Munro, K.R.; Davidson, S.C.; Riviere, M.; Wojno, J.; Smith, T.K.; Tomkinson, N.C.O.; Chamberlain, L.H. Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry. Proc. Natl. Acad. Sci. USA, 2017, 114(8), E1365-E1374.
[http://dx.doi.org/10.1073/pnas.1612254114] [PMID: 28167757]
[43]
Charron, G.; Zhang, M.M.; Yount, J.S.; Wilson, J.; Raghavan, A.S.; Shamir, E.; Hang, H.C. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc., 2009, 131(13), 4967-4975.
[http://dx.doi.org/10.1021/ja810122f] [PMID: 19281244]
[44]
Hang, H.C.; Geutjes, E-J.; Grotenbreg, G.; Pollington, A.M.; Bijlmakers, M.J.; Ploegh, H.L. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J. Am. Chem. Soc., 2007, 129(10), 2744-2745.
[http://dx.doi.org/10.1021/ja0685001] [PMID: 17305342]
[45]
Thinon, E.; Fernandez, J.P.; Molina, H.; Hang, H.C. Selective enrichment and direct analysis of protein S-palmitoylation sites. J. Proteome Res., 2018, 17(5), 1907-1922.
[http://dx.doi.org/10.1021/acs.jproteome.8b00002] [PMID: 29575903]
[46]
Rodenburg, R.N.P.; Snijder, J.; van de Waterbeemd, M.; Schouten, A.; Granneman, J.; Heck, A.J.R.; Gros, P. Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat. Commun., 2017, 8(1), 1280.
[http://dx.doi.org/10.1038/s41467-017-01461-z] [PMID: 29097667]
[47]
Ponimaskin, E.; Schmidt, M.F. Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology, 1998, 249(2), 325-335.
[http://dx.doi.org/10.1006/viro.1998.9303] [PMID: 9791024]
[48]
Plain, F.; Congreve, S.D.; Yee, R.S.Z.; Kennedy, J.; Howie, J.; Kuo, C-W.; Fraser, N.J.; Fuller, W. An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger. J. Biol. Chem., 2017, 292(25), 10745-10752.
[http://dx.doi.org/10.1074/jbc.M116.773945] [PMID: 28432123]
[49]
Ren, J.; Wen, L.; Gao, X.; Jin, C.; Xue, Y.; Yao, X. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng. Des. Sel., 2008, 21(11), 639-644.
[http://dx.doi.org/10.1093/protein/gzn039] [PMID: 18753194]
[50]
Zhou, F.; Xue, Y.; Yao, X.; Xu, Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics, 2006, 22(7), 894-896.
[http://dx.doi.org/10.1093/bioinformatics/btl013] [PMID: 16434441]
[51]
Xue, Y.; Liu, Z.; Cao, J.; Re, J. Computational prediction of post-translational modification sites in proteins.In: Systems and Computational Biology - Molecular and Cellular Experimental Systems; Yang, N-S., Ed.; IntechOpen, 2011.
[http://dx.doi.org/10.5772/18559]
[52]
Oku, S.; Takahashi, N.; Fukata, Y.; Fukata, M. In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes. J. Biol. Chem., 2013, 288(27), 19816-19829.
[http://dx.doi.org/10.1074/jbc.M112.431676] [PMID: 23687301]
[53]
Lemonidis, K.; MacLeod, R.; Baillie, G.S.; Chamberlain, L.H. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. J. Biol. Chem., 2017, 292(42), 17190-17202.
[http://dx.doi.org/10.1074/jbc.M117.799650] [PMID: 28882895]
[54]
Veit, M.; Kretzschmar, E.; Kuroda, K.; Garten, W.; Schmidt, M.F.; Klenk, H.D.; Rott, R. Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. J. Virol., 1991, 65(5), 2491-2500.
[PMID: 1901916]
[55]
Wilson, J.P.; Raghavan, A.S.; Yang, Y.-Y.; Charron, G.; Hang, H.C. Proteomic analysis of fatty-acylated proteins in Mammalian cells with chemical reporters reveals S -acylation of histone H3 variants Mol. Cell. Proteomics, 2011, 10(3), M110.001198.
[http://dx.doi.org/[https://doi.org/10.1074/mcp.M110.001198]] [PMID: 21076176]
[56]
Liang, X.; Lu, Y.; Neubert, T.A.; Resh, M.D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem., 2002, 277(36), 33032-33040.
[http://dx.doi.org/10.1074/jbc.M204607200] [PMID: 12105219]
[57]
Veit, M.; Serebryakova, M.V.; Kordyukova, L.V. Palmitoylation of influenza virus proteins. Biochem. Soc. Trans., 2013, 41(1), 50-55.
[http://dx.doi.org/10.1042/BST20120210] [PMID: 23356257]
[58]
Xie, Y.; Zheng, Y.; Li, H.; Luo, X.; He, Z.; Cao, S.; Shi, Y.; Zhao, Q.; Xue, Y.; Zuo, Z.; Ren, J. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci. Rep., 2016, 6(1), 28249.
[http://dx.doi.org/10.1038/srep28249] [PMID: 27306108]
[59]
Wang, X-B.; Wu, L-Y.; Wang, Y-C.; Deng, N-Y. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng. Des. Sel., 2009, 22(11), 707-712.
[http://dx.doi.org/10.1093/protein/gzp055] [PMID: 19783671]
[60]
Hu, L-L.; Wan, S-B.; Niu, S.; Shi, X-H.; Li, H-P.; Cai, Y-D.; Chou, K-C. Prediction and analysis of protein palmitoylation sites. Biochimie, 2011, 93(3), 489-496.
[http://dx.doi.org/10.1016/j.biochi.2010.10.022] [PMID: 21075167]
[61]
Li, S.; Li, J.; Ning, L.; Wang, S.; Niu, Y.; Jin, N.; Yao, X.; Liu, H.; Xi, L. In silico identification of protein S-palmitoylation sites and their involvement in human inherited disease. J. Chem. Inf. Model., 2015, 55(9), 2015-2025.
[http://dx.doi.org/10.1021/acs.jcim.5b00276] [PMID: 26274591]
[62]
Shi, S-P.; Sun, X-Y.; Qiu, J-D.; Suo, S-B.; Chen, X.; Huang, S-Y.; Liang, R-P. The prediction of palmitoylation site locations using a multiple feature extraction method. J. Mol. Graph. Model., 2013, 40, 125-130.
[http://dx.doi.org/10.1016/j.jmgm.2012.12.006] [PMID: 23419766]
[63]
Kumari, B.; Kumar, R.; Kumar, M. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One, 2014, 9(2)e89246
[http://dx.doi.org/10.1371/journal.pone.0089246] [PMID: 24586628]
[64]
Schmidt, M.F. The transfer of myristic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. EMBO J., 1984, 3(10), 2295-2300.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02129.x] [PMID: 6094180]
[65]
Hallak, H.; Muszbek, L.; Laposata, M.; Belmonte, E.; Brass, L.F.; Manning, D.R. Covalent binding of arachidonate to G protein alpha subunits of human platelets. J. Biol. Chem., 1994, 269(7), 4713-4716.
[PMID: 8106438]
[66]
Veit, M.; Herrler, G.; Schmidt, M.F.; Rott, R.; Klenk, H.D. The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology, 1990, 177(2), 807-811.
[http://dx.doi.org/10.1016/0042-6822(90)90554-5] [PMID: 2371783]
[67]
Sorek, N.; Yalovsky, S. Analysis of protein S-acylation by gas chromatography-coupled mass spectrometry using purified proteins. Nat. Protoc., 2010, 5(5), 834-840.
[http://dx.doi.org/10.1038/nprot.2010.33] [PMID: 20379138]
[68]
Sorek, N.; Akerman, A.; Yalovsky, S. Analysis of Protein Prenylation and S-Acylation Using Gas Chromatography-Coupled Mass Spectrometry. Methods Mol. Biol., 2013, 1043, 121-134.
[http://dx.doi.org/10.1007/978-1-62703-532-3_13]
[69]
Serebryakova, M.V.; Kordyukova, L.V.; Baratova, L.A.; Markushin, S.G. Mass spectrometric sequencing and acylation character analysis of C-terminal anchoring segment from Influenza A hemagglutinin. Eur. J. Mass Spectrom. (Chichester), 2006, 12(1), 51-62.
[http://dx.doi.org/10.1255/ejms.792] [PMID: 16531651]
[70]
Mineev, K.S.; Lyukmanova, E.N.; Krabben, L.; Serebryakova, M.V.; Shulepko, M.A.; Arseniev, A.S.; Kordyukova, L.V.; Veit, M. Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Eng. Des. Sel., 2013, 26(9), 547-552.
[http://dx.doi.org/10.1093/protein/gzt034] [PMID: 23873663]
[71]
Ji, Y.; Leymarie, N.; Haeussler, D.J.; Bachschmid, M.M.; Costello, C.E.; Lin, C. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem., 2013, 85(24), 11952-11959.
[http://dx.doi.org/10.1021/ac402850s] [PMID: 24279456]
[72]
Kordyukova, L.V.; Serebryakova, M.V. Mass spectrometric approaches to study enveloped viruses: new possibilities for structural biology and prophylactic medicine. Biochemistry (Mosc.), 2012, 77(8), 830-842.
[http://dx.doi.org/10.1134/S0006297912080044] [PMID: 22860905]
[73]
Kordyukova, L.; Krabben, L.; Serebryakova, M.; Veit, M. S-Acylation of Proteins.In: Post-Translational Modification of Proteins: Tools for Functional Proteomics, 3rd ed; Kannicht, C., Ed.; Humana Press: New York, NY, 1934.
[http://dx.doi.org/10.1385/1592591817]
[74]
Kordyukova, L.V.; Ksenofontov, A.L.; Serebryakova, M.V.; Ovchinnikova, T.V.; Fedorova, N.V.; Ivanova, V.T.; Baratova, L.A. Influenza A hemagglutinin C-terminal anchoring peptide: identification and mass spectrometric study. Protein Pept. Lett., 2004, 11(4), 385-391.
[http://dx.doi.org/10.2174/0929866043406850] [PMID: 15327372]
[75]
Kordyukova, L.V.; Serebryakova, M.V.; Baratova, L.A.; Veit, M. S acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine. J. Virol., 2008, 82(18), 9288-9292.
[http://dx.doi.org/10.1128/JVI.00704-08] [PMID: 18596092]
[76]
Serebryakova, M.V.; Kordyukova, L.V.; Semashko, T.A.; Ksenofontov, A.L.; Rudneva, I.A.; Kropotkina, E.A.; Filippova, I.Y.; Veit, M.; Baratova, L.A. Influenza virus hemagglutinin spike neck architectures and interaction with model enzymes evaluated by MALDI-TOF mass spectrometry and bioinformatics tools. Virus Res., 2011, 160(1-2), 294-304.
[http://dx.doi.org/10.1016/j.virusres.2011.07.002] [PMID: 21763731]
[77]
Kordyukova, L. V.; Serebryakova, M. V.; Polyansky, A. A.; Kropotkina, E. A.; Alexeevski, A. V.; Veit, M.; Efremov, R. G.; Filippova, I. Y.; Baratova, L. A. Linker and/or transmembrane regions of influenza A/Group-1, A/Group-2, and Type B virus hemagglutinins are packed differently within trimers. Biochim. Biophys. Acta BBA - Biomembr., 2011, 1808(7), 1843-1854
[78]
Brett, K.; Kordyukova, L.V.; Serebryakova, M.V.; Mintaev, R.R.; Alexeevski, A.V.; Veit, M. Site-specific S-acylation of influenza virus hemagglutinin: The location of the acylation site relative to the membrane border is the decisive factor for attachment of stearate. J. Biol. Chem., 2014, 289(50), 34978-34989.
[http://dx.doi.org/10.1074/jbc.M114.586180] [PMID: 25349209]
[79]
Veit, M.; Reverey, H.; Schmidt, M.F. Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins. Biochem. J., 1996, 318(Pt 1), 163-172.
[http://dx.doi.org/10.1042/bj3180163] [PMID: 8761467]
[80]
Kordyukova, L.V.; Serebryakova, M.V.; Baratova, L.A.; Veit, M. Site-specific attachment of palmitate or stearate to cytoplasmic versus transmembrane cysteines is a common feature of viral spike proteins. Virology, 2010, 398(1), 49-56.
[http://dx.doi.org/10.1016/j.virol.2009.11.039] [PMID: 20006369]
[81]
Jennings, B.C.; Linder, M.E. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J. Biol. Chem., 2012, 287(10), 7236-7245.
[http://dx.doi.org/10.1074/jbc.M111.337246] [PMID: 22247542]
[82]
Rana, M.S.; Kumar, P.; Lee, C-J.; Verardi, R.; Rajashankar, K.R.; Banerjee, A. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science, 2018, 359(6372)eaao6326
[http://dx.doi.org/10.1126/science.aao6326] [PMID: 29326245]
[83]
Lakkaraju, A.K.; Abrami, L.; Lemmin, T.; Blaskovic, S.; Kunz, B.; Kihara, A.; Dal Peraro, M.; van der Goot, F.G. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J., 2012, 31(7), 1823-1835.
[http://dx.doi.org/10.1038/emboj.2012.15] [PMID: 22314232]
[84]
Mintaev, R.R.; Alexeevski, A.V.; Kordyukova, L.V. Co-evolution analysis to predict protein-protein interactions within influenza virus envelope. J. Bioinform. Comput. Biol., 2014, 12(2)1441008
[http://dx.doi.org/10.1142/S021972001441008X] [PMID: 24712535]
[85]
Siche, S.; Brett, K.; Möller, L.; Kordyukova, L.V.; Mintaev, R.R.; Alexeevski, A.V.; Veit, M. Two cytoplasmic acylation sites and an adjacent hydrophobic residue, but no other conserved amino acids in the cytoplasmic tail of HA from influenza A virus are crucial for virus replication. Viruses, 2015, 7(12), 6458-6475.
[http://dx.doi.org/10.3390/v7122950] [PMID: 26670246]
[86]
Thaa, B.; Tielesch, C.; Möller, L.; Schmitt, A.O.; Wolff, T.; Bannert, N.; Herrmann, A.; Veit, M. Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein. J. Gen. Virol., 2012, 93(Pt 2), 282-292.
[http://dx.doi.org/10.1099/vir.0.038554-0] [PMID: 22012459]
[87]
Veit, M.; Siche, S. S-acylation of influenza virus proteins: are enzymes for fatty acid attachment promising drug targets? Vaccine, 2015, 33(49), 7002-7007.
[http://dx.doi.org/10.1016/j.vaccine.2015.08.095] [PMID: 26387429]
[88]
Chen, B.J.; Takeda, M.; Lamb, R.A. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J. Virol., 2005, 79(21), 13673-13684.
[http://dx.doi.org/10.1128/JVI.79.21.13673-13684.2005] [PMID: 16227287]
[89]
Wagner, R.; Herwig, A.; Azzouz, N.; Klenk, H.D. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J. Virol., 2005, 79(10), 6449-6458.
[http://dx.doi.org/10.1128/JVI.79.10.6449-6458.2005] [PMID: 15858028]
[90]
Zurcher, T.; Luo, G.; Palese, P. Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation. J. Virol., 1994, 68(9), 5748-5754.
[PMID: 8057456]
[91]
Ujike, M.; Taguchi, F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses, 2015, 7(4), 1700-1725.
[http://dx.doi.org/10.3390/v7041700] [PMID: 25855243]
[92]
Sakai, T.; Ohuchi, R.; Ohuchi, M. Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J. Virol., 2002, 76(9), 4603-4611.
[http://dx.doi.org/10.1128/JVI.76.9.4603-4611.2002] [PMID: 11932425]
[93]
Wang, M.; Ludwig, K.; Böttcher, C.; Veit, M. The role of stearate attachment to the hemagglutinin-esterase-fusion glycoprotein HEF of influenza C virus. Cell. Microbiol., 2016, 18(5), 692-704.
[http://dx.doi.org/10.1111/cmi.12541] [PMID: 26518983]
[94]
Chlanda, P.; Mekhedov, E.; Waters, H.; Sodt, A.; Schwartz, C.; Nair, V.; Blank, P.S.; Zimmerberg, J. Palmitoylation contributes to membrane curvature in influenza A virus assembly and hemagglutinin-mediated membrane fusion. J. Virol., 2017, 91(21), e00947-e17.
[http://dx.doi.org/10.1128/JVI.00947-17] [PMID: 28794042]
[95]
Serebryakova, M.V.; Kordyukova, L.V.; Rudneva, I.A.; Kropotkina, E.A.; Veit, M.; Baratova, L.A. Mass spectrometry analysis of influenza virus reassortant clones does not reveal an influence of other viral proteins on S-acylation of hemagglutinin. Arch. Virol., 2013, 158(2), 467-472.
[http://dx.doi.org/10.1007/s00705-012-1510-9] [PMID: 23065113]
[96]
Patrone, M.; Coroadinha, A.S.; Teixeira, A.P.; Alves, P.M. Palmitoylation strengthens cholesterol-dependent multimerization and fusion activity of human cytomegalovirus glycoprotein B (gB). J. Biol. Chem., 2016, 291(9), 4711-4722.
[http://dx.doi.org/10.1074/jbc.M115.682252] [PMID: 26694613]
[97]
Chopard, C.; Tong, P.B.V.; Tóth, P.; Schatz, M.; Yezid, H.; Debaisieux, S.; Mettling, C.; Gross, A.; Pugnière, M.; Tu, A.; Strub, J.M.; Mesnard, J.M.; Vitale, N.; Beaumelle, B. Cyclophilin A enables specific HIV-1 Tat palmitoylation and accumulation in uninfected cells. Nat. Commun., 2018, 9(1), 2251.
[http://dx.doi.org/10.1038/s41467-018-04674-y] [PMID: 29884859]
[98]
Taube, R.; Peterlin, M. Lost in transcription: molecular mechanisms that control HIV latency. Viruses, 2013, 5(3), 902-927.
[http://dx.doi.org/10.3390/v5030902] [PMID: 23518577]
[99]
Wang, S.; Mott, K.R.; Wawrowsky, K.; Kousoulas, K.G.; Luscher, B.; Ghiasi, H. Binding of herpes simplex virus 1 UL20 to GODZ (DHHC3) affects its palmitoylation and is essential for infectivity and proper targeting and localization of UL20 and glycoprotein K. J. Virol., 2017, 91(19), e00945-17.
[http://dx.doi.org/10.1128/JVI.00945-17] [PMID: 28724772]
[100]
Wang, S.; Mott, K.R.; Cilluffo, M.; Kilpatrick, C.L.; Murakami, S.; Ljubimov, A.V.; Kousoulas, K.G.; Awasthi, S.; Luscher, B.; Ghiasi, H. The Absence of DHHC3 Affects Primary and Latent HSV-1 Infection. J. Virol., 2018, 92(4), e01599-17.
[101]
Zhang, S.X.; Han, Y.; Blissard, G.W. Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: mapping, functional studies, and lipid rafts. J. Virol., 2003, 77(11), 6265-6273.
[http://dx.doi.org/10.1128/JVI.77.11.6265-6273.2003] [PMID: 12743283]
[102]
McBride, C.E.; Machamer, C.E. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein. Virology, 2010, 405(1), 139-148.
[http://dx.doi.org/10.1016/j.virol.2010.05.031] [PMID: 20580052]
[103]
Ito, H.; Watanabe, S.; Takada, A.; Kawaoka, Y. Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J. Virol., 2001, 75(3), 1576-1580.
[http://dx.doi.org/10.1128/JVI.75.3.1576-1580.2001] [PMID: 11152533]
[104]
Funke, C.; Becker, S.; Dartsch, H.; Klenk, H.D.; Mühlberger, E. Acylation of the Marburg virus glycoprotein. Virology, 1995, 208(1), 289-297.
[http://dx.doi.org/10.1006/viro.1995.1151] [PMID: 11831710]
[105]
Mach, M.; Osinski, K.; Kropff, B.; Schloetzer-Schrehardt, U.; Krzyzaniak, M.; Britt, W. The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. J. Virol., 2007, 81(10), 5212-5224.
[http://dx.doi.org/10.1128/JVI.01463-06] [PMID: 17229708]
[106]
Caballero, M.; Carabaña, J.; Ortego, J.; Fernández-Muñoz, R.; Celma, M.L. Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J. Virol., 1998, 72(10), 8198-8204.
[PMID: 9733862]
[107]
Veit, M.; Schmidt, M.F.; Rott, R. Different palmitoylation of paramyxovirus glycoproteins. Virology, 1989, 168(1), 173-176.
[http://dx.doi.org/10.1016/0042-6822(89)90417-0] [PMID: 2535902]
[108]
Branigan, P.J.; Day, N.D.; Liu, C.; Gutshall, L.L.; Melero, J.A.; Sarisky, R.T.; Del Vecchio, A.M. The cytoplasmic domain of the F protein of Human respiratory syncytial virus is not required for cell fusion. J. Gen. Virol., 2006, 87(Pt 2), 395-398.
[http://dx.doi.org/10.1099/vir.0.81481-0] [PMID: 16432027]
[109]
Gaudin, Y.; Tuffereau, C.; Benmansour, A.; Flamand, A. Fatty acylation of rabies virus proteins. Virology, 1991, 184(1), 441-444.
[http://dx.doi.org/10.1016/0042-6822(91)90866-A] [PMID: 1871978]
[110]
Rousso, I.; Mixon, M.B.; Chen, B.K.; Kim, P.S. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13523-13525.
[http://dx.doi.org/10.1073/pnas.240459697] [PMID: 11095714]
[111]
Schmidt, M.F.; Bracha, M.; Schlesinger, M.J. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. Proc. Natl. Acad. Sci. USA, 1979, 76(4), 1687-1691.
[http://dx.doi.org/10.1073/pnas.76.4.1687] [PMID: 287008]
[112]
Gaedigk-Nitschko, K.; Schlesinger, M.J. Site-directed mutations in Sindbis virus E2 glycoprotein’s cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology, 1991, 183(1), 206-214.
[http://dx.doi.org/10.1016/0042-6822(91)90133-V] [PMID: 1647069]
[113]
Ivanova, L.; Schlesinger, M.J. Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding. J. Virol., 1993, 67(5), 2546-2551.
[PMID: 8474160]
[114]
Ryan, C.; Ivanova, L.; Schlesinger, M.J. Effects of site-directed mutations of transmembrane cysteines in sindbis virus E1 and E2 glycoproteins on palmitylation and virus replication. Virology, 1998, 249(1), 62-67.
[http://dx.doi.org/10.1006/viro.1998.9281] [PMID: 9740777]
[115]
Schmidt, M.; Schmidt, M.F.; Rott, R. Chemical identification of cysteine as palmitoylation site in a transmembrane protein (Semliki Forest virus E1). J. Biol. Chem., 1988, 263(35), 18635-18639.
[PMID: 3143715]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 8
Year: 2019
Page: [588 - 600]
Pages: 13
DOI: 10.2174/0929866526666190603082521

Article Metrics

PDF: 27
HTML: 7
EPUB: 1
PRC: 1