Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D.

Author(s): Cadena-Cadena Francisco, Cárdenas-López José Luis*, Ezquerra-Brauer Josafat Marina, Cinco-Moroyoqui Francisco Javier, López-Zavala Alonso Alexis, Santacruz-Ortega Hisila del Carmen, Rivero-Espejel Ignacio Alfredo

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 7 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy.

Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions.

Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software.

Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified.

Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.

Keywords: Jumbo squid, cathepsin D denaturation, circular dichroism, oligomerization, Far-UV CD, hepatopancreas.

Press, E.M.; Porter, R.R.; Cebra, J. The isolation and properties of a proteolytic enzyme, cathepsin D, from bovine spleen. Biochem. J., 1960, 74(3), 501-514. [http://dx.doi.org/10.1042/bj0740501]. [PMID: 14434765].
Fusek, M.; Vetvicka, V. Dual role of cathepsin D: Ligand and protease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2005, 149(1), 43-50. [http://dx.doi.org/10.5507/bp.2005.003]. [PMID: 16170387].
Crabtree, D.; Dodson, M.; Ouyang, X.; Boyer-Guittaut, M.; Liang, Q.; Ballestas, M.E.; Fineberg, N.; Zhang, J. Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH-SY5Y cells. J. Neurochem., 2014, 128(6), 950-961. [http://dx.doi.org/10.1111/jnc.12497]. [PMID: 24138030].
Di Domenico, F.; Tramutola, A.; Perluigi, M. Cathepsin D as a therapeutic target in Alzheimer’s disease. Expert Opin. Ther. Targets, 2016, 20(12), 1393-1395. [http://dx.doi.org/10.1080/14728222.2016.1252334]. [PMID: 27805462].
Rojo, L.; García-Carreño, F.; de Los Angeles Navarrete del Toro, M. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: Biochemical characterization. Mar. Biotechnol. (NY), 2013, 15(1), 87-96. [http://dx.doi.org/10.1007/s10126-012-9461-4]. [PMID: 22648335].
Xiao, R.; Zhang, Z.; Wang, H.; Han, Y.; Gou, M.; Li, B.; Duan, D.; Wang, J.; Liu, X.; Li, Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Dev. Comp. Immunol., 2015, 49(1), 149-156. [http://dx.doi.org/10.1016/j.dci.2014.10.014]. [PMID: 25450905].
Carter, C.W.; Sweet, R.M. Macromolecular Crystallography. In: Gulf Professional Publishing: Houston, Texas; , 1997.
Nelson, D.; Cox, M. Lehninger Principles of Biochemistry, International Ed.; Macmillan Learning: New York, NY, 2017.
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952. [http://dx.doi.org/10.1080/07391102.2013.843062]. [PMID: 24125112].
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 287(2), 252-260. [http://dx.doi.org/10.1006/abio.2000.4880]. [PMID: 11112271].
Woody, R.W. Circular dichroism. Methods Enzymol., 1995, 246, 34-71. [http://dx.doi.org/10.1016/0076-6879(95)46006-3]. [PMID: 7538625].
Tousi, S.H.; Saberi, M.R.; Chamani, J. Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: Evidence for allocating the binding site. Protein Pept. Lett., 2010, 17(12), 1524-1535. [http://dx.doi.org/10.2174/0929866511009011524]. [PMID: 20937032].
Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc., 2006, 1(6), 2527-2535. [http://dx.doi.org/10.1038/nprot.2006.204]. [PMID: 17406506].
Baldwin; Bhat, T.N.; Gulnik, S.; Hosur, M.V.; Sowder, R.C.; Cachau, R.E.; Collins, J.; Silva, A.M.; Erickson, J.W. Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6796-6800. [https://dx.doi.org/10.1073%2Fpnas.90.14.6796]. [PMID: 8393577].
Grädler, U.; Czodrowski, P.; Tsaklakidis, C.; Klein, M.; Werkmann, D.; Lindemann, S.; Maskos, K.; Leuthner, B. Structure-based optimization of non-peptidic Cathepsin D inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4141-4150. [http://dx.doi.org/10.1016/j.bmcl.2014.07.054]. [PMID: 25086681].
Barker, P.L.; Gibson, R. Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). J. Exp. Mar. Biol. Ecol., 1977, 26(3), 297-324. [http://dx.doi.org/10.1016/0022-0981(77)90089-2].
Rojo, L.; Sotelo-Mundo, R.; García-Carreño, F.; Gráf, L. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2010, 157(4), 394-400. [http://dx.doi.org/10.1016/j.cbpb.2010.08.009]. [PMID: 20817002].
Komai, T.; Kawabata, C.; Amano, M.; Lee, B.R.; Ichishima, E. Todarepsin, a new cathepsin D from hepatopancreas of Japanese common squid (Todarodes pacificus). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 137(3), 373-382. [http://dx.doi.org/10.1016/j.cbpc.2004.01.006]. [PMID: 15050524].
Gildberg, A. Purification and characterisation of cathepsin D from the digestive gland of the pelagic squid Todarodes sagittatus. J. Sci. Food Agric., 1987, 39(1), 85-94. [http://dx.doi.org/10.1002/jsfa.2740390110].
Venugopal, A.; Siva Kumar, N. Biochemical characterization of cathepsin D from the mussel Lamellidens corrianus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2014, 169, 25-30. [http://dx.doi.org/10.1016/j.cbpb.2013.12.003]. [PMID: 24365170].
Gudmundsdóttir, Á.; Fox, J.W.; Chlebowski, J.F.; Craik, C.S. Characteristics, protein engineering and applications of psychrophilic marine proteinases from Atlantic cod. Studies in Organic Chemistry., 1993, 47, 205-214. [https://doi.org/10.1016/B978-0-444-89372-7.50027-0].
Balti, R.; Hmidet, N.; Jellouli, K.; Nedjar-Arroume, N.; Guillochon, D.; Nasri, M. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): Purification and characterization. J. Agric. Food Chem., 2010, 58(19), 10623-10630. [http://dx.doi.org/10.1021/jf102233d]. [PMID: 20843039].
Lee, A.Y.; Gulnik, S.V.; Erickson, J.W. Conformational switching in an aspartic proteinase. Nat. Struct. Biol., 1998, 5(10), 866-871. [http://dx.doi.org/10.1038/2306]. [PMID: 9783744].
Scarborough, P.E.; Guruprasad, K.; Topham, C.; Richo, G.R.; Conner, G.E.; Blundell, T.L.; Dunn, B.M. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Protein Sci., 1993, 2(2), 264-276. [http://dx.doi.org/10.1002/pro.5560020215]. [PMID: 8443603].
Sun, H.; Lou, X.; Shan, Q.; Zhang, J.; Zhu, X.; Zhang, J.; Wang, Y.; Xie, Y.; Xu, N.; Liu, S. Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins. PLoS One, 2013, 8(6)e65733 [http://dx.doi.org/10.1371/journal.pone.0065733]. [PMID: 23840360].
Keil, B. Specificity of proteolysis; Springer Science & Business Media: Berlin, 2012, p. 336.
Gildberg, A. Aspartic proteinases in fishes and aquatic invertebrates. Comp. Biochem. Physiol. B, 1988, 91(3), 425-435. [http://dx.doi.org/10.1016/0305-0491(88)90002-8]. [PMID: 3148385].
Vetri, V.; Militello, V. Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophys. Chem., 2005, 113(1), 83-91. [http://dx.doi.org/10.1016/j.bpc.2004.07.042]. [PMID: 15617813].
Celis-Guerrero, L.E.; García-Carreño, F.L.; del Toro, M.A.N. Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar. Biotechnol. (NY), 2004, 6(3), 262-269. [http://dx.doi.org/10.1007/s10126-003-0032-6]. [PMID: 15136918].
Wang, T.; Wang, Y-Q.; Su, Y-L.; Jiang, Z-Y. Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. J. Membr. Sci., 2006, 280(1-2), 343-350. [http://dx.doi.org/10.1016/j.memsci.2006.01.038].
Serna-Cock, L.; Velásquez, M.; Ayala, A.A. Efecto de la ultrafiltración sobre las propiedades reológicas de gelatina comestible de origen bovino. Inf. Tecnol., 2010, 21(6), 91-102. [http://dx.doi.org/10.4067/S0718-07642010000600011].
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685. [http://dx.doi.org/10.1038/227680a0]. [PMID: 5432063].
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. [http://dx.doi.org/10.1016/0003-2697(76)90527-3]. [PMID: 942051].
Barrett, A.J.; Cathepsin, D.; Cathepsin, D. Purification of isoenzymes from human and chicken liver. Biochem. J., 1970, 117(3), 601-607. [http://dx.doi.org/10.1042/bj1170601]. [PMID: 5419752].
Yasuda, Y.; Kageyama, T.; Akamine, A.; Shibata, M.; Kominami, E.; Uchiyama, Y.; Yamamoto, K. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem., 1999, 125(6), 1137-1143. [http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022396]. [PMID: 10348917].
Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta (BBA)-. Proteins and Proteomics, 2005, 1751(2), 119-139. [http://dx.doi.org/10.1016/j.bbapap.2005.06.005].
Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 2008, 89(5), 392-400. [http://dx.doi.org/10.1002/bip.20853]. [PMID: 17896349].
Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins, 2012, 80(2), 374-381. [http://dx.doi.org/10.1002/prot.23188]. [PMID: 22095872].
Raison, J.K. The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. In: Membrane structure and mechanisms of biological energy transduction; Springer: Berlin, 1972; pp. 559-583. [http://dx.doi.org/10.1007/978-1-4684-2016-6_30]
Holzwarth, G.; Doty, P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc., 1965, 87(2), 218-228. [http://dx.doi.org/10.1021/ja01080a015]. [PMID: 14228459].
David, N.L.; Cox, M. Lehninger. Principios de bioquímica: España , 2015.
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multispectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J. Solution Chem., 2011, 40(11), 1905-1931. [http://dx.doi.org/10.1007/s10953-011-9766-3].
Tilton, R.F., Jr; Dewan, J.C.; Petsko, G.A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 1992, 31(9), 2469-2481. [http://dx.doi.org/10.1021/bi00124a006]. [PMID: 1547232].
Kjaergaard, M.; Nørholm, A.B.; Hendus-Altenburger, R.; Pedersen, S.F.; Poulsen, F.M.; Kragelund, B.B. Temperature-dependent structural changes in intrinsically disordered proteins: Formation of α-helices or loss of polyproline II? Protein Sci., 2010, 19(8), 1555-1564. [http://dx.doi.org/10.1002/pro.435]. [PMID: 20556825].
Lees, J.G.; Miles, A.J.; Wien, F.; Wallace, B.A. A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics, 2006, 22(16), 1955-1962. [http://dx.doi.org/10.1093/bioinformatics/btl327]. [PMID: 16787970].
Cantor, C.R.; Schimmel, P.R. Biophysical chemistry, part III: The behaviour of biological macromolecules. San Francisco, CA, , 1980.
Pace, C.N.; Scholtz, J.M. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J., 1998, 75(1), 422-427. [http://dx.doi.org/10.1016/S0006-3495(98)77529-0]. [PMID: 9649402].
Sengupta, D.; Behera, R.N.; Smith, J.C.; Ullmann, G.M. The α helix dipole: Screened out? Structure, 2005, 13(6), 849-855. [http://dx.doi.org/10.1016/j.str.2005.03.010]. [PMID: 15939016].
Qin, Z.; Buehler, M.J. Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: Evidence for a critical filament length scale. Phys. Rev. Lett., 2010, 104(19)198304 [http://dx.doi.org/10.1103/PhysRevLett.104.198304]. [PMID: 20867006].
Ding, F.; Borreguero, J.M.; Buldyrey, S.V.; Stanley, H.E.; Dokholyan, N.V. Mechanism for the α-helix to β-hairpin transition. Proteins, 2003, 53(2), 220-228. [http://dx.doi.org/10.1002/prot.10468]. [PMID: 14517973].
Barrow, C.J.; Yasuda, A.; Kenny, P.T.M.; Zagorski, M.G. Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J. Mol. Biol., 1992, 225(4), 1075-1093. [http://dx.doi.org/10.1016/0022-2836(92)90106-T]. [PMID: 1613791].
Bierzynski, A.; Kim, P.S.; Baldwin, R.L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc. Natl. Acad. Sci. USA, 1982, 79(8), 2470-2474. [http://dx.doi.org/10.1073/pnas.79.8.2470]. [PMID: 6283528].
Macdonald, B.; McCarley, S.; Noeen, S.; van Giessen, A.E. Protein-protein interactions affect alpha helix stability in crowded environments. J. Phys. Chem. B, 2015, 119(7), 2956-2967. [http://dx.doi.org/10.1021/jp512630s]. [PMID: 25591002].
Cabra, V.; Arreguin, R.; Vazquez-Duhalt, R.; Farres, A. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochim. Biophys. Acta, 2006, 1764(6), 1110-1118. [http://dx.doi.org/10.1016/j.bbapap.2006.04.002]. [PMID: 16765112].
Yadav, S.; Gupta, S.; Saxena, J.K. Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and Circular Dichroism spectroscopy. Int. J. Biol. Macromol., 2017, 102, 986-995. [http://dx.doi.org/10.1016/j.ijbiomac.2017.04.053]. [PMID: 28416397].
Nelson, R.J. An introduction to behavioral endocrinology, 5th ed; Sinauer Associates: Sunderland, MA, 2005, p. 722.
Varley, P.G.; Pain, R.H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol., 1991, 220(2), 531-538. [http://dx.doi.org/10.1016/0022-2836(91)90028-5]. [PMID: 1856872].
Tello-Solis, S.R.; Hernandez-Arana, A. Effect of irreversibility on the thermodynamic characterization of the thermal denaturation of Aspergillus saitoi acid proteinase. Biochem. J., 1995, 311(Pt 3), 969-974. [http://dx.doi.org/10.1042/bj3110969]. [PMID: 7487958].
Arroyo-Reyna, A.; Hernández-Arana, A. The thermal denaturation of stem bromelain is consistent with an irreversible two-state model. Biochim. Biophys. Acta, 1995, 1248(2), 123-128. [http://dx.doi.org/10.1016/0167-4838(95)00014-L]. [PMID: 7748893].
Tello-Solís, S.R.; Romero-García, B. Thermal denaturation of porcine pepsin: A study by circular dichroism. Int. J. Biol. Macromol., 2001, 28(2), 129-133. [http://dx.doi.org/10.1016/S0141-8130(00)00154-9]. [PMID: 11164229].
Bull, H.B.; Breese, K. Thermal transitions of proteins. Arch. Biochem. Biophys., 1973, 156(2), 604-612. [http://dx.doi.org/10.1016/0003-9861(73)90311-1]. [PMID: 4352419].
Sinha, N.; Smith-Gill, S.J. Electrostatics in protein binding and function. Curr. Protein Pept. Sci., 2002, 3(6), 601-614. [http://dx.doi.org/10.2174/1389203023380431]. [PMID: 12470214].
Okazaki, K.; Sato, T.; Takano, M. Temperature-enhanced association of proteins due to electrostatic interaction: a coarse-grained simulation of actin-myosin binding. J. Am. Chem. Soc., 2012, 134(21), 8918-8925. [http://dx.doi.org/10.1021/ja301447j]. [PMID: 22559201].
Xia, Y-L.; Sun, J-H.; Ai, S-M.; Li, Y.; Du, X.; Sang, P.; Yang, L-Q.; Fu, Y-X.; Liu, S-Q. Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. RSC Advances, 2018, 8(52), 29698-29713. [http://dx.doi.org/10.1039/C8RA05845H].
Muñoz, V.; Sanchez-Ruiz, J.M. Exploring protein-folding ensembles: A variable-barrier model for the analysis of equilibrium unfolding experiments. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17646-17651. [http://dx.doi.org/10.1073/pnas.0405829101]. [PMID: 15591110].
Bischof, J.C.; He, X. Thermal stability of proteins. Ann. N. Y. Acad. Sci., 2005, 1066(1), 12-33. [http://dx.doi.org/10.1196/annals.1363.003]. [PMID: 16533916].
Back, J.F.; Oakenfull, D.; Smith, M.B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 1979, 18(23), 5191-5196. [http://dx.doi.org/10.1021/bi00590a025]. [PMID: 497177].
Kornblatt, M.J.; Lange, R.; Balny, C. Can monomers of yeast enolase have enzymatic activity? Eur. J. Biochem., 1998, 251(3), 775-780. [http://dx.doi.org/10.1046/j.1432-1327.1998.2510775.x]. [PMID: 9490051].
Kornblatt, M.J.; Lange, R.; Balny, C. Use of hydrostatic pressure to produce ‘native’ monomers of yeast enolase. Eur. J. Biochem., 2004, 271(19), 3897-3904. [http://dx.doi.org/10.1111/j.1432-1033.2004.04326.x]. [PMID: 15373835].
Benjwal, S.; Verma, S.; Röhm, K.H.; Gursky, O. Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci., 2006, 15(3), 635-639. [http://dx.doi.org/10.1110/ps.051917406]. [PMID: 16452626].
Gao, C.; Taylor, J.; Wellner, N.; Byaruhanga, Y.B.; Parker, M.L.; Mills, E.N.; Belton, P.S. Effect of preparation conditions on protein secondary structure and biofilm formation of kafirin. J. Agric. Food Chem., 2005, 53(2), 306-312. [http://dx.doi.org/10.1021/jf0492666]. [PMID: 15656666].
Tello-Solís, S.R.; Arroyo-Reyna, A. Estudio por dicroísmo circular de la desnaturalización térmica de la subtilisina BPN’: Modelo irreversible de dos estados. Rev. Soc. Quím. Méx., 2002, 46(2), 105-108.
Bull, H.B.; Breese, K. Thermal stability of proteins. Arch. Biochem. Biophys., 1973, 158(2), 681-686. [http://dx.doi.org/10.1016/0003-9861(73)90561-4]. [PMID: 4782528].

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 22 July, 2019
Page: [532 - 541]
Pages: 10
DOI: 10.2174/0929866526666190405124353
Price: $65

Article Metrics

PDF: 29
PRC: 2