Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Dry Grinding Synthesis and Docking Study of Cyclopentanone-Sulfur Containing Compounds with Anti-Proliferative Activity for HepG-2 and A-549 Cancer Cell Lines

Author(s): Zeinab A. Muhammad, Thoraya A. Farghaly*, Sami A. Al-Hussain, Mastoura M. Edrees, Magdi E. A. Zaki and Sara N. Shabaan

Volume 18, Issue 10, 2022

Published on: 15 June, 2022

Page: [1086 - 1099] Pages: 14

DOI: 10.2174/1573406418666220324155119

Price: $65

Abstract

Background: The dry grinding method is a green technique for efficient organic synthesis with numerous advantages, such as mild reaction conditions, environmental acceptability, simple segregation, and refinement, as well as elevated selectivity and efficiency.

Objective: The aim of the present work is to design and synthesize cyclopentylidene-hydrazino)- thiazole derivatives using dry grinding conditions to investigate their antitumor activity against two cell lines, namely, HepG-2 and A-549.

Methods: In this context, we synthesized a series of thiazole incorporated cyclopentane through hydrazone- group and 2-cyclopentylidenehydrazine-1-carbimidic-2-ethoxy-N-aryl-2-oxoacetohydrazonic thioanhydride under dry grinding within minutes and excellent to good yield.

Results: All spectral data confirmed the proposed structures. In addition to antitumor activity investigations against the two kinds of cancer cells, molecular docking studies were conducted using Macrophage Migration Inhibitory Factor (Pdb: 4k9g) and Lysozyme C (Pdb: 2f4a), the overexpressed proteins in the human liver cancer cell (HepG-2) and lung cancer cell lines (A-549), respectively.

Conclusion: Two derivatives, 9b, and 9d, showed the highest antitumor activity against the two cell lines HepG-2 and A-549. Also, docking results revealed a high energy score ranging from -7.1590 to -5.9364 Kcal/mol with Macrophage Migration Inhibitory Factor (Pdb: 4k9g), more than that the energy score = -4.118 Kcal/mol of co-crystallized ligand. Moreover, the tested derivatives showed energy score varies from -6.0802 to -4.5503 Kcal/mol against Lysozyme C (Pdb: 2f4a).

Keywords: Thiazoles, free solvent reaction, dry grinding, antitumor activity, docking study, cancer.

Graphical Abstract
[1]
Sener, S.F.; Grey, N. The global burden of cancer. J. Surg. Oncol., 2005, 92(1), 1-3.
[http://dx.doi.org/10.1002/jso.20335] [PMID: 16180214]
[2]
Salminen, E.; Izewska, J.; Andreo, P. IAEA’s role in the global management of cancer-focus on upgrading radiotherapy services. Acta Oncol., 2005, 44(8), 816-824.
[http://dx.doi.org/10.1080/02841860500341355] [PMID: 16332588]
[3]
Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Chem., 2020, 98, 103761.
[http://dx.doi.org/10.1016/j.bioorg.2020.103761] [PMID: 32200332]
[4]
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Fallah, M.; Ghassemi-Barghi, N.; Ghasemian, M.; Emami, S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur. J. Med. Chem., 2020, 185, 111784.
[http://dx.doi.org/10.1016/j.ejmech.2019.111784] [PMID: 31669850]
[5]
Omar, A.M.; Bajorath, J.; Ihmaid, S.; Mohamed, H.M.; El-Agrody, A.M.; Mora, A.; El-Araby, M.E.; Ahmed, H.E. Novel molecular dis-covery of promising amidine-based thiazole analogues as potent dual matrix metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg. Chem., 2020, 101, 103992.
[http://dx.doi.org/10.1016/j.bioorg.2020.103992] [PMID: 32554279]
[6]
Ravi, B.N.; Keshavayya, J.; Mallikarjuna, N.M.; Kumar, V.; Zahara, F.N. Synthesis, spectral characterization, anticancer and cyclic volt-ammetric studies of azo colorants containing thiazole structure. Chem. Data Coll., 2021, 33, 100686.
[http://dx.doi.org/10.1016/j.cdc.2021.100686]
[7]
Utkina, N.K.; Sagitol, D. A new thiazole containing pyridoacridine alkaloid from a Vietnamese ascidian. Nat. Prod. Commun., 2015, 10(9), 1547-1548.
[http://dx.doi.org/10.1177/1934578X1501000915] [PMID: 26594755]
[8]
Videnov, G.; Kaiser, D.; Kempter, C.; Jung, G. Synthesis of naturally occurring, conformationally restricted oxazole- and thiazole-containing di- and tripeptide mimetics. Angew. Chem. Int. Ed. Engl., 1996, 35(1314), 1503-1506.
[http://dx.doi.org/10.1002/anie.199615031]
[9]
Kralova, K.; Loos, D.; Sersen, F.; Sidoova, E. QSAR study concerning photosynthesis inhibition in algae and plant chloroplasts by 2-alkylthio-6-R-benzothiazoles. I. 2-Alkylthio-6- aminobenzothiazoles, 3-(2-alkyltio-6-benzothiazolylaminomethyl)- 2-benzothiazolinethiones, 3-(2-alkylthio-6-benzothiazolylaminomethyl)-6-bromo-2-benzothiazolinones. Chem. Pap., 1994, 48(6), 198-202.
[10]
Molnár, I.; Schupp, T.; Ono, M.; Zirkle, R.; Milnamow, M.; Nowak-Thompson, B.; Engel, N.; Toupet, C.; Stratmann, A.; Cyr, D.D.; Gor-lach, J.; Mayo, J.M.; Hu, A.; Goff, S.; Schmid, J.; Ligon, J.M. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilo-nes A and B from Sorangium cellulosum So ce90. Chem. Biol., 2000, 7(2), 97-109.
[http://dx.doi.org/10.1016/S1074-5521(00)00075-2] [PMID: 10662695]
[11]
Gurupadayya, B.M.; Gopal, M.; Padmashali, B.; Manohara, Y.N. Synthesis and pharmacological evaluation of azetidin-2-ones and thiazol-idin-4-ones encompassing benzothiazole. Indian J. Pharm. Sci., 2008, 70(5), 572-577.
[http://dx.doi.org/10.4103/0250-474X.45393] [PMID: 21394251]
[12]
Jubie, S.; Gowramma, B.; Nitin, K.; Jawahar, N.; Kalirajan, R.; Gomathy, S.; Sankar, S.; Elango, K. Synthesis and biological evaluation of some 3-(methoxy phenyl)-2-aryl-thiazolidin-4-one derivatives. Indian J. Pharm. Sci., 2009, 1(1), 32-38.
[13]
Laczkowski, K.Z.; Biernasiuk, A.; Baranowska-Laczkowska, A.; Misiura, K.; Malm, A.; Plech, T.; Paneth, A. Synthesis, antibacterial ac-tivity, interaction with nucleobase and molecular docking studies of 4-formylbenzoic acid based thiazoles. Med. Chem., 2016, 12(6), 553-562.
[http://dx.doi.org/10.2174/1573406412666160201121310] [PMID: 26833073]
[14]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N.N.N. -(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antial-lergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[15]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Stein-baugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[16]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[17]
Pattan, S.; Dighe, N.; Nirmal, S.; Merekar, A.; Laware, R.; Shinde, H.; Musmade, D. Synthesis and biological evaluation of some substitut-ed amino thiazole derivatives. Asian J. Res. Chem, 2009, 2(1), 196-201.
[18]
Vengurlekar, S.; Prachand, S.; Jain, S.; Gupta, R. Synthesis and evaluation of some thiazole derivatives as an antifungal agent. Int. J. Pharm. Life Sci., 2014, 5(1), 3526-3530.
[19]
Koufaki, M.; Kiziridi, C.; Nikoloudaki, F.; Alexis, M.N. Design and synthesis of 1,2-dithiolane derivatives and evaluation of their neuro-protective activity. Bioorg. Med. Chem. Lett., 2007, 17(15), 4223-4227.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.036] [PMID: 17531485]
[20]
Ergenç, N.; Çapan, G.; Günay, N.S.; Özkirimli, S.; Güngör, M.; Özbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm., 1999, 332(10), 343-347.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343::AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[21]
Andreani, A.; Rambaldi, M.; Mascellani, G.; Rugarli, P. Synthesis and diuretic activity of imidazo [2, 1-b] thiazole acetohydrazones. Eur. J. Med. Chem., 1987, 22(1), 19-22.
[http://dx.doi.org/10.1016/0223-5234(87)90169-3]
[22]
Singh, I.P.; Gupta, S.; Kumar, S. Thiazole compounds as antiviral agents: An update. Med. Chem., 2019, 15, 1-20.
[23]
Samahe, S.; Majid, M.H.; Mansoureh, D. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reac-tion: Triply green. J. Mol. Liq., 2017, 231, 98-105.
[http://dx.doi.org/10.1016/j.molliq.2017.01.072]
[24]
Sethurajan, A.; Vediappen, P.; Nattamai, B. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res., 2015, 6(6), 975-985.
[25]
Longhi, K.; Moreira, D.N.; Marzari, M.R.; Floss, V.M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A. An efficient solvent-free synthesis of NH-pyrazoles from β-dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett., 2010, 51(24), 3193-3196.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.038]
[26]
Maury, S.K.; Kumari, S.; Kushwaha, A.K.; Kamal, A.; Singh, H.K.; Kumar, D.; Singh, S. Grinding induced catalyst free, multicomponent synthesis of Indoloindole pyrimidine. Tetrahedron Lett., 2020, 61(41), 152383.
[http://dx.doi.org/10.1016/j.tetlet.2020.152383]
[27]
Elsharabasy, F.S.; Gomha, S.M.; Farghaly, T.A.; Elzahabi, H.S. An efficient synthesis of novel bioactive thiazolyl-phthalazinediones un-der ultrasound irradiation. Molecules, 2017, 22(2), 319.
[http://dx.doi.org/10.3390/molecules22020319] [PMID: 28218718]
[28]
Hassaneen, H.M.; Farghaly, T.A. A simple, convenient one-pot synthesis of dihydro-azolopyrimidines, DFT calculation and NMR deter-mination by using H-ferrierite zeolite as catalyst. J. Heterocycl. Chem., 2015, 52(4), 1154-1161.
[http://dx.doi.org/10.1002/jhet.2152]
[29]
Farghaly, T.A.; Hassaneen, H.M.; Elzahabi, H.S. Eco-friendly synthesis and 2D-QSAR study of novel pyrazolines as potential anticolon cancer agents. Med. Chem. Res., 2015, 24(2), 652-668.
[http://dx.doi.org/10.1007/s00044-014-1175-x]
[30]
Abbas, E.M.; Gomha, S.M.; Farghaly, T.A. Multicomponent reactions for synthesis of bioactive polyheterocyclic ring systems under con-trolled microwave irradiation. Arab. J. Chem., 2014, 7(5), 623-629.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.036]
[31]
Alsharekh, M.M.; Althagafi, I.I.; Shaaban, M.R.; Farghaly, T.A. Microwave assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities. Res. Chem. Intermed., 2019, 45(2), 127-154.
[http://dx.doi.org/10.1007/s11164-018-3594-7]
[32]
Dawood, D.H.; Abbas, E.M.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO nanoparticles catalyst in the synthesis of bioactive fused py-rimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[33]
Kassem, A.F.; Abbas, E.M.; Al-Qurashi, N.T.; Farghaly, T.A. New azoloazine derivatives as antimicrobial agents: Synthesis under micro-wave irradiations, structure elucidation, and antimicrobial activity. J. Heterocycl. Chem., 2020, 57(2), 611-620.
[http://dx.doi.org/10.1002/jhet.3792]
[34]
Alnaja, A.; Farghaly, T.A.; El-Zahabi, H.S.; Shaaban, M.R. Cytotoxicity, docking study of new fluorinated fused pyrimidine scaffold: Thermal and microwave irradiation synthesis. Med. Chem., 2021, 17(5), 501-518.
[http://dx.doi.org/10.2174/1573406416666191216120301] [PMID: 31840613]
[35]
Jack, B.; Harry, L.Y. Kathryn, Losee; Mary, H.; Joseph, M.; Lott, W.A. The chemotherapy of experimental tuberculosis. III. The synthe-sis of thiosemicarbazones and related compounds. J. Am. Chem. Soc., 1951, 73, 906-912.
[http://dx.doi.org/10.1021/ja01147a007]
[36]
Carradori, S.; Rotili, D.; De Monte, C.; Lenoci, A.; D’Ascenzio, M.; Rodriguez, V.; Filetici, P.; Miceli, M.; Nebbioso, A.; Altucci, L.; Secci, D.; Mai, A. Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: Enzyme and cellular studies. Eur. J. Med. Chem., 2014, 80, 569-578.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.042] [PMID: 24835815]
[37]
Maccioni, E.; Cardia, M.C.; Bonsignore, L.; Plumitallo, A.; Pellerano, M.L.; De Logu, A. Synthesis and anti-microbial activity of isothio-semicarbazones and cyclic analogues. Farmaco, 2002, 57(10), 809-817.
[http://dx.doi.org/10.1016/S0014-827X(02)01288-0] [PMID: 12420876]
[38]
Chimenti, F.; Bizzarri, B.; Maccioni, E.; Secci, D.; Bolasco, A.; Fioravanti, R.; Chimenti, P.; Granese, A.; Carradori, S.; Rivanera, D.; Lilli, D.; Zicari, A.; Distinto, S. Synthesis and in vitro activity of 2-thiazolylhydrazone derivatives compared with the activity of clotrimazole against clinical isolates of Candida spp. Bioorg. Med. Chem. Lett., 2007, 17(16), 4635-4640.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.078] [PMID: 17560783]
[39]
Parvarinezhad, S.; Salehi, M. Synthesis, characterization, anti-proliferative activity and chemistry computation of DFT theoretical methods of hydrazine-based Schiff bases derived from methyl acetoacetate and α-hydroxyacetophenone. J. Mol. Struct., 2021, 1225, 129086.
[http://dx.doi.org/10.1016/j.molstruc.2020.129086]
[40]
Farghaly, T.A.; Abdalla, M.M. Synthesis, tautomerism, and antimicrobial, anti-HCV, anti-SSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg. Med. Chem., 2009, 17(23), 8012-8019.
[http://dx.doi.org/10.1016/j.bmc.2009.10.012] [PMID: 19864149]
[41]
Berry, M.; Fielding, B.; Gamieldien, J. Emerging trends in computational biology, bioinformatics, and systems biology. Emerg. Trends Comput. Sci. Appl. Comput., 2015, 487-502.
[http://dx.doi.org/10.1016/B978-0-12-802508-6.00027-2]
[42]
Pérez, S.; Tvaroška, I. Carbohydrate-protein interactions: Molecular modeling insights. Adv. Carbohydr. Chem. Biochem., 2014, 71, 9-136.
[http://dx.doi.org/10.1016/B978-0-12-800128-8.00001-7] [PMID: 25480504]
[43]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[44]
Molecular Operating Environment (MOE) 2014.09. Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montréal, H3A 2R7, Canada Available from: http://www.chemcomp.com

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy