Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Prolonged Release of Anti-Retroviral Efavirenz From System Using ZIF-8 as Carrier

Author(s): Alinne Élida Gonçalves Alves Tabosa*, Aline Silva Ferreira, Natália Millena da Silva, Débora Dolores Souza da Silva Nascimento, Leslie Raphael de Moura Ferraz, José Yago Rodrigues Silva, Severino Alves Junior, Rosali Maria Ferreira da Silva, Larissa Araújo Rolim and Pedro Jose Rolim-Neto

Volume 18 , Issue 6 , 2020

Page: [396 - 404] Pages: 9

DOI: 10.2174/1570162X18666200804130734

Price: $65

Abstract

Background: Acquired Immunodeficiency Syndrome (AIDS) is a major public health problem in the world. One of the highly effective drugs in anti-HIV therapy is efavirenz (EFZ), which is classified as Class II according to the Classification System of Biopharmaceuticals, presenting low solubility and high permeability, this being an obstacle related to the drug.

Objective: This study aimed to obtain an innovative system based on EFZ and the Zeolitic Imidazolate Framework (ZIF-8) to use in the development of prolonged-release pharmaceutical forms that can circumvent this problem.

Methods: The EFZ: ZIF-8 system was obtained by a selected ex-situ method due to its higher incorporation efficiency. Different characterization techniques corroborated the obtainment of the system, and drug release was analyzed by dissolution testing under sink conditions, the profiles being adjusted to some kinetic models.

Results: At pH 1.2, the structure of ZIF-8 breaks down rapidly, releasing a large amount of drug within either 3h or short time. In the pH 4.5 and 6.8 medium, the EFZ release from the EFZ: ZIF-8 system obtained in ethanol was prolonged, releasing 95% of the drug in 24h at pH 4.5 and 75% medium at pH 6.8.

Conclusion: It is evident that a promising pH-sensitive system was obtained using ZIF-8 as a novel carrier of EFZ intended for the alternative treatment of AIDS.

Keywords: HIV, AIDS, anti-HIV agents, dissolution, metal-organic frameworks, drug release.

Graphical Abstract
[1]
Lima BAS, Cecilio JFL, Bonafé SM. AIDS: An overview. Proceedings of the VIII international meeting of scientific production CESUMAR. 2013; Maringá, Paraná, Brazil. 2013.
[2]
Brasil. Ministério da Saúde, Secretaria de Vigilância em Saúde. Departamento de DST, Aids e Hepatites Virais. In: Cuidado integral as pessoas que vivem com HIV pela atenção básica, manual para equipe multiprofissional. Brasília, DF 2015.
[3]
Hertog S, Sawyer C. Mortality and the HIV/AIDS Epidemic 2015; 834-43.
[4]
Shetty SB, Divakar DD, Dalati MHN, et al. AIDS awareness: indispensible prerequisite among fishermen population. Osong Public Health Res Perspect 2016; 7(5): 327-33.
[http://dx.doi.org/10.1016/j.phrp.2016.09.003] [PMID: 27812492]
[5]
United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Update 2016.
[6]
Bastos MM, Costa CCP, Bezerra TC, da Silva FC, Boechat N. Efavirenz a nonnucleoside reverse transcriptase inhibitor of first- generation: approaches based on its medicinal chemistry. Eur J Med Chem 2016; 108: 455-65.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.025] [PMID: 26708112]
[7]
Cavalcante GI, Chaves Filho AJ, Linhares MI, et al. HIV antiretroviral drug Efavirenz induces anxiety-like and depression-like behavior in rats: evaluation of neurotransmitter alterations in the striatum. Eur J Pharmacol 2017; 799: 7-15.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.009] [PMID: 28188763]
[8]
Foresto JS, Melo ES, Costa CRB, et al. Adesão à terapêutica antiretroviral de pessoas vivendo com HIV/aids em um município do interior paulista. Rev Gaúcha Enferm 2017; 38: 631-58.
[http://dx.doi.org/10.1590/1983-1447.2017.01.63158]
[9]
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 2010; 85(1): 1-18.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.002] [PMID: 20018391]
[10]
Costa CCP, Boechat N, Silva FC, et al. The Efavirenz: structure-activity relantionship and synthesis methods. Revista Virtual de Química 2015; 7: 1347-70.
[http://dx.doi.org/10.5935/1984-6835.20150074]
[11]
Fandaruff C, Segatto Silva MA, Galindo Bedor DC, et al. Correlation between microstructure and bioequivalence in anti-HIV drug efavirenz. Eur J Pharm Biopharm 2015; 91: 52-8.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.020] [PMID: 25661587]
[12]
Verma U, Naik JB, Mokale VJ. Preparation of freeze-dried solid dispersion poderusing mannitol to enhance solubility of lovastatin and development of sustained release tablet dosage form. American Journal Pharmaceutics Science Nanotechnology 2014; 1: 1126.
[13]
Sathigari S, Chadha G, Lee YH, et al. Physicochemical characterization of efavirenz-cyclodextrin inclusion complexes. AAPS PharmSciTech 2009; 10(1): 81-7.
[http://dx.doi.org/10.1208/s12249-008-9180-3] [PMID: 19148759]
[14]
Marques MM, Rezende CA, Lima GC, et al. New solid forms of efavirenz: Synthesis, vibrational spectroscopy and quantum chemical calculations. J Mol Struct 2017; 1137: 476-84.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.061]
[15]
Cummins NW, Neuhaus J, Chu H, et al. INSIGHT Study Group. Investigation of Efavirenz discontinuation in multi-ethnic populations of HIV-positive Individuals by Genetic Analysis. EBioMedicine 2015; 2(7): 706-12.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.012] [PMID: 26288843]
[16]
Jammula S, Patra CN, Swain S, et al. Improvement in the dissolution rate and tableting properties of cefuroxime axetil by melt- granulated dispersion and surfasse adsorption. Acta Pharmaceutical Sinicam 2013; 3: 113-22.
[http://dx.doi.org/10.1016/j.apsb.2013.01.001]
[17]
Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach. Eur J Pharm Sci 2016; 88: 37-49.
[http://dx.doi.org/10.1016/j.ejps.2016.04.001] [PMID: 27049050]
[18]
Hari BNV, Lu CL, Narayanan N, Wang RR, Zheng YT. Engineered polymeric nanoparticles of Efavirenz: dissolution enhancement through particle size reduction. Chem Eng Sci 2016; 155: 366-75.
[http://dx.doi.org/10.1016/j.ces.2016.08.019]
[19]
Xu H, Li L, Fan G, Chu X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput Theor Chem 2018; 1131: 57-68.
[http://dx.doi.org/10.1016/j.comptc.2018.03.032]
[20]
Jaywant NP, Purnima DA. Development of efavirenz cocrystals from stoichiometric solutions by spray drying technology. Materials Today: Proceedings 2016; 3: 1742-51.
[21]
Laurent C, Kouanfack C, Koulla-Shiro S, et al. Effectiveness and safety of a generic fixed-dose combination of nevirapine, stavudine, and lamivudine in HIV-1-infected adults in Cameroon:open-label multicenter trial. Lance 2005; 364: 29-34.
[http://dx.doi.org/10.1016/S0140-6736(04)16586-0]
[22]
Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: A review. J Control Release 2014; 193: 122-38.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.029] [PMID: 24862321]
[23]
Lyons JG, Hallinan M, Kennedy JE, et al. Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process. Int J Pharm 2007; 329(1-2): 62-71.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.028] [PMID: 17010544]
[24]
Michael EA. Pharmaceutics, The Design and manufacture of medicines. Harcourt Publishers Limited 2007; 3: 175-7.
[25]
Cunha VRR, Ferreira AMC, Constantino VRL, Tronto J, Vali JB. Hidróxidos duplos lamelares: Nanopartículas inorgânicas para armazenamento e liberação de espécies de interesse biológico e terapêutico. Quim Nova 2010; 33: 159-71.
[http://dx.doi.org/10.1590/S0100-40422010000100029]
[26]
Pessanha AFV, Rolim LA, Peixoto MS, Silva RMF, Rolim-Neto PJ. Influence of functional excipients on the performance of drugs in dosage forms. Rev Bras Farm 2012; 93: 136-45.
[27]
Kang L, Sun S, Kong L, Lang J, Luo Y. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin Chem Lett 2014; 25: 957-61.
[http://dx.doi.org/10.1016/j.cclet.2014.05.032]
[28]
Lee JY, Wu H, Li J. An investigation of structural and hydrogen adsorption properties of microporous metal organic framework (MMOF) materials. Int J Hydrogen Energy 2012; 37: 10473-8.
[http://dx.doi.org/10.1016/j.ijhydene.2012.01.122]
[29]
Lei J, Qian R, Ling P, Cui L, Ju H. Design and sensing applications of metal–organic framework composites. Trends Analyt Chem 2014; 58: 71-8.
[http://dx.doi.org/10.1016/j.trac.2014.02.012]
[30]
Wang L, Gandorfer M, Selvam T, Schwieger W. Determination of faujasite-type zeolite thermal conductivity from measurements on porous composites by laser flash method. Mater Lett 2018; 221: 322-5. http://dx.doi.org/10.1016/j.matlet.2018.03.157
[31]
Luo X, Pei F, Wang W, et al. Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization. Microporous Mesoporous Mater 2018; 262: 148-53.
[http://dx.doi.org/10.1016/j.micromeso.2017.11.037]
[32]
Sousa LV, Silva AOS, Silva BJB, et al. Preparation of zeolite P by desilication and recrystallization of zeolites ZSM-22 and ZSM-35. Mater Lett 2018; 217: 259-62.
[http://dx.doi.org/10.1016/j.matlet.2018.01.069]
[33]
Karavasili C, Amanatiadou EP, Kontogiannidou E, et al. Comparison of different zeolite framework types as carriers for the oral delivery of the poorly soluble drug indomethacin. Int J Pharm 2017; 528(1-2): 76-87.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.061] [PMID: 28576550]
[34]
Han Z, Shi W, Chang P. Synthetic strategies for chiral metal-organic frameworks. Chin Chem Lett 2017.
[35]
Ren J, Ledwaba M, Musyoka NM, et al. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord Chem Rev 2017; 349: 169-97.
[http://dx.doi.org/10.1016/j.ccr.2017.08.017]
[36]
Kotzabasaki M, Tylianakis E, Klontzas E, Froudakis GE. OH-functionalization strategy in Metal- Organic Frameworks for drug delivery. Chem Phys Lett 2017; 685: 114-8.
[http://dx.doi.org/10.1016/j.cplett.2017.07.053]
[37]
Amarante SF. Síntese e Caracterização de redes metalorgânicas, ZIF-8 e ZIF-67. Scientia Plena 2016; 12: 1-9.
[http://dx.doi.org/10.14808/sci.plena.2016.054201]
[38]
Hoop M, Walde CF, Riccò R, et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today 2018; 11: 13-21.
[http://dx.doi.org/10.1016/j.apmt.2017.12.014]
[39]
Chen G, Yu B. Controlled synthesis of Fe3O4@ZIF-8 nanoparticles for drug delivery. CrystEngComm 2018; 20: 7486-91.
[http://dx.doi.org/10.1039/C8CE01302K]
[40]
Silva JYR, Proenza YG, da Luz LL, et al. A thermo-responsive adsorbent-heater-thermometer nanomaterial for controlled drug release: (ZIF-8,EuxTby)@AuNP core-shell. Mater Sci Eng C 2019; 102: 578-88.
[http://dx.doi.org/10.1016/j.msec.2019.04.078] [PMID: 31147030]
[41]
Zhou K, Mousavi B, Luo Z, et al. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem 2017; 5: 952-7.
[http://dx.doi.org/10.1039/C6TA07860E]
[42]
Adhikari C, Das A, Chakraborty A. Zeolitic Imidazole Framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: A way toward smart drug delivery system. Mol Pharm 2015; 12(9): 3158-66.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00043] [PMID: 26196058]
[43]
Yan X, Yang Y, Hu X, Zhou M, Komarneni S. Synthesis of mesoporous carbons with narrow pore size distribution from metal-organic framework MIL-100 (Fe). Microporous Mesoporous Mater 2016; 234: 162-5.
[http://dx.doi.org/10.1016/j.micromeso.2016.07.012]
[44]
Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 2014; 8(3): 2812-9.
[http://dx.doi.org/10.1021/nn406590q] [PMID: 24506773]
[45]
Rodrigues MO, Paula MV, Wanderley KA, et al. Organic metal structures for drug delivery and environmental remediation: A molecular anchoring approach. Int J Quantum Chem 2012; 112: 3346-55.
[http://dx.doi.org/10.1002/qua.24211]
[46]
Zheng G, Chen Z, Sentosun K, et al. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017; 9(43): 16645-51.
[http://dx.doi.org/10.1039/C7NR03739B] [PMID: 28825072]
[47]
Li N, Zhou L, Jin X, Owens G, Chen Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater 2019; 366: 563-72.
[http://dx.doi.org/10.1016/j.jhazmat.2018.12.047] [PMID: 30572296]
[48]
Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010; 9(2): 172-8.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[49]
THE UNITED STATES PHARMACOPEIA. USP 34/NF 29. Rockville: The United States Pharmacopeial Convention 2011.
[50]
Pinto EC, Cabral LM, Sousa VP. Development of a discriminative intrinsic dissolution method for efavirenz. Dissolut Technol 2014; 21(2): 1-31.
[http://dx.doi.org/10.14227/DT210214P31]
[51]
Gomes TA, Costa SPM, Medeiros GCR, et al. Strategies used to improve the solubility of a class ii antiretroviral drug: Efavirenz. Rev Cienc Farm Basica Apl 2015; 36: 239-49.
[52]
Aronson H. Correction factor for dissolution profile calculations. J Pharm Sci 1993; 82(11): 1190.
[http://dx.doi.org/10.1002/jps.2600821126] [PMID: 8289139]
[53]
Singh S, Kaur B, Singh T. Correction of raw dissolution data for loss of drug during sampling. Indian J Pharm Sci 1997; 59: 196-9.
[54]
Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 2010; 12(3): 263-71.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[55]
Alves LDS, Rolim LA, Fontes DAF, et al. Desenvolvimento de método analítico para quantificação do efavirenz por espectrofotometria no UV-VIS. Quim Nova 2010; 33: 1967-72.
[http://dx.doi.org/10.1590/S0100-40422010000900026]
[56]
Kaur H, Mohanta GC, Gupta V, Kukkar D, Tyagi S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Deliv Sci Technol 2017; 41: 106-17.
[http://dx.doi.org/10.1016/j.jddst.2017.07.004]
[57]
Liédana N, Galve A, Rubio C, Téllez C, Coronas J. CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 2012; 4(9): 5016-21.
[http://dx.doi.org/10.1021/am301365h] [PMID: 22834763]
[58]
Li Q, Wang J, Liu W, Zhuang X, et al. A new (4,8) – connected topological MOF as potential drug delivery. Inorg Chem Commun 2015; 55: 8-10.
[http://dx.doi.org/10.1016/j.inoche.2015.02.023]
[59]
Keskin S, Seda K, Kizilel S. Biomedical applications of metal organic frameworks. Science 2010; 50: 1799-812.
[60]
Cuadrado-Collados C, Fernández-Català J, Fauth F, et al. Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. J Mater Chem 2017; 5: 20938-46.
[http://dx.doi.org/10.1039/C7TA05922A]
[61]
Murdock CR, Hughes BC, Lu Z, Jenkins DM. Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity. Coord Chem Rev 2014; 258: 119-36.
[http://dx.doi.org/10.1016/j.ccr.2013.09.006]
[62]
Salles F, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Férey G. Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. Angew Chem Int Ed Engl 2008; 47(44): 8487-91.
[http://dx.doi.org/10.1002/anie.200803067] [PMID: 18830946]
[63]
Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev 2012; 64(3): 803-33.
[http://dx.doi.org/10.1124/pr.111.005553] [PMID: 22759796]
[64]
Yang J, Grey K, Doney J. An improved kinetics approach to describe the physical stability of amorphous solid dispersions. Int J Pharm 2010; 384(1-2): 24-31.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.035] [PMID: 19786081]
[65]
Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine (Lond) 2010; 5(1): 11-23.
[http://dx.doi.org/10.2217/nnm.09.90] [PMID: 20025460]
[66]
He L, Wang T, An J, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm 2014; 16: 3259.
[http://dx.doi.org/10.1039/c3ce42506a]
[67]
Vasconcelos IB, da Silva TG, Militão GCG, et al. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. Royal Society of Chemistry Advances 2012; 2: 9437.
[http://dx.doi.org/10.1039/c2ra21087h]
[68]
Sun DD, Ju TCR, Lee PI. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Eur J Pharm Biopharm 2012; 81(1): 149-58.
[http://dx.doi.org/10.1016/j.ejpb.2011.12.016] [PMID: 22233548]
[69]
Zheng C, Wang Y, Phua SZF, Lim WQ, Zhao Y. ZnO–DOX@ZIF-8 Core–Shell nanoparticles for pH-Responsive drug delivery. ACS Biomater Sci Eng 2017; 3: 2223-9.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00435]
[70]
Shearier E, Cheng P, Bao J, Hu YH, Zhao F. Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity. RSC Advances 2016; 6(5): 4128-35.
[http://dx.doi.org/10.1039/C5RA24336J] [PMID: 26998256]
[71]
DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO III. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 2008; 5(6): 968-80.
[http://dx.doi.org/10.1021/mp800042d] [PMID: 19434851]
[72]
Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 2006; 103(27): 10186-91.
[http://dx.doi.org/10.1073/pnas.0602439103] [PMID: 16798880]
[73]
Ferraz LRM. Desenvolvimento e avaliação da liberação in vitro de Drug Delivery System pH-dependente à base de benznidazol e ZIF-8 visando a obtenção de uma terapia alternativa para a doença de Chagas. Recife Tese (Doutorado em Ciências Farmacêuticas) 2017.
[74]
Peppas NA, Sahlin JA. A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int J Pharm 1989; 57: 169-72.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]
[75]
Coelho PMBS. Desenvolvimento de formulações de libertação modificada de ranitidina.Tese (Doutorado em Farmácia). Portugal: Universidade de Porto 2007.
[76]
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 1983; 15: 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy