Abstract
Green tea is one of the most popular beverages around the world. For several decades, numerous epidemiological, preclinical and clinical studies have demonstrated that green tea polyphenols (GTPs), especially epigallocatechin-3-gallate (EGCG) have cancer-preventing effects on various cancers. In this review, we present inhibition of carcinogenesis in different animal models by GTPs or EGCG, including prostate cancer, bladder cancer, breast cancer, intestinal cancer, colon cancer, gastric cancer, lung cancer, oral cancer and skin cancer. In vitro studies showed that GTPs/EGCG potently induces apoptosis, cell cycle arrest and suppresses metastasis in tumor cells but not in their normal cell counterparts. The molecular mechanisms of these activities are discussed in detail to elucidate GTPs/EGCG downstream carcinogenesis signaling pathways and their values of perspective of chemoprevention and treatment for cancers.
Keywords: Cancer, chemoprevention, green tea, polyphenols, treatment.
Current Drug Metabolism
Title:Downstream Carcinogenesis Signaling Pathways by Green Tea Polyphenols: A Translational Perspective of Chemoprevention and Treatment for Cancers
Volume: 15 Issue: 1
Author(s): Guohua Hu, Lei Zhang, Yefei Rong, Xiaoling Ni and Yihong Sun
Affiliation:
Keywords: Cancer, chemoprevention, green tea, polyphenols, treatment.
Abstract: Green tea is one of the most popular beverages around the world. For several decades, numerous epidemiological, preclinical and clinical studies have demonstrated that green tea polyphenols (GTPs), especially epigallocatechin-3-gallate (EGCG) have cancer-preventing effects on various cancers. In this review, we present inhibition of carcinogenesis in different animal models by GTPs or EGCG, including prostate cancer, bladder cancer, breast cancer, intestinal cancer, colon cancer, gastric cancer, lung cancer, oral cancer and skin cancer. In vitro studies showed that GTPs/EGCG potently induces apoptosis, cell cycle arrest and suppresses metastasis in tumor cells but not in their normal cell counterparts. The molecular mechanisms of these activities are discussed in detail to elucidate GTPs/EGCG downstream carcinogenesis signaling pathways and their values of perspective of chemoprevention and treatment for cancers.
Export Options
About this article
Cite this article as:
Hu Guohua, Zhang Lei, Rong Yefei, Ni Xiaoling and Sun Yihong, Downstream Carcinogenesis Signaling Pathways by Green Tea Polyphenols: A Translational Perspective of Chemoprevention and Treatment for Cancers, Current Drug Metabolism 2014; 15 (1) . https://dx.doi.org/10.2174/1389200214666131211155613
DOI https://dx.doi.org/10.2174/1389200214666131211155613 |
Print ISSN 1389-2002 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5453 |
Call for Papers in Thematic Issues
Impact of brain tissue binding and plasma protein binding of drugs in DMPK
The impression of brain tissue binding (BTB) or plasma protein binding (PPB) in Drug Metabolism and Pharmacokinetics is critical to understanding the distribution, efficacy, and potential toxicity of drugs that target the central nervous system (CNS). BTB and high PPB influence the distribution of drugs in the body and their ...read more
Interaction between drugs and endocrine diseases
The introduction of highly active antiretroviral therapy accelerated studies and our understanding on the interaction between pharmacological therapies and endocrine diseases. Drugs can precipitate endocrine via different mechanisms, including direct alteration of hormone production and secretion, dysregulation of hormonal axis, effects on hormonal transport, receptor-binding, and cellular signalling. Common drug-induced ...read more
Metabolism-Mediated Xenobiotic Toxicity
Considering the potent modulation of biotransformation enzyme expression and activities by various therapeutic drugs and environmental chemicals, and the commonly combined exposure of humans to both drugs and the ever increasing environmental pollutants simultaneously, knowledge about the combined toxic effects by modulating biotransformation enzymes, such as P450s, UDP- glucuronosyltransferases, and ...read more
Safety evaluation of vaccine combination
Vaccine combination safety evaluation is a critical field within immunology and public health that focuses on assessing the safety and efficacy of combining different vaccines to maximize protection against various diseases while minimizing potential adverse effects. This process is significant because it ensures that vaccines can be administered together without ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Patent Selections
Recent Patents on Biomarkers Current Trends in Medicinal Chemistry of Photoprotection and Phototherapy
Current Medicinal Chemistry Heterocyclic Scaffolds: Centrality in Anticancer Drug Development
Current Drug Targets Human Arylamine N-Acetyltransferase 1: A Drug-Metabolizing Enzyme and a Drug Target?
Current Drug Targets Inhibition of EGFR Signaling by N-cyclohexyl-2-(1-(phenylsulfonyl)piperidin-4-yl) acetamide
Anti-Cancer Agents in Medicinal Chemistry MDM2 Inhibitors for Pancreatic Cancer Therapy
Mini-Reviews in Medicinal Chemistry Irreversible Protein Kinase Inhibitors
Current Medicinal Chemistry Transmission Electron Microscopy as Key Technique for the Characterization of Telocytes
Current Stem Cell Research & Therapy An Enzyme-responsive Porphyrin Metal-organic Framework Nanosystem for Targeted and Enhanced Synergistic Cancer Photo-chemo Therapy
Current Drug Delivery microRNA-133: Expression, Function and Therapeutic Potential in Muscle Diseases and Cancer
Current Drug Targets Nanofibrous Polydioxanone Depots for Prolonged Intraperitoneal Paclitaxel Delivery
Current Drug Delivery Targeting Multiplicity: The Key Factor for Anti-Cancer Nanoparticles
Current Medicinal Chemistry Recent Advances in the Synthesis and Anticancer Activity of Some Molecules Other Than Nitrogen Containing Heterocyclic Moeities
Mini-Reviews in Medicinal Chemistry Saccharomyces Cerevisiae as a Genetic Model in Anticancer Therapy
Current Pharmacogenomics Potential Usage of ING Family Members in Cancer Diagnostics and Molecular Therapy
Current Drug Targets NEDD4: A Promising Target for Cancer Therapy
Current Cancer Drug Targets Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review
Anti-Cancer Agents in Medicinal Chemistry An Overview on Pyranocoumarins: Synthesis and Biological Activities
Current Organic Chemistry Further Vitamin D Analogs
Current Vascular Pharmacology Animal Venoms have Potential to Treat Cancer
Current Topics in Medicinal Chemistry