Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Alterations in Peripheral Metabolites as Key Actors in Alzheimer’s Disease

Author(s): Can Sheng*, Xu Chu, Yan He, Qingqing Ding, Shulei Jia, Qiguang Shi, Ran Sun, Li Song, Wenying Du, Yuan Liang, Nian Chen, Yan Yang* and Xiaoni Wang*

Volume 20, Issue 6, 2023

Published on: 11 September, 2023

Page: [379 - 393] Pages: 15

DOI: 10.2174/1567205020666230825091147

Price: $65

Abstract

Growing evidence supports that Alzheimer’s disease (AD) could be regarded as a metabolic disease, accompanying central and peripheral metabolic disturbance. Nowadays, exploring novel and potentially alternative hallmarks for AD is needed. Peripheral metabolites based on blood and gut may provide new biochemical insights about disease mechanisms. These metabolites can influence brain energy homeostasis, maintain gut mucosal integrity, and regulate the host immune system, which may further play a key role in modulating the cognitive function and behavior of AD. Recently, metabolomics has been used to identify key AD-related metabolic changes and define metabolic changes during AD disease trajectory. This review aims to summarize the key blood- and microbial-derived metabolites that are altered in AD and identify the potential metabolic biomarkers of AD, which will provide future targets for precision therapeutic modulation.

Keywords: Metabolomics, metabolites, Alzheimer’s disease, gut microbiota, blood, homeostasis.

Next »
[1]
Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.; Wei, C.; Tang, Y.; Qin, Q.; Wang, F.; Qiao, Y.; Shi, S.; Wang, Y.J.; Du, Y.; Zhang, J.; Zhang, J.; Luo, B.; Qu, Q.; Zhou, C.; Gauthier, S.; Jia, J. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol., 2020, 19(1), 81-92.
[http://dx.doi.org/10.1016/S1474-4422(19)30290-X] [PMID: 31494009]
[2]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[3]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4]
[4]
Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; Broich, K.; Cavedo, E.; Crutch, S.; Dartigues, J.F.; Duyckaerts, C.; Epelbaum, S.; Frisoni, G.B.; Gauthier, S.; Genthon, R.; Gouw, A.A.; Habert, M.O.; Holtzman, D.M.; Kivipelto, M.; Lista, S.; Molinuevo, J.L.; O’Bryant, S.E.; Rabinovici, G.D.; Rowe, C.; Salloway, S.; Schneider, L.S.; Sperling, R.; Teichmann, M.; Carrillo, M.C.; Cummings, J.; Jack, C.R., Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement., 2016, 12(3), 292-323.
[http://dx.doi.org/10.1016/j.jalz.2016.02.002] [PMID: 27012484]
[5]
Sheng, C.; Yang, K.; He, B.; Du, W.; Cai, Y.; Han, Y. Combination of gut microbiota and plasma amyloid-β as a potential index for identifying preclinical Alzheimer’s disease: A cross-sectional analysis from the SILCODE study. Alzheimers Res. Ther., 2022, 14(1), 35.
[http://dx.doi.org/10.1186/s13195-022-00977-x] [PMID: 35164860]
[6]
Toledo, J.B.; Arnold, M.; Kastenmüller, G.; Chang, R.; Baillie, R.A.; Han, X.; Thambisetty, M.; Tenenbaum, J.D.; Suhre, K.; Thompson, J.W.; John-Williams, L.S.; MahmoudianDehkordi, S.; Rotroff, D.M.; Jack, J.R.; Motsinger-Reif, A.; Risacher, S.L.; Blach, C.; Lucas, J.E.; Massaro, T.; Louie, G.; Zhu, H.; Dallmann, G.; Klavins, K.; Koal, T.; Kim, S.; Nho, K.; Shen, L.; Casanova, R.; Varma, S.; Legido-Quigley, C.; Moseley, M.A.; Zhu, K.; Henrion, M.Y.R.; Lee, S.J.; Harms, A.C.; Demirkan, A.; Hankemeier, T.; Duijn, C.M.; Trojanowski, J.Q.; Shaw, L.M.; Saykin, A.J.; Weiner, M.W.; Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement., 2017, 13(9), 965-984.
[http://dx.doi.org/10.1016/j.jalz.2017.01.020] [PMID: 28341160]
[7]
Procaccini, C.; Santopaolo, M.; Faicchia, D.; Colamatteo, A.; Formisano, L.; de Candia, P.; Galgani, M.; De Rosa, V.; Matarese, G. Role of metabolism in neurodegenerative disorders. Metabolism, 2016, 65(9), 1376-1390.
[http://dx.doi.org/10.1016/j.metabol.2016.05.018] [PMID: 27506744]
[8]
Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol., 2020, 19(9), 758-766.
[http://dx.doi.org/10.1016/S1474-4422(20)30231-3] [PMID: 32730766]
[9]
Huo, Z.; Yu, L.; Yang, J.; Zhu, Y.; Bennett, D.A.; Zhao, J. Brain and blood metabolome for Alzheimer’s dementia: Findings from a targeted metabolomics analysis. Neurobiol. Aging., 2020, 86, 123-133.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.10.014] [PMID: 31785839]
[10]
Snowden, S.G.; Ebshiana, A.A.; Hye, A.; An, Y.; Pletnikova, O.; O’Brien, R.; Troncoso, J.; Legido-Quigley, C.; Thambisetty, M. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med., 2017, 14(3), e1002266.
[http://dx.doi.org/10.1371/journal.pmed.1002266] [PMID: 28323825]
[11]
Wu, L.; Han, Y.; Zheng, Z.; Peng, G.; Liu, P.; Yue, S.; Zhu, S.; Chen, J.; Lv, H.; Shao, L.; Sheng, Y.; Wang, Y.; Li, L.; Li, L.; Wang, B. Altered gut microbial metabolites in amnestic mild cognitive impairment and alzheimer’s disease: Signals in host–microbe interplay. Nutrients., 2021, 13(1), 228.
[http://dx.doi.org/10.3390/nu13010228] [PMID: 33466861]
[12]
Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res., 2021, 164, 105314.
[http://dx.doi.org/10.1016/j.phrs.2020.105314] [PMID: 33246175]
[13]
Mahajan, U.V.; Varma, V.R.; Griswold, M.E.; Blackshear, C.T.; An, Y.; Oommen, A.M.; Varma, S.; Troncoso, J.C.; Pletnikova, O.; O’Brien, R.; Hohman, T.J.; Legido-Quigley, C.; Thambisetty, M. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med., 2020, 17(1), e1003012.
[http://dx.doi.org/10.1371/journal.pmed.1003012] [PMID: 31978055]
[14]
Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(4), 223-237.
[http://dx.doi.org/10.1038/s41575-019-0258-z] [PMID: 32076145]
[15]
Chang, R.; Trushina, E.; Zhu, K.; Zaidi, S.S.A.; Lau, B.M.; Kueider-Paisley, A.; Moein, S.; He, Q.; Alamprese, M.L.; Vagnerova, B.; Tang, A.; Vijayan, R.; Liu, Y.; Saykin, A.J.; Brinton, R.D.; Kaddurah-Daouk, R. Predictive metabolic networks reveal sex- and APOE genotype-specific metabolic signatures and drivers for precision medicine in Alzheimer’s disease. Alzheimers Dement., 2023, 19(2), 518-531.
[http://dx.doi.org/10.1002/alz.12675] [PMID: 35481667]
[16]
Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Bogdanov, M.; Rozen, S.G.; Matson, W.; Oki, N.O.; Motsinger-Reif, A.A.; Churchill, E.; Lei, Z.; Appleby, D.; Kling, M.A.; Trojanowski, J.Q.; Doraiswamy, P.M.; Arnold, S.E. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl. Psychiatry., 2013, 3(4), e244.
[http://dx.doi.org/10.1038/tp.2013.18] [PMID: 23571809]
[17]
Mahmoudian, D.S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M.A.; Thompson, J.W.; St John Williams, L.; Tenenbaum, J.D.; Blach, C.; Baillie, R.; Han, X.; Bhattacharyya, S.; Toledo, J.B.; Schafferer, S.; Klein, S.; Koal, T.; Risacher, S.L.; Allan Kling, M.; Motsinger-Reif, A.; Rotroff, D.M.; Jack, J.; Hankemeier, T.; Bennett, D.A.; De Jager, P.L.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; Duijn, C.M.; Saykin, A.J.; Kastenmüller, G.; Kaddurah-Daouk, R. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement., 2019, 15(1), 76-92.
[http://dx.doi.org/10.1016/j.jalz.2018.07.217] [PMID: 30337151]
[18]
Nho, K.; Kueider-Paisley, A.; MahmoudianDehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han, X.; Kastenmüller, G.; Jia, W.; Xie, G.; Ahmad, S.; Hankemeier, T.; Duijn, C.M.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers Dement., 2019, 15(2), 232-244.
[http://dx.doi.org/10.1016/j.jalz.2018.08.012] [PMID: 30337152]
[19]
Bernath, M.M.; Bhattacharyya, S.; Nho, K.; Barupal, D.K.; Fiehn, O.; Baillie, R.; Risacher, S.L.; Arnold, M.; Jacobson, T.; Trojanowski, J.Q.; Shaw, L.M.; Weiner, M.W.; Doraiswamy, P.M.; Kaddurah-Daouk, R.; Saykin, A.J. Serum triglycerides in Alzheimer disease. Neurology., 2020, 94(20), e2088-e2098.
[http://dx.doi.org/10.1212/WNL.0000000000009436] [PMID: 32358220]
[20]
Han, X.; Rozen, S.; Boyle, S.H.; Hellegers, C.; Cheng, H.; Burke, J.R.; Welsh-Bohmer, K.A.; Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One, 2011, 6(7), e21643.
[http://dx.doi.org/10.1371/journal.pone.0021643] [PMID: 21779331]
[21]
Fiandaca, M.S.; Zhong, X.; Cheema, A.K.; Orquiza, M.H.; Chidambaram, S.; Tan, M.T.; Gresenz, C.R.; FitzGerald, K.T.; Nalls, M.A.; Singleton, A.B.; Mapstone, M.; Federoff, H.J. Plasma 24-metabolite panel predicts preclinical transition to clinical stages of alzheimer’s disease. Front. Neurol., 2015, 6, 237.
[http://dx.doi.org/10.3389/fneur.2015.00237] [PMID: 26617567]
[22]
Simpson, B.N.; Kim, M.; Chuang, Y.F.; Beason-Held, L.; Kitner-Triolo, M.; Kraut, M.; Lirette, S.T.; Windham, B.G.; Griswold, M.E.; Legido-Quigley, C.; Thambisetty, M. Blood metabolite markers of cognitive performance and brain function in aging. J. Cereb. Blood Flow Metab., 2016, 36(7), 1212-1223.
[http://dx.doi.org/10.1177/0271678X15611678] [PMID: 26661209]
[23]
Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res., 2010, 49(1), 61-75.
[http://dx.doi.org/10.1016/j.plipres.2009.08.004] [PMID: 19720082]
[24]
Arnold, M.; Nho, K.; Kueider-Paisley, A.; Massaro, T.; Huynh, K.; Brauner, B.; Mahmoudian, D.S.; Louie, G.; Moseley, M.A.; Thompson, J.W.; John-Williams, L.S.; Tenenbaum, J.D.; Blach, C.; Chang, R.; Brinton, R.D.; Baillie, R.; Han, X.; Trojanowski, J.Q.; Shaw, L.M.; Martins, R.; Weiner, M.W.; Trushina, E.; Toledo, J.B.; Meikle, P.J.; Bennett, D.A.; Krumsiek, J.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R.; Kastenmüller, G. Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nat. Commun., 2020, 11(1), 1148.
[http://dx.doi.org/10.1038/s41467-020-14959-w] [PMID: 32123170]
[25]
McCoin, C.S.; Knotts, T.A.; Adams, S.H. Acylcarnitines—old actors auditioning for new roles in metabolic physiology. Nat. Rev. Endocrinol., 2015, 11(10), 617-625.
[http://dx.doi.org/10.1038/nrendo.2015.129] [PMID: 26303601]
[26]
Mapstone, M.; Cheema, A.K.; Fiandaca, M.S.; Zhong, X.; Mhyre, T.R.; MacArthur, L.H.; Hall, W.J.; Fisher, S.G.; Peterson, D.R.; Haley, J.M.; Nazar, M.D.; Rich, S.A.; Berlau, D.J.; Peltz, C.B.; Tan, M.T.; Kawas, C.H.; Federoff, H.J. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med., 2014, 20(4), 415-418.
[http://dx.doi.org/10.1038/nm.3466] [PMID: 24608097]
[27]
Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.; Troncoso, J.C.; Toledo, J.; Baillie, R.; Arnold, M.; Kastenmueller, G.; Nho, K.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R.; Legido-Quigley, C.; Thambisetty, M. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med., 2018, 15(1), e1002482.
[http://dx.doi.org/10.1371/journal.pmed.1002482] [PMID: 29370177]
[28]
Rushworth, J.V.; Hooper, N.M. Lipid rafts: Linking alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int. J. Alzheimers Dis., 2010, 2011, 603052.
[PMID: 21234417]
[29]
Casanova, R.; Varma, S.; Simpson, B.; Kim, M.; An, Y.; Saldana, S.; Riveros, C.; Moscato, P.; Griswold, M.; Sonntag, D.; Wahrheit, J.; Klavins, K.; Jonsson, P.V.; Eiriksdottir, G.; Aspelund, T.; Launer, L.J.; Gudnason, V.; Legido, Q.C.; Thambisetty, M. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement., 2016, 12(7), 815-822.
[http://dx.doi.org/10.1016/j.jalz.2015.12.008] [PMID: 26806385]
[30]
Usuda, K.; Kawase, T.; Shigeno, Y.; Fukuzawa, S.; Fujii, K.; Zhang, H.; Tsukahara, T.; Tomonaga, S.; Watanabe, G.; Jin, W.; Nagaoka, K. Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory. Sci. Rep., 2018, 8(1), 11073.
[http://dx.doi.org/10.1038/s41598-018-28885-x] [PMID: 30038322]
[31]
Fekkes, D.; van der Cammen, T.J.M.; van Loon, C.P.M.; Verschoor, C.; van Harskamp, F.; de Koning, I.; Schudel, W.J.; Pepplinkhuizen, L. Abnormal amino acid metabolism in patients with early stage Alzheimer dementia. J. Neural Transm., 1998, 105(2-3), 287-294.
[http://dx.doi.org/10.1007/s007020050058] [PMID: 9660107]
[32]
Basun, H.; Forssell, L.G.; Almkvist, O.; Cowburn, R.F.; Eklöf, R.; Winblad, B.; Wetterberg, L. Amino acid concentrations in cerebrospinal fluid and plasma in Alzheimer’s disease and healthy control subjects. J. Neural Transm. Park. Dis. Dement. Sect., 1990, 2(4), 295-304.
[http://dx.doi.org/10.1007/BF02252924] [PMID: 2078309]
[33]
Li, H.; Ye, D.; Xie, W.; Hua, F.; Yang, Y.; Wu, J.; Gu, A.; Ren, Y.; Mao, K. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer’s disease by targeting the mTOR signaling. Biosci. Rep., 2018, 38(4), BSR20180127.
[http://dx.doi.org/10.1042/BSR20180127] [PMID: 29802157]
[34]
Ikeuchi, T.; Yano, Y.; Sato, W.; Morikawa, F.; Toru, S.; Nishimura, C.; Miyazawa, N.; Kuroha, Y.; Koike, R.; Tanaka, S.; Utsumi, K.; Kasuga, K.; Tokutake, T.; Ono, K.; Yano, S.; Naruse, S.; Yajima, R.; Hamano, T.; Yokoyama, Y.; Kitamura, A.; Kaneko, E.; Yamakado, M.; Nagao, K. Development of a novel nutrition-related multivariate biomarker for mild cognitive impairment based on the plasma free amino acid profile. Nutrients., 2022, 14(3), 637.
[http://dx.doi.org/10.3390/nu14030637] [PMID: 35276996]
[35]
Ikeuchi, T.; Kanda, M.; Kitamura, H.; Morikawa, F.; Toru, S.; Nishimura, C.; Kasuga, K.; Tokutake, T.; Takahashi, T.; Kuroha, Y.; Miyazawa, N.; Tanaka, S.; Utsumi, K.; Ono, K.; Yano, S.; Hamano, T.; Naruse, S.; Yajima, R.; Kawashima, N.; Kaneko, C.; Tachibana, H.; Yano, Y.; Kato, Y.; Toue, S.; Jinzu, H.; Kitamura, A.; Yokoyama, Y.; Kaneko, E.; Yamakado, M.; Nagao, K. Decreased circulating branched-chain amino acids are associated with development of Alzheimer’s disease in elderly individuals with mild cognitive impairment. Front. Nutr., 2022, 9, 1040476.
[http://dx.doi.org/10.3389/fnut.2022.1040476] [PMID: 36590218]
[36]
Ibáñez, C.; Simó, C.; Martín-Álvarez, P.J.; Kivipelto, M.; Winblad, B.; Cedazo-Mínguez, A.; Cifuentes, A. Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal. Chem., 2012, 84(20), 8532-8540.
[http://dx.doi.org/10.1021/ac301243k] [PMID: 22967182]
[37]
Burillo, J.; Marqués, P.; Jiménez, B.; González-Blanco, C.; Benito, M.; Guillén, C. Insulin resistance and diabetes mellitus in alzheimer’s disease. Cells., 2021, 10(5), 1236.
[http://dx.doi.org/10.3390/cells10051236] [PMID: 34069890]
[38]
Gueli, M.C.; Taibi, G. Alzheimer’s disease: Amino acid levels and brain metabolic status. Neurol. Sci., 2013, 34(9), 1575-1579.
[http://dx.doi.org/10.1007/s10072-013-1289-9] [PMID: 23354600]
[39]
Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology., 2021, 196, 108719.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108719] [PMID: 34273389]
[40]
Nilsen, L.H.; Witter, M.P.; Sonnewald, U. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2014, 34(5), 906-914.
[http://dx.doi.org/10.1038/jcbfm.2014.37] [PMID: 24594625]
[41]
Tiwari, V.; Patel, A.B. Impaired glutamatergic and GABAergic function at early age in AβPPswe-PS1dE9 mice: Implications for Alzheimer’s disease. J. Alzheimers Dis., 2012, 28(4), 765-769.
[http://dx.doi.org/10.3233/JAD-2011-111502] [PMID: 22112551]
[42]
Martinez, M.; Frank, A.; Diez-Tejedor, E.; Hernanz, A. Amino acid concentrations in cerebrospinal fluid and serum in Alzheimer’s disease and vascular dementia. J. Neural Transm. Park. Dis. Dement. Sect., 1993, 6(1), 1-9.
[http://dx.doi.org/10.1007/BF02252617] [PMID: 8216758]
[43]
Corso, G.; Cristofano, A.; Sapere, N.; la Marca, G.; Angiolillo, A.; Vitale, M.; Fratangelo, R.; Lombardi, T.; Porcile, C.; Intrieri, M.; Di Costanzo, A. Serum amino acid profiles in normal subjects and in patients with or at risk of alzheimer dementia. Dement. Geriatr. Cogn. Disord. Extra, 2017, 7(1), 143-159.
[http://dx.doi.org/10.1159/000466688] [PMID: 28626469]
[44]
Aaldijk, E.; Vermeiren, Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: A narrative review. Ageing Res. Rev., 2022, 75, 101556.
[http://dx.doi.org/10.1016/j.arr.2021.101556] [PMID: 34990844]
[45]
Whiley, L.; Chappell, K.E.; D’Hondt, E.; Lewis, M.R.; Jiménez, B.; Snowden, S.G.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Swann, J.R.; Hye, A.; Lovestone, S.; Legido-Quigley, C.; Holmes, E. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 20.
[http://dx.doi.org/10.1186/s13195-020-00741-z] [PMID: 33422142]
[46]
Willette, A.A.; Pappas, C.; Hoth, N.; Wang, Q.; Klinedinst, B.; Willette, S.A.; Larsen, B.; Pollpeter, A.; Li, T.; Le, S.; Collazo-Martinez, A.D.; Mochel, J.P.; Allenspach, K.; Dantzer, R. Inflammation, negative affect, and amyloid burden in Alzheimer’s disease: Insights from the kynurenine pathway. Brain Behav. Immun., 2021, 95, 216-225.
[http://dx.doi.org/10.1016/j.bbi.2021.03.019] [PMID: 33775832]
[47]
Pan, X.; Elliott, C.T.; McGuinness, B.; Passmore, P.; Kehoe, P.G.; Hölscher, C.; McClean, P.L.; Graham, S.F.; Green, B.D. Metabolomic profiling of bile acids in clinical and experimental samples of alzheimer’s disease. Metabolites., 2017, 7(2), 28.
[http://dx.doi.org/10.3390/metabo7020028] [PMID: 28629125]
[48]
Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[49]
Begley, M.; Gahan, C.G.M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev., 2005, 29(4), 625-651.
[http://dx.doi.org/10.1016/j.femsre.2004.09.003] [PMID: 16102595]
[50]
Inagaki, T.; Moschetta, A.; Lee, Y.K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson, J.A.; Repa, J.J.; Mangelsdorf, D.J.; Kliewer, S.A. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci., 2006, 103(10), 3920-3925.
[http://dx.doi.org/10.1073/pnas.0509592103] [PMID: 16473946]
[51]
Lorenzo-Zúñiga, V.; Bartolí, R.; Planas, R.; Hofmann, A.F.; Viñado, B.; Hagey, L.R.; Hernández, J.M.; Mañé, J.; Alvarez, M.A.; Ausina, V.; Gassull, M.A. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology., 2003, 37(3), 551-557.
[http://dx.doi.org/10.1053/jhep.2003.50116] [PMID: 12601352]
[52]
Biagioli, M.; Carino, A.; Cipriani, S.; Francisci, D.; Marchianò, S.; Scarpelli, P.; Sorcini, D.; Zampella, A.; Fiorucci, S. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol., 2017, 199(2), 718-733.
[http://dx.doi.org/10.4049/jimmunol.1700183] [PMID: 28607110]
[53]
Cipriani, S.; Mencarelli, A.; Chini, M.G.; Distrutti, E.; Renga, B.; Bifulco, G.; Baldelli, F.; Donini, A.; Fiorucci, S. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One, 2011, 6(10), e25637.
[http://dx.doi.org/10.1371/journal.pone.0025637] [PMID: 22046243]
[54]
Ward, J.B.J.; Lajczak, N.K.; Kelly, O.B.; O’Dwyer, A.M.; Giddam, A.K.; Ní Gabhann, J.; Franco, P.; Tambuwala, M.M.; Jefferies, C.A.; Keely, S.; Roda, A.; Keely, S.J. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(6), G550-G558.
[http://dx.doi.org/10.1152/ajpgi.00256.2016] [PMID: 28360029]
[55]
Mano, N.; Goto, T.; Uchida, M.; Nishimura, K.; Ando, M.; Kobayashi, N.; Goto, J. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J. Lipid Res., 2004, 45(2), 295-300.
[http://dx.doi.org/10.1194/jlr.M300369-JLR200] [PMID: 14617741]
[56]
Quinn, M.; McMillin, M.; Galindo, C.; Frampton, G.; Pae, H.Y.; DeMorrow, S. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig. Liver Dis., 2014, 46(6), 527-534.
[http://dx.doi.org/10.1016/j.dld.2014.01.159] [PMID: 24629820]
[57]
Dionísio, P.A.; Amaral, J.D.; Ribeiro, M.F.; Lo, A.C.; D’Hooge, R.; Rodrigues, C.M.P. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol. Aging., 2015, 36(1), 228-240.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.034] [PMID: 25443293]
[58]
Nunes, A.F.; Amaral, J.D.; Lo, A.C.; Fonseca, M.B.; Viana, R.J.S.; Callaerts-Vegh, Z.; D’Hooge, R.; Rodrigues, C.M.P. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol., 2012, 45(3), 440-454.
[http://dx.doi.org/10.1007/s12035-012-8256-y] [PMID: 22438081]
[59]
Wang, Q.; Duan, L.; Li, X.; Wang, Y.; Guo, W.; Guan, F.; Ma, S. Glucose metabolism, neural cell senescence and alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(8), 4351.
[http://dx.doi.org/10.3390/ijms23084351] [PMID: 35457168]
[60]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[61]
Levin, F.; Ferreira, D.; Lange, C.; Dyrba, M.; Westman, E.; Buchert, R.; Teipel, S.J.; Grothe, M.J. Data-driven FDG-PET subtypes of Alzheimer’s disease-related neurodegeneration. Alzheimers Res. Ther., 2021, 13(1), 49.
[http://dx.doi.org/10.1186/s13195-021-00785-9] [PMID: 33608059]
[62]
Ou, Y.N.; Xu, W.; Li, J.Q.; Guo, Y.; Cui, M.; Chen, K.L.; Huang, Y.Y.; Dong, Q.; Tan, L.; Yu, J.T. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: A longitudinal study. Alzheimers Res. Ther., 2019, 11(1), 57.
[http://dx.doi.org/10.1186/s13195-019-0512-1] [PMID: 31253185]
[63]
Rice, L.; Bisdas, S. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease-A systematic review. Eur. J. Radiol., 2017, 94, 16-24.
[http://dx.doi.org/10.1016/j.ejrad.2017.07.014] [PMID: 28941755]
[64]
Chételat, G.; Arbizu, J.; Barthel, H.; Garibotto, V.; Law, I.; Morbelli, S.; van de Giessen, E.; Agosta, F.; Barkhof, F.; Brooks, D.J.; Carrillo, M.C.; Dubois, B.; Fjell, A.M.; Frisoni, G.B.; Hansson, O.; Herholz, K.; Hutton, B.F.; Jack, C.R., Jr; Lammertsma, A.A.; Landau, S.M.; Minoshima, S.; Nobili, F.; Nordberg, A.; Ossenkoppele, R.; Oyen, W.J.G.; Perani, D.; Rabinovici, G.D.; Scheltens, P.; Villemagne, V.L.; Zetterberg, H.; Drzezga, A. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol., 2020, 19(11), 951-962.
[http://dx.doi.org/10.1016/S1474-4422(20)30314-8] [PMID: 33098804]
[65]
Sędzikowska, A.; Szablewski, L. Insulin and insulin resistance in alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(18), 9987.
[http://dx.doi.org/10.3390/ijms22189987] [PMID: 34576151]
[66]
Zhang, B.; Tang, X.C.; Zhang, H.Y. Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models. J. Neurosci. Res., 2013, 91(5), 717-725.
[http://dx.doi.org/10.1002/jnr.23201] [PMID: 23401344]
[67]
Morris, J.K.; Burns, J.M. Insulin: An emerging treatment for Alzheimer’s disease dementia? Curr. Neurol. Neurosci. Rep., 2012, 12(5), 520-527.
[http://dx.doi.org/10.1007/s11910-012-0297-0] [PMID: 22791280]
[68]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[69]
Takeishi, J.; Tatewaki, Y.; Nakase, T.; Takano, Y.; Tomita, N.; Yamamoto, S.; Mutoh, T.; Taki, Y. Alzheimer’s disease and type 2 diabetes mellitus: The use of MCT oil and a ketogenic diet. Int. J. Mol. Sci., 2021, 22(22), 12310.
[http://dx.doi.org/10.3390/ijms222212310] [PMID: 34830192]
[70]
Kumar, V.; Kim, S.H.; Bishayee, K. Dysfunctional glucose metabolism in alzheimer’s disease onset and potential pharmacological interventions. Int. J. Mol. Sci., 2022, 23(17), 9540.
[http://dx.doi.org/10.3390/ijms23179540] [PMID: 36076944]
[71]
Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol., 2020, 19(2), 179-194.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[72]
Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol., 2020, 11, 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[73]
Megur, A.; Baltriukienė, D.; Bukelskienė, V.; Burokas, A. The microbiota–gut–brain axis and alzheimer’s disease: Neuroinflammation is to blame? Nutrients., 2020, 13(1), 37.
[http://dx.doi.org/10.3390/nu13010037] [PMID: 33374235]
[74]
Shabbir, U.; Arshad, M.S.; Sameen, A.; Oh, D.H. Crosstalk between gut and brain in alzheimer’s disease: The role of gut microbiota modulation strategies. Nutrients., 2021, 13(2), 690.
[http://dx.doi.org/10.3390/nu13020690] [PMID: 33669988]
[75]
Zhou, H.; Tai, J.; Xu, H.; Lu, X.; Meng, D. Xanthoceraside could ameliorate alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Front. Pharmacol., 2019, 10, 1035.
[http://dx.doi.org/10.3389/fphar.2019.01035] [PMID: 31572201]
[76]
Yan, Y.; Gao, Y.; Fang, Q.; Zhang, N.; Kumar, G.; Yan, H.; Song, L.; Li, J.; Zhang, Y.; Sun, J.; Wang, J.; Zhao, L.; Skaggs, K.; Zhang, H.T.; Ma, C.G. Inhibition of Rho kinase by fasudil ameliorates cognition impairment in APP/PS1 transgenic mice via modulation of gut microbiota and metabolites. Front. Aging Neurosci., 2021, 13, 755164.
[http://dx.doi.org/10.3389/fnagi.2021.755164] [PMID: 34721000]
[77]
Colombo, AV; Sadler, RK; Llovera, G; Singh, V; Roth, S; Heindl, S Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife., 2021, 10, e59826.
[78]
Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257.
[http://dx.doi.org/10.3233/JAD-170020] [PMID: 29036812]
[79]
Xi, J.; Ding, D.; Zhu, H.; Wang, R.; Su, F.; Wu, W.; Xiao, Z.; Liang, X.; Zhao, Q.; Hong, Z.; Fu, H.; Xiao, Q. Disturbed microbial ecology in Alzheimer’s disease: Evidence from the gut microbiota and fecal metabolome. BMC Microbiol., 2021, 21(1), 226.
[http://dx.doi.org/10.1186/s12866-021-02286-z] [PMID: 34384375]
[80]
Sheng, C.; Lin, L.; Lin, H.; Wang, X.; Han, Y.; Liu, S.L. Altered gut microbiota in adults with subjective cognitive decline: The SILCODE study. J. Alzheimers Dis., 2021, 82(2), 513-526.
[http://dx.doi.org/10.3233/JAD-210259] [PMID: 34024839]
[81]
Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; Li, L.; Luo, B.; Wang, B. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun., 2019, 80, 633-643.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008] [PMID: 31063846]
[82]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[83]
O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res., 2015, 277, 32-48.
[http://dx.doi.org/10.1016/j.bbr.2014.07.027] [PMID: 25078296]
[84]
Zwilling, D.; Huang, S.Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Guidetti, P.; Wu, H.Q.; Lee, J.; Truong, J.; Andrews-Zwilling, Y.; Hsieh, E.W.; Louie, J.Y.; Wu, T.; Scearce-Levie, K.; Patrick, C.; Adame, A.; Giorgini, F.; Moussaoui, S.; Laue, G.; Rassoulpour, A.; Flik, G.; Huang, Y.; Muchowski, J.M.; Masliah, E.; Schwarcz, R.; Muchowski, P.J. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell., 2011, 145(6), 863-874.
[http://dx.doi.org/10.1016/j.cell.2011.05.020] [PMID: 21640374]
[85]
Maitre, M.; Klein, C.; Patte-Mensah, C.; Mensah-Nyagan, A.G. Tryptophan metabolites modify brain Aβ peptide degradation: A role in Alzheimer’s disease? Prog. Neurobiol., 2020, 190, 101800.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101800] [PMID: 32360535]
[86]
Guillemin, G.J.; Brew, B.J. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep., 2002, 7(4), 199-206.
[http://dx.doi.org/10.1179/135100002125000550] [PMID: 12396664]
[87]
Ge, X.; Pan, J.; Liu, Y.; Wang, H.; Zhou, W.; Wang, X. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility. Curr. Pharm. Biotechnol., 2018, 19(3), 190-195.
[http://dx.doi.org/10.2174/1389201019666180528094202] [PMID: 29804531]
[88]
Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One, 2017, 12(7), e0180745.
[http://dx.doi.org/10.1371/journal.pone.0180745] [PMID: 28683093]
[89]
Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev., 2010, 34(4), 426-444.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00204.x] [PMID: 20070374]
[90]
Cirrito, J.R.; Disabato, B.M.; Restivo, J.L.; Verges, D.K.; Goebel, W.D.; Sathyan, A.; Hayreh, D.; D’Angelo, G.; Benzinger, T.; Yoon, H.; Kim, J.; Morris, J.C.; Mintun, M.A.; Sheline, Y.I. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc. Natl. Acad. Sci., 2011, 108(36), 14968-14973.
[http://dx.doi.org/10.1073/pnas.1107411108] [PMID: 21873225]
[91]
Richard, H.T.; Foster, J.W. Acid resistance in Escherichia coli. Adv. Appl. Microbiol., 2003, 52, 167-186.
[http://dx.doi.org/10.1016/S0065-2164(03)01007-4] [PMID: 12964244]
[92]
Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol., 2007, 73(22), 7283-7290.
[http://dx.doi.org/10.1128/AEM.01064-07] [PMID: 17890341]
[93]
Pokusaeva, K.; Johnson, C.; Luk, B.; Uribe, G.; Fu, Y.; Oezguen, N.; Matsunami, R.K.; Lugo, M.; Major, A.; Mori-Akiyama, Y.; Hollister, E.B.; Dann, S.M.; Shi, X.Z.; Engler, D.A.; Savidge, T.; Versalovic, J. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil., 2017, 29(1), e12904.
[http://dx.doi.org/10.1111/nmo.12904] [PMID: 27458085]
[94]
Fujii, Y.; Nguyen, T.T.T.; Fujimura, Y.; Kameya, N.; Nakamura, S.; Arakawa, K.; Morita, H. Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer’s disease. Biosci. Biotechnol. Biochem., 2019, 83(11), 2144-2152.
[http://dx.doi.org/10.1080/09168451.2019.1644149] [PMID: 31327302]
[95]
Zhuang, Z.; Yang, R.; Wang, W.; Qi, L.; Huang, T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation, 2020, 17(1), 288.
[http://dx.doi.org/10.1186/s12974-020-01961-8] [PMID: 33008395]
[96]
Cunnane, S.C.; Schneider, J.A.; Tangney, C.; Tremblay-Mercier, J.; Fortier, M.; Bennett, D.A.; Morris, M.C. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2012, 29(3), 691-697.
[http://dx.doi.org/10.3233/JAD-2012-110629] [PMID: 22466064]
[97]
Mattson, M.P.; Chan, S.L. Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J. Mol. Neurosci., 2001, 17(2), 205-224.
[http://dx.doi.org/10.1385/JMN:17:2:205] [PMID: 11816794]
[98]
Nitsch, R.M.; Blusztajn, J.K.; Pittas, A.G.; Slack, B.E.; Growdon, J.H.; Wurtman, R.J. Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci., 1992, 89(5), 1671-1675.
[http://dx.doi.org/10.1073/pnas.89.5.1671] [PMID: 1311847]
[99]
Klein, J. Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. J. Neural Transm., 2000, 107(8-9), 1027-1063.
[http://dx.doi.org/10.1007/s007020070051] [PMID: 11041281]
[100]
Walter, A.; Korth, U.; Hilgert, M.; Hartmann, J.; Weichel, O.; Hilgert, M.; Fassbender, K.; Schmitt, A.; Klein, J. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol. Aging, 2004, 25(10), 1299-1303.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.02.016] [PMID: 15465626]
[101]
Mulder, C.; Wahlund, L.O.; Teerlink, T.; Blomberg, M.; Veerhuis, R.; van Kamp, G.J.; Scheltens, P.; Scheffer, P.G. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer?s disease. J. Neural Transm., 2003, 110(8), 949-955.
[http://dx.doi.org/10.1007/s00702-003-0007-9] [PMID: 12898349]
[102]
Sorgdrager, F.J.H.; Vermeiren, Y.; Faassen, M.; Ley, C.; Nollen, E.A.A.; Kema, I.P.; De Deyn, P.P. Age- and disease-specific changes of the kynurenine pathway in Parkinson’s and Alzheimer’s disease. J. Neurochem., 2019, 151(5), 656-668.
[http://dx.doi.org/10.1111/jnc.14843] [PMID: 31376341]
[103]
Guo, L.; Zhong, M.B.; Zhang, L.; Zhang, B.; Cai, D. Sex differences in alzheimer’s disease: Insights from the multiomics landscape. Biol. Psychiatry, 2022, 91(1), 61-71.
[http://dx.doi.org/10.1016/j.biopsych.2021.02.968] [PMID: 33896621]
[104]
Toro, C.A.; Zhang, L.; Cao, J.; Cai, D. Sex differences in Alzheimer’s disease: Understanding the molecular impact. Brain Res., 2019, 1719, 194-207.
[http://dx.doi.org/10.1016/j.brainres.2019.05.031] [PMID: 31129153]
[105]
Wang, G.; Zhou, Y.; Huang, F.J.; Tang, H.D.; Xu, X.H.; Liu, J.J.; Wang, Y.; Deng, Y.L.; Ren, R.J.; Xu, W.; Ma, J.F.; Zhang, Y.N.; Zhao, A.H.; Chen, S.D.; Jia, W. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J. Proteome Res., 2014, 13(5), 2649-2658.
[http://dx.doi.org/10.1021/pr5000895] [PMID: 24694177]
[106]
Yoon, J.H.; Seo, Y.; Jo, Y.S.; Lee, S.; Cho, E.; Cazenave-Gassiot, A.; Shin, Y.S.; Moon, M.H.; An, H.J.; Wenk, M.R.; Suh, P.G. Brain lipidomics: From functional landscape to clinical significance. Sci. Adv., 2022, 8(37), eadc9317.
[http://dx.doi.org/10.1126/sciadv.adc9317] [PMID: 36112688]
[107]
Bandaru, V.V.R.; Troncoso, J.; Wheeler, D.; Pletnikova, O.; Wang, J.; Conant, K.; Haughey, N.J. ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiol. Aging., 2009, 30(4), 591-599.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.024] [PMID: 17888544]
[108]
Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; O’Toole, P.W.; Minihane, A.M.; Vauzour, D. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology. FASEB J., 2019, 33(7), 8221-8231.
[http://dx.doi.org/10.1096/fj.201900071R] [PMID: 30958695]
[109]
Chouinard-Watkins, R.; Rioux-Perreault, C.; Fortier, M.; Tremblay-Mercier, J.; Zhang, Y.; Lawrence, P.; Vohl, M.C.; Perron, P.; Lorrain, D.; Brenna, J.T.; Cunnane, S.C.; Plourde, M. Disturbance in uniformly 13 C-labelled DHA metabolism in elderly human subjects carrying the apoE ε4 allele. Br. J. Nutr., 2013, 110(10), 1751-1759.
[http://dx.doi.org/10.1017/S0007114513001268] [PMID: 23631810]
[110]
Pettegrew, J.W.; Panchalingam, K.; Hamilton, R.L.; McClure, R.J. Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res., 2001, 26(7), 771-782.
[http://dx.doi.org/10.1023/A:1011603916962] [PMID: 11565608]
[111]
Khoury, R.; Mdawar, B.; Ghossoub, E. Selective serotonin reuptake inhibitors and Alzheimer’s disease. Neural Regen. Res., 2020, 15(1), 41-46.
[http://dx.doi.org/10.4103/1673-5374.264445] [PMID: 31535641]
[112]
Metaxas, A.; Anzalone, M.; Vaitheeswaran, R.; Petersen, S.; Landau, A.M.; Finsen, B. Neuroinflammation and amyloid-beta 40 are associated with reduced serotonin transporter (SERT) activity in a transgenic model of familial Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 38.
[http://dx.doi.org/10.1186/s13195-019-0491-2] [PMID: 31043179]
[113]
Tondo, M.; Wasek, B.; Escola-Gil, J.C.; de Gonzalo-Calvo, D.; Harmon, C.; Arning, E.; Bottiglieri, T. Altered brain metabolome is associated with memory impairment in the rTg4510 mouse model of tauopathy. Metabolites., 2020, 10(2), 69.
[http://dx.doi.org/10.3390/metabo10020069] [PMID: 32075035]
[114]
Pan, X.; Nasaruddin, M.B.; Elliott, C.T.; McGuinness, B.; Passmore, A.P.; Kehoe, P.G.; Hölscher, C.; McClean, P.L.; Graham, S.F.; Green, B.D. Alzheimer’s disease–like pathology has transient effects on the brain and blood metabolome. Neurobiol. Aging, 2016, 38, 151-163.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.014] [PMID: 26827653]
[115]
Jiang, Y.; Li, K.; Li, X.; Xu, L.; Yang, Z. Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice. Chem. Biol. Interact., 2021, 341, 109452.
[http://dx.doi.org/10.1016/j.cbi.2021.109452] [PMID: 33785315]
[116]
Calon, F.; Cole, G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukot. Essent. Fatty Acids, 2007, 77(5-6), 287-293.
[http://dx.doi.org/10.1016/j.plefa.2007.10.019] [PMID: 18037281]
[117]
Lim, G.P.; Calon, F.; Morihara, T.; Yang, F.; Teter, B.; Ubeda, O.; Salem, N., Jr; Frautschy, S.A.; Cole, G.M. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci., 2005, 25(12), 3032-3040.
[http://dx.doi.org/10.1523/JNEUROSCI.4225-04.2005] [PMID: 15788759]
[118]
Yang, T.; Zhu, Z.; Yin, E.; Wang, Y.; Zhang, C.; Yuan, H.; Zhang, H.; Jin, S.; Guo, Z.; Wang, X. Alleviation of symptoms of Alzheimer’s disease by diminishing Aβ neurotoxicity and neuroinflammation. Chem. Sci., 2019, 10(43), 10149-10158.
[http://dx.doi.org/10.1039/C9SC03042E] [PMID: 32055369]
[119]
Guo, J.; Yang, C.; Yang, J.; Yao, Y. Glycyrrhizic acid ameliorates cognitive impairment in a rat model of vascular dementia associated with oxidative damage and inhibition of voltage-gated sodium channels. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 1001-1008.
[http://dx.doi.org/10.2174/1871527315666160527163526] [PMID: 27238153]
[120]
Xu, Q.; Zhang, Y.; Zhang, X.; Liu, L.; Zhou, B.; Mo, R.; Li, Y.; Li, H.; Li, F.; Tao, Y.; Liu, Y.; Xue, C. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4−/−: A double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr., 2020, 39(7), 2092-2105.
[http://dx.doi.org/10.1016/j.clnu.2019.10.017] [PMID: 31694759]
[121]
Bhawal, R.; Fu, Q.; Anderson, E.T.; Gibson, G.E.; Zhang, S. Serum metabolomic and lipidomic profiling reveals novel biomarkers of efficacy for benfotiamine in Alzheimer’s Disease. Int. J. Mol. Sci., 2021, 22(24), 13188.
[http://dx.doi.org/10.3390/ijms222413188] [PMID: 34947984]
[122]
Jiang, J.; Sheng, C.; Chen, G.; Liu, C.; Jin, S.; Li, L.; Jiang, X.; Han, Y.; Weiner, M.W.; Aisen, P.; Petersen, R.; Jack, C.R.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L.; Green, R.C.; Saykin, A.J.; Morris, J.; Shaw, L.M.; Khachaturian, Z.; Sorensen, G.; Kuller, L.; Raichle, M.; Paul, S.; Davies, P.; Fillit, H.; Hefti, F.; Holtzman, D.; Mesulam, M.M.; Potter, W.; Snyder, P.; Schwartz, A.; Montine, T.; Thomas, R.G.; Donohue, M.; Walter, S.; Gessert, D.; Sather, T.; Jiminez, G.; Harvey, D.; Bernstein, M.; Thompson, P.; Schuff, N.; Borowski, B.; Gunter, J.; Senjem, M.; Vemuri, P.; Jones, D.; Kantarci, K.; Ward, C.; Koeppe, R.A.; Foster, N.; Reiman, E.M.; Chen, K.; Mathis, C.; Landau, S.; Cairns, N.J.; Householder, E.; Taylor-Reinwald, L.; Lee, V.; Korecka, M.; Figurski, M.; Crawford, K.; Neu, S.; Foroud, T.M.; Potkin, S.G.; Shen, L.; Faber, K.; Kim, S.; Nho, K.; Thal, L.; Buckholtz, N.; Albert, M.; Frank, R.; Hsiao, J.; Kaye, J.; Quinn, J.; Lind, B.; Carter, R.; Dolen, S.; Schneider, L.S.; Pawluczyk, S.; Beccera, M.; Teodoro, L.; Spann, B.M.; Brewer, J.; Vanderswag, H.; Fleisher, A.; Heidebrink, J.L.; Lord, J.L.; Mason, S.S.; Albers, C.S.; Knopman, D.; Johnson, K.; Doody, R.S.; Villanueva-Meyer, J.; Chowdhury, M.; Rountree, S.; Dang, M.; Stern, Y.; Honig, L.S.; Bell, K.L.; Ances, B.; Carroll, M.; Leon, S.; Mintun, M.A.; Schneider, S.; Oliver, A.; Marson, D.; Griffith, R.; Clark, D.; Geldmacher, D.; Brockington, J.; Roberson, E.; Grossman, H.; Mitsis, E.; de Toledo-Morrell, L.; Shah, R.C.; Duara, R.; Varon, D.; Greig, M.T.; Roberts, P.; Onyike, C.; D’Agostino, D.; Kielb, S.; Galvin, J.E.; Cerbone, B.; Michel, C.A.; Rusinek, H.; de Leon, M.J.; Glodzik, L.; De Santi, S.; Murali Doraiswamy, P.; Petrella, J.R.; Wong, T.Z.; Arnold, S.E.; Karlawish, J.H.; Wolk, D.; Smith, C.D.; Jicha, G.; Hardy, P.; Sinha, P.; Oates, E.; Conrad, G.; Lopez, O.L.; Oakley, M.A.; Simpson, D.M.; Porsteinsson, A.P.; Goldstein, B.S.; Martin, K.; Makino, K.M.; Saleem Ismail, M.; Brand, C.; Mulnard, R.A.; Thai, G.; McAdams-Ortiz, C.; Womack, K.; Mathews, D.; Quiceno, M.; Diaz-Arrastia, R.; King, R.; Weiner, M.; Martin-Cook, K.; DeVous, M.; I Levey, A.; Lah, J.J.; Cellar, J.S.; Burns, J.M.; Anderson, H.S.; Swerdlow, R.H.; Apostolova, L.; Tingus, K.; Woo, E.; Silverman, D.H.S.; Lu, P.H.; Bartzokis, G.; Graff-Radford, N.R.; Parfitt, F.; Kendall, T.; Johnson, H.; Farlow, M.R.; Hake, A.M.; Matthews, B.R.; Herring, S.; Hunt, C.; van Dyck, C.H.; Carson, R.E.; MacAvoy, M.G.; Chertkow, H.; Bergman, H.; Hosein, C.; Robin Hsiung, G-Y.; Feldman, H.; Mudge, B.; Assaly, M.; Bernick, C.; Munic, D.; Kertesz, A.; Rogers, J.; Trost, D.; Kerwin, D.; Lipowski, K.; Wu, C-K.; Johnson, N.; Sadowsky, C.; Martinez, W.; Villena, T.; Turner, R.S.; Johnson, K.; Reynolds, B.; Sperling, R.A.; Johnson, K.A.; Marshall, G.; Frey, M.; Lane, B.; Rosen, A.; Tinklenberg, J.; Sabbagh, M.N.; Belden, C.M.; Jacobson, S.A.; Sirrel, S.A.; Kowall, N.; Killiany, R.; Budson, A.E.; Norbash, A.; Johnson, P.L.; Allard, J.; Lerner, A.; Ogrocki, P.; Hudson, L.; Fletcher, E.; Carmichae, O.; Olichney, J.; DeCarli, C.; Kittur, S.; Borrie, M.; Lee, T-Y.; Bartha, R.; Johnson, S.; Asthana, S.; Carlsson, C.M.; Preda, A.; Nguyen, D.; Tariot, P.; Reeder, S.; Bates, V.; Capote, H.; Rainka, M.; Scharre, D.W.; Kataki, M.; Adeli, A.; Zimmerman, E.A.; Celmins, D.; Brown, A.D.; Pearlson, G.D.; Blank, K.; Anderson, K.; Santulli, R.B.; Kitzmiller, T.J.; Schwartz, E.S.; Sink, K.M.; Williamson, J.D.; Garg, P.; Watkins, F.; Ott, B.R.; Querfurth, H.; Tremont, G.; Salloway, S.; Malloy, P.; Correia, S.; Rosen, H.J.; Miller, B.L.; Mintzer, J.; Spicer, K.; Bachman, D.; Pasternak, S.; Rachinsky, I.; Drost, D.; Pomara, N.; Hernando, R.; Sarrael, A.; Schultz, S.K.; Ponto, L.L.B.; Shim, H.; Elizabeth Smith, K.; Relkin, N.; Chaing, G.; Raudin, L.; Smith, A.; Fargher, K.; Raj, B.A.; Neylan, T.; Grafman, J.; Davis, M.; Morrison, R.; Hayes, J.; Finley, S.; Friedl, K.; Fleischman, D.; Arfanakis, K.; James, O.; Massoglia, D.; Jay Fruehling, J.; Harding, S.; Peskind, E.R.; Petrie, E.C.; Li, G.; Yesavage, J.A.; Taylor, J.L.; Furst, A.J. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. Geroscience., 2022, 44(4), 2319-2336.
[http://dx.doi.org/10.1007/s11357-022-00588-2] [PMID: 35581512]
[123]
Huan, T.; Tran, T.; Zheng, J.; Sapkota, S.; MacDonald, S.W.; Camicioli, R.; Dixon, R.A.; Li, L. Metabolomics analyses of saliva detect novel biomarkers of Alzheimer’s Disease. J. Alzheimers Dis., 2018, 65(4), 1401-1416.
[http://dx.doi.org/10.3233/JAD-180711] [PMID: 30175979]
[124]
Mill, J.; Patel, V.; Okonkwo, O.; Li, L.; Raife, T. Erythrocyte sphingolipid species as biomarkers of Alzheimer’s disease. J. Pharm. Anal., 2022, 12(1), 178-185.
[http://dx.doi.org/10.1016/j.jpha.2021.07.005] [PMID: 35573876]
[125]
Tang, Z.; Liu, L.; Li, Y.; Dong, J.; Li, M.; Huang, J.; Lin, S.; Cai, Z. Urinary metabolomics reveals alterations of aromatic amino acid metabolism of Alzheimer’s Disease in the transgenic CRND8 mice. Curr. Alzheimer Res., 2016, 13(7), 764-776.
[http://dx.doi.org/10.2174/1567205013666160129095340] [PMID: 26825095]
[126]
Orešič, M.; Hyötyläinen, T.; Herukka, S-K.; Sysi-Aho, M.; Mattila, I.; Seppänan-Laakso, T.; Julkunen, V.; Gopalacharyulu, P.V.; Hallikainen, M.; Koikkalainen, J.; Kivipelto, M.; Helisalmi, S.; Lötjönen, J.; Soininen, H. Metabolome in progression to Alzheimer’s disease. Transl. Psychiatry., 2011, 1(12), e57.
[http://dx.doi.org/10.1038/tp.2011.55] [PMID: 22832349]
[127]
Iuliano, L.; Pacelli, A.; Ciacciarelli, M.; Zerbinati, C.; Fagioli, S.; Piras, F.; Orfei, M.D.; Bossù, P.; Pazzelli, F.; Serviddio, G.; Caltagirone, C.; Spalletta, G. Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2013, 36(3), 545-553.
[http://dx.doi.org/10.3233/JAD-122224] [PMID: 23635405]
[128]
Olazarán, J.; Gil-de-Gómez, L.; Rodríguez-Martín, A.; Valentí-Soler, M.; Frades-Payo, B.; Marín-Muñoz, J.; Antúnez, C.; Frank-García, A.; Acedo-Jiménez, C.; Morlán-Gracia, L.; Petidier-Torregrossa, R.; Guisasola, M.C.; Bermejo-Pareja, F.; Sánchez-Ferro, Á.; Pérez-Martínez, D.A.; Manzano-Palomo, S.; Farquhar, R.; Rábano, A.; Calero, M. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(4), 1157-1173.
[http://dx.doi.org/10.3233/JAD-142925] [PMID: 25649659]
[129]
Sun, C.; Gao, M.; Wang, F.; Yun, Y.; Sun, Q.; Guo, R.; Yan, C.; Sun, X.; Li, Y. Serum metabolomic profiling in patients with Alzheimer disease and amnestic mild cognitive impairment by GC/MS. Biomed. Chromatogr., 2020, 34(9), e4875.
[http://dx.doi.org/10.1002/bmc.4875] [PMID: 32384189]
[130]
Kalecký, K.; German, D.C.; Montillo, A.A.; Bottiglieri, T. Targeted metabolomic analysis in Alzheimer’s Disease plasma and brain tissue in non-hispanic whites. J. Alzheimers Dis., 2022, 86(4), 1875-1895.
[http://dx.doi.org/10.3233/JAD-215448] [PMID: 35253754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy