Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Radiotherapy Planning and Molecular Imaging in Lung Cancer

Author(s): Angelina Filice*, Massimiliano Casali, Patrizia Ciammella, Marco Galaverni, Federica Fioroni, Cinzia Iotti and Annibale Versari

Volume 13, Issue 3, 2020

Page: [204 - 217] Pages: 14

DOI: 10.2174/1874471013666200318144154

Abstract

Introduction: In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC.

Materials and Methods: A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually “in vitro” studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion.

Results: Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported.

Conclusion: PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.

Keywords: Radiotherapy planning, lung cancer, 18F-FDG-PET/CT, motion artifacts, new radiopharmaceuticals, target volume definition.

Graphical Abstract
[1]
Konert, T.; Vogel, W.; MacManus, M.P.; Nestle, U.; Belderbos, J.; Grégoire, V.; Thorwarth, D.; Fidarova, E.; Paez, D.; Chiti, A.; Hanna, G.G. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother. Oncol., 2015, 116(1), 27-34.
[http://dx.doi.org/10.1016/j.radonc.2015.03.014] [PMID: 25869338]
[2]
Thorwarth, D.; Beyer, T.; Boellaard, R.; de Ruysscher, D.; Grgic, A.; Lee, J.A.; Pietrzyk, U.; Sattler, B.; Schaefer, A.; van Elmpt, W.; Vogel, W.; Oyen, W.J.; Nestle, U. Integration of FDG-PET/CT into external beam radiation therapy planning: Technical aspects and recommendations on methodological approaches. Nucl. Med. (Stuttg.), 2012, 51(4), 140-153.
[http://dx.doi.org/10.3413/Nukmed-0455-11-12] [PMID: 22473130]
[3]
Booth, K.; Hanna, G.G.; McGonigle, N.; McManus, K.G.; McGuigan, J.; O’Sullivan, J.; Lynch, T.; McAleese, J. The mediastinal staging accuracy of 18F-Fluorodeoxyglycose positron emission tomography/computed tomography in non-small cell lung cancer with variable time intervals to surgery. Ulster Med. J., 2013, 82(2), 75-81.
[PMID: 24082283]
[4]
Everitt, S.; Plumridge, N.; Herschtal, A.; Bressel, M.; Ball, D.; Callahan, J.; Kron, T.; Schneider-Kolsky, M.; Binns, D.; Hicks, R.J.; Mac Manus, M. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer. Radiother. Oncol., 2013, 106(3), 288-291.
[http://dx.doi.org/10.1016/j.radonc.2013.02.010] [PMID: 23490268]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
NCCN Guidelines v. 5 Non-Small Cell. Lung Cancer, 2018, 16(7)
[http://dx.doi.org/10.6004/jnccn.2018.0062.]
[7]
Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2017, 28(suppl_4) iv1-iv21.
[8]
Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; Takai, Y.; Kimura, T.; Takeda, A.; Ouchi, A.; Hareyama, M.; Kokubo, M.; Hara, R.; Itami, J.; Yamada, K.; Araki, T. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol., 2007, 2(7)(Suppl. 3), S94-S100.
[http://dx.doi.org/10.1097/JTO.0b013e318074de34] [PMID: 17603311]
[9]
Chang, J.Y.; Senan, S.; Paul, M.A.; Mehran, R.J.; Louie, A.V.; Balter, P.; Groen, H.J.; McRae, S.E.; Widder, J.; Feng, L.; van den Borne, B.E.; Munsell, M.F.; Hurkmans, C.; Berry, D.A.; van Werkhoven, E.; Kresl, J.J.; Dingemans, A.M.; Dawood, O.; Haasbeek, C.J.; Carpenter, L.S.; De Jaeger, K.; Komaki, R.; Slotman, B.J.; Smit, E.F.; Roth, J.A. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol., 2015, 16(6), 630-637.
[http://dx.doi.org/10.1016/S1470-2045(15)70168-3] [PMID: 25981812]
[10]
Lindberg, K.; Nyman, J.; Riesenfeld Källskog, V.; Hoyer, M.; Lund, J.A.; Lax, I.; Wersäll, P.; Karlsson, K.; Friesland, S.; Lewensohn, R. Long-term results of a prospective phase II trial of medically inoperable stage I NSCLC treated with SBRT - the Nordic experience. Acta Oncol., 2015, 54(8), 1096-1104.
[http://dx.doi.org/10.3109/0284186X.2015.1020966] [PMID: 25813471]
[11]
Nambu, A.; Onishi, H.; Aoki, S.; Tominaga, L.; Kuriyama, K.; Araya, M.; Saito, R.; Maehata, Y.; Komiyama, T.; Marino, K.; Koshiishi, T.; Sawada, E.; Araki, T. Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors. BMC Cancer, 2013, 7(13), 68.
[http://dx.doi.org/10.1186/1471-2407-13-68] [PMID: 23391264]
[12]
Verstegen, N.E.; Oosterhuis, J.W.; Palma, D.A.; Rodrigues, G.; Lagerwaard, F.J.; van der Elst, A.; Mollema, R.; van Tets, W.F.; Warner, A.; Joosten, J.J.; Amir, M.I.; Haasbeek, C.J.; Smit, E.F.; Slotman, B.J.; Senan, S. Stage I-II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis. Ann. Oncol., 2013, 24(6), 1543-1548.
[http://dx.doi.org/10.1093/annonc/mdt026] [PMID: 23425947]
[13]
Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Karasawa, K.; Hayakawa, K.; Niibe, Y.; Takai, Y.; Kimura, T.; Takeda, A.; Ouchi, A.; Hareyama, M.; Kokubo, M.; Kozuka, T.; Arimoto, T.; Hara, R.; Itami, J.; Araki, T. Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int. J. Radiat. Oncol. Biol. Phys., 2011, 81(5), 1352-1358.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1751] [PMID: 20638194]
[14]
Lagerwaard, F.J.; Verstegen, N.E.; Haasbeek, C.J.; Slotman, B.J.; Paul, M.A.; Smit, E.F.; Senan, S. Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2012, 83(1), 348-353.
[http://dx.doi.org/10.1016/j.ijrobp.2011.06.2003] [PMID: 22104360]
[15]
Timmerman, R.D.; Paulus, R.; Pass, H.I.; Gore, E.; Edelman, M.J.; Galvin, J.M.; Choy, H.; Straube, W.; Nedzi, L.A.; McGarry, R.; Robinson, C.G.; Schiff, P.B.; Bradley, J.D. RTOG 0618: Stereotactic body radiation therapy (SBRT) to treat operable early-stage lung cancer patients. Journal of Clinical Oncology, 2013, 15_suppl,, 7523-7523.
[16]
Nagata, Y.; Hiraoka, M.; Shibata, T.; Onishi, H.; Kokubo, M.; Karasawa, K.; Shioyama, Y.; Onimaru, R.; Kozuka, T.; Kunieda, E.; Saito, T.; Nakagawa, K.; Hareyama, M.; Takai, Y.; Hayakawa, K.; Mitsuhashi, N.; Ishikura, S. Prospective trial of stereotactic body radiation therapy for both operable and inoperable t1n0m0 non-small cell lung cancer: Japan clinical oncology group study JCOG0403. Int. J. Radiat. Oncol. Biol. Phys., 2015, 93(5), 989-996.
[http://dx.doi.org/10.1016/j.ijrobp.2015.07.2278] [PMID: 26581137]
[17]
Tekatli, H.; Haasbeek, N.; Dahele, M.; De Haan, P.; Verbakel, W.; Bongers, E.; Hashemi, S.; Nossent, E.; Spoelstra, F.; de Langen, A.J.; Slotman, B.; Senan, S. Outcomes of hypofractionated high-dose radiotherapy in poor-risk patients with “Ultracentral” non-small cell lung cancer. J. Thorac. Oncol., 2016, 11(7), 1081-1089.
[http://dx.doi.org/10.1016/j.jtho.2016.03.008] [PMID: 27013408]
[18]
Tekatli, H.; Spoelstra, F.O.B.; Palacios, M.; van Sornsen de Koste, J.; Slotman, B.J.; Senan, S. Stereotactic ablative radiotherapy (SABR) for early-stage central lung tumors: New insights and approaches. Lung Cancer, 2018, 123, 142-148.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.002] [PMID: 30089586]
[19]
Burdett, S.; Rydzewska, L.; Tierney, J.; Fisher, D.; Parmar, M.K.; Arriagada, R.; Pignon, J.P.; Le Pechoux, C. PORT Meta‐analysis Trialists Group Postoperative radiotherapy for non-small cell lung cancer. Cochrane Database Syst. Rev, 2016. 10CD002142
[http://dx.doi.org/10.1002/14651858.CD002142.pub3] [PMID: 27727451]
[20]
Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; Yamanaka, T.; Bozonnat, M.C.; Uitterhoeve, A.; Wang, X.; Stewart, L.; Arriagada, R.; Burdett, S.; Pignon, J.P. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(13), 2181-2190.
[http://dx.doi.org/10.1200/JCO.2009.26.2543] [PMID: 20351327]
[21]
Dillman, R.O.; Herndon, J.; Seagren, S.L.; Eaton, W.L., Jr; Green, M.R. Improved survival in stage III non-small-cell lung cancer: seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J. Natl. Cancer Inst., 1996, 88(17), 1210-1215.
[http://dx.doi.org/10.1093/jnci/88.17.1210] [PMID: 8780630]
[22]
Rusch, V.W.; Giroux, D.J.; Kraut, M.J.; Crowley, J.; Hazuka, M.; Winton, T.; Johnson, D.H.; Shulman, L.; Shepherd, F.; Deschamps, C.; Livingston, R.B.; Gandara, D. Induction chemoradiation and surgical resection for superior sulcus non-small-cell lung carcinomas: long-term results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J. Clin. Oncol., 2007, 25(3), 313-318.
[http://dx.doi.org/10.1200/JCO.2006.08.2826] [PMID: 17235046]
[23]
Corso, C.D.; Rutter, C.E.; Wilson, L.D.; Kim, A.W.; Decker, R.H.; Husain, Z.A. Re-evaluation of the role of postoperative radiotherapy and the impact of radiation dose for non-small-cell lung cancer using the National Cancer Database. J. Thorac. Oncol., 2015, 10(1), 148-155.
[http://dx.doi.org/10.1097/JTO.0000000000000406] [PMID: 25325781]
[24]
Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; Peters, S. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2018, 29(Supplement_4) iv192-iv237.
[25]
Stevens, R.; Macbeth, F.; Toy, E.; Coles, B.; Lester, J.F. Palliative radiotherapy regimens for patients with thoracic symptoms from non-small cell lung cancer. Cochrane Database Syst. Rev., 2015. 1CD002143
[http://dx.doi.org/10.1002/14651858.CD002143.pub3] [PMID: 25586198]
[26]
Moeller, B.; Balagamwala, E.H.; Chen, A.; Creach, K.M.; Giaccone, G.; Koshy, M.; Zaky, S.; Rodrigues, G. Palliative thoracic radiation therapy for non-small cell lung cancer: 2018 Update of an American Society for Radiation Oncology (ASTRO) Evidence-Based Guideline. Pract. Radiat. Oncol., 2018, 8(4), 245-250.
[http://dx.doi.org/10.1016/j.prro.2018.02.009] [PMID: 29625898]
[27]
Gomez, D.R.; Blumenschein, G.R.; Lee, J.J.; Hernandez, M.; Camidge, D.R.; Doebele, R.C.; Gaspar, L.E.; Gibbons, D.L.; Karam, J.A.; Kavanagh, B.D.; Komaki, R.; Louie, A.V.; Palma, D.A.; Tsao, A.S.; William, W.N.; Zhang, J.; Swisher, S.; Heymach, J. J. Local consolidative therapy (LCT) to improve progression-free survival (PFS) in patients with oligometastatic non-small cell lung cancer (NSCLC) who receive induction systemic therapy (IST): Results of a multi-institutional phase II randomized study. J. Clin. Oncol. 2016, 34(15_suppl), 9004-9004.
[28]
Eberhardt, W.E.; Mitchell, A.; Crowley, J.; Kondo, H.; Kim, Y.T.; Turrisi, A., III; Goldstraw, P.; Rami-Porta, R. The IASLC Lung Cancer Staging Project: Proposals for the Revision of the M Descriptors in the Forthcoming Eighth Edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol., , 2015; 10, pp. (11)1515-22.
[29]
De Ruysscher, D.; Faivre-Finn, C.; Moeller, D.; Nestle, U.; Hurkmans, C.W.; Le Péchoux, C.; Belderbos, J.; Guckenberger, M.; Senan, S. Lung Group and the Radiation Oncology Group of the European Organization for Research and Treatment of Cancer (EORTC). European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother. Oncol., 2017, 124(1), 1-10.
[http://dx.doi.org/10.1016/j.radonc.2017.06.003] [PMID: 28666551]
[30]
Besse, B.; Adjei, A.; Baas, P.; Meldgaard, P.; Nicolson, M.; Paz-Ares, L.; Reck, M.; Smit, E.F.; Syrigos, K.; Stahel, R.; Felip, E.; Peters, S. 2nd ESMO Consensus Conference on Lung Cancer: non-small-cell lung cancer first-line/second and further lines of treatment in advanced disease. Ann. Oncol., 2014, 25(8), 1475-1484.
[http://dx.doi.org/10.1093/annonc/mdu123] [PMID: 24669016]
[31]
Jänne, P.A.; Freidlin, B.; Saxman, S.; Johnson, D.H.; Livingston, R.B.; Shepherd, F.A.; Johnson, B.E. Twenty-five years of clinical research for patients with limited-stage small cell lung carcinoma in North America. Cancer, 2002, 95(7), 1528-1538.
[http://dx.doi.org/10.1002/cncr.10841] [PMID: 12237922]
[32]
Schild, S.E.; Stella, P.J.; Brooks, B.J.; Mandrekar, S.; Bonner, J.A.; McGinnis, W.L.; Mailliard, J.A.; Krook, J.E.; Deming, R.L.; Adjei, A.A.; Jatoi, A.; Jett, J.R. Results of combined-modality therapy for limited-stage small cell lung carcinoma in the elderly. Cancer, 2005, 103(11), 2349-2354.
[http://dx.doi.org/10.1002/cncr.21034] [PMID: 15852407]
[33]
Turrisi, A.T., III; Kim, K.; Blum, R.; Sause, W.T.; Livingston, R.B.; Komaki, R.; Wagner, H.; Aisner, S.; Johnson, D.H. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N. Engl. J. Med., 1999, 340(4), 265-271.
[http://dx.doi.org/10.1056/NEJM199901283400403] [PMID: 9920950]
[34]
Jeremic, B.; Shibamoto, Y.; Nikolic, N.; Milicic, B.; Milisavljevic, S.; Dagovic, A.; Aleksandrovic, J.; Radosavljevic-Asic, G. Role of radiation therapy in the combined-modality treatment of patients with extensive disease small-cell lung cancer: A randomized study. J. Clin. Oncol., 1999, 17(7), 2092-2099.
[http://dx.doi.org/10.1200/JCO.1999.17.7.2092] [PMID: 10561263]
[35]
Ung, Y.C.; Bezjak, A.; Coakley, N.; Evans, W.K. positron emission tomography with 18Fluorodeoxyglucose in radiation treatment planning for non-small cell lung cancer: a systematic review. J. Thorac. Oncol., 2011, 6(1), 86-97.
[http://dx.doi.org/10.1097/JTO.0b013e3181fc7687]
[36]
Cancer, N.C.C.f. National Institute for Health and Clinical Excellence: Guidance, in The Diagnosis and Treatment of Lung Cancer (Update); National Collaborating Centre for Cancer (UK): Cardiff (UK), , 2011.
[37]
Nestle, U.; De Ruysscher, D.; Ricardi, U.; Geets, X.; Belderbos, J.; Pöttgen, C.; Dziadiuszko, R.; Peeters, S.; Lievens, Y.; Hurkmans, C.; Slotman, B.; Ramella, S.; Faivre-Finn, C.; McDonald, F.; Manapov, F.; Putora, P.M.; LePéchoux, C.; Van Houtte, P. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother. Oncol., 2018, 127(1), 1-5.
[http://dx.doi.org/10.1016/j.radonc.2018.02.023] [PMID: 29605476]
[38]
Ter-Pogossian, M.M.; Phelps, M.E.; Hoffman, E.J.; Mullani, N.A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 1975, 114(1), 89-98.
[http://dx.doi.org/10.1148/114.1.89] [PMID: 1208874]
[39]
Kiffer, J.D.; Berlangieri, S.U.; Scott, A.M.; Quong, G.; Feigen, M.; Schumer, W.; Clarke, C.P.; Knight, S.R.; Daniel, F.J. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer, 1998, 19(3), 167-177.
[http://dx.doi.org/10.1016/S0169-5002(97)00086-X] [PMID: 9631364]
[40]
Mac Manus, M.P.; Wong, K.; Hicks, R.J.; Matthews, J.P.; Wirth, A.; Ball, D.L. Early mortality after radical radiotherapy for non-small-cell lung cancer: comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center. Int. J. Radiat. Oncol. Biol. Phys., 2002, 52(2), 351-361.
[http://dx.doi.org/10.1016/S0360-3016(01)02673-6] [PMID: 11872280]
[41]
Gregory, D.L.; Hicks, R.J.; Hogg, A.; Binns, D.S.; Shum, P.L.; Milner, A.; Link, E.; Ball, D.L.; Mac Manus, M.P. Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J. Nucl. Med., 2012, 53(7), 1007-1015.
[http://dx.doi.org/10.2967/jnumed.111.099713] [PMID: 22677701]
[42]
De Ruysscher, D.; Wanders, S.; van Haren, E.; Hochstenbag, M.; Geeraedts, W.; Utama, I.; Simons, J.; Dohmen, J.; Rhami, A.; Buell, U.; Thimister, P.; Snoep, G.; Boersma, L.; Verschueren, T.; van Baardwijk, A.; Minken, A.; Bentzen, S.M.; Lambin, P. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys., 2005, 62(4), 988-994.
[http://dx.doi.org/10.1016/j.ijrobp.2004.12.019] [PMID: 15989999]
[43]
Belderbos, J.S.; Heemsbergen, W.D.; De Jaeger, K.; Baas, P.; Lebesque, J.V. Final results of a Phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(1), 126-134.
[http://dx.doi.org/10.1016/j.ijrobp.2006.04.034] [PMID: 16904518]
[44]
Bradley, J.; Thorstad, W.L.; Mutic, S.; Miller, T.R.; Dehdashti, F.; Siegel, B.A.; Bosch, W.; Bertrand, R.J. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(1), 78-86.
[http://dx.doi.org/10.1016/j.ijrobp.2003.10.044] [PMID: 15093902]
[45]
Hellwig, D.; Ukena, D.; Paulsen, F.; Bamberg, M.; Kirsch, C.M. Onko-PET der Deutschen Gesellschaft fur Nuklearmedizin. [Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000 Pneumologie 2001, 55(8), 367-377. [Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000
[http://dx.doi.org/10.1055/s-2001-16201] [PMID: 11505288]
[46]
Nestle, U.; Walter, K.; Schmidt, S.; Licht, N.; Nieder, C.; Motaref, B.; Hellwig, D.; Niewald, M.; Ukena, D.; Kirsch, C.M.; Sybrecht, G.W.; Schnabel, K. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44(3), 593-597.
[http://dx.doi.org/10.1016/S0360-3016(99)00061-9] [PMID: 10348289]
[47]
Greco, C.; Rosenzweig, K.; Cascini, G.L.; Tamburrini, O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer, 2007, 57(2), 125-134.
[http://dx.doi.org/10.1016/j.lungcan.2007.03.020] [PMID: 17478008]
[48]
Steenbakkers, R.J.; Duppen, J.C.; Fitton, I.; Deurloo, K.E.; Zijp, L.J.; Comans, E.F.; Uitterhoeve, A.L.; Rodrigus, P.T.; Kramer, G.W.; Bussink, J.; De Jaeger, K.; Belderbos, J.S.; Nowak, P.J.; van Herk, M.; Rasch, C.R. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(2), 435-448.
[http://dx.doi.org/10.1016/j.ijrobp.2005.06.034] [PMID: 16198064]
[49]
Hanna, G.G.; McAleese, J.; Carson, K.J.; Stewart, D.P.; Cosgrove, V.P.; Eakin, R.L.; Zatari, A.; Lynch, T.; Jarritt, P.H.; Young, V.A.; O’Sullivan, J.M.; Hounsell, A.R. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int. J. Radiat. Oncol. Biol. Phys., 2010, 77(1), 24-30.
[http://dx.doi.org/10.1016/j.ijrobp.2009.04.045] [PMID: 19665324]
[50]
van Loon, J.; Siedschlag, C.; Stroom, J.; Blauwgeers, H.; van Suylen, R.J.; Knegjens, J.; Rossi, M.; van Baardwijk, A.; Boersma, L.; Klomp, H.; Vogel, W.; Burgers, S.; Gilhuijs, K. Microscopic disease extension in three dimensions for non-small-cell lung cancer: development of a prediction model using pathology-validated positron emission tomography and computed tomography features. Int. J. Radiat. Oncol. Biol. Phys., 2012, 82(1), 448-456.
[http://dx.doi.org/10.1016/j.ijrobp.2010.09.001] [PMID: 20971575]
[51]
De Ruysscher, D.; Wanders, S.; Minken, A.; Lumens, A.; Schiffelers, J.; Stultiens, C.; Halders, S.; Boersma, L.; Baardwijk, Av.; Verschueren, T.; Hochstenbag, M.; Snoep, G.; Wouters, B.; Nijsten, S.; Bentzen, S.M.; Kroonenburgh, Mv.; Ollers, M.; Lambin, P. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother. Oncol., 2005, 77(1), 5-10.
[http://dx.doi.org/10.1016/j.radonc.2005.06.014] [PMID: 16019093]
[52]
van Elmpt, W.; De Ruysscher, D.; van der Salm, A.; Lakeman, A.; van der Stoep, J.; Emans, D.; Damen, E.; Öllers, M.; Sonke, J.J.; Belderbos, J. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother. Oncol., 2012, 104(1), 67-71.
[http://dx.doi.org/10.1016/j.radonc.2012.03.005] [PMID: 22483675]
[53]
Wanet, M.; Lee, J.A.; Weynand, B.; De Bast, M.; Poncelet, A.; Lacroix, V.; Coche, E.; Grégoire, V.; Geets, X. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother. Oncol., 2011, 98(1), 117-125.
[http://dx.doi.org/10.1016/j.radonc.2010.10.006] [PMID: 21074882]
[54]
Bradley, J.D.; Dehdashti, F.; Mintun, M.A.; Govindan, R.; Trinkaus, K.; Siegel, B.A. Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J. Clin. Oncol., 2004, 22(16), 3248-3254.
[http://dx.doi.org/10.1200/JCO.2004.11.089] [PMID: 15310768]
[55]
van Loon, J.; Offermann, C.; Bosmans, G.; Wanders, R.; Dekker, A.; Borger, J.; Oellers, M.; Dingemans, A.M.; van Baardwijk, A.; Teule, J.; Snoep, G.; Hochstenbag, M.; Houben, R.; Lambin, P.; De Ruysscher, D. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: A planning study. Radiother. Oncol., 2008, 87(1), 49-54.
[http://dx.doi.org/10.1016/j.radonc.2008.02.019] [PMID: 18342967]
[56]
de Cabanyes Candela, S.; Detterbeck, F.C. A systematic review of restaging after induction therapy for stage IIIa lung cancer: prediction of pathologic stage. J. Thorac. Oncol., 2010, 5(3), 389-398.
[http://dx.doi.org/10.1097/JTO.0b013e3181ce3e5e] [PMID: 20186025]
[57]
Zhang, C.; Liu, J.; Tong, J.; Sun, X.; Song, S.; Huang, G. 18F-FDG-PET evaluation of pathological tumour response to neoadjuvant therapy in patients with NSCLC. Nucl. Med. Commun., 2013, 34(1), 71-77.
[http://dx.doi.org/10.1097/MNM.0b013e3283599999] [PMID: 23086204]
[58]
Usmanij, E.A.; de Geus-Oei, L.F.; Troost, E.G.; Peters-Bax, L.; van der Heijden, E.H.; Kaanders, J.H.; Oyen, W.J.; Schuurbiers, O.C.; Bussink, J. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemo-radiotherapy. J. Nucl. Med., 2013, 54(9), 1528-1534.
[http://dx.doi.org/10.2967/jnumed.112.116921] [PMID: 23864719]
[59]
Mattoli, M.V.; Massaccesi, M.; Castelluccia, A.; Scolozzi, V.; Mantini, G.; Calcagni, M.L. The predictive value of 18F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: low-dose fractionated radiotherapy with concurrent chemotherapy. Radiat. Oncol., 2017, 12(1), 4.
[http://dx.doi.org/10.1186/s13014-016-0737-0] [PMID: 28057034]
[60]
Pöttgen, C.; Gauler, T.; Bellendorf, A.; Guberina, M.; Bockisch, A.; Schwenzer, N.; Heinzelmann, F.; Cordes, S.; Schuler, M.H.; Welter, S.; Stamatis, G.; Friedel, G.; Darwiche, K.; Jöckel, K.H.; Eberhardt, W.; Stuschke, M. Standardized Uptake Decrease on [18F]-Fluorodeoxyglucose Positron Emission Tomography After Neoadjuvant Chemotherapy Is a Prognostic Classifier for Long-Term Outcome After Multimodality Treatment: Secondary Analysis of a Randomized Trial for Resectable Stage IIIA/B Non-Small-Cell Lung Cancer. J. Clin. Oncol., 2016, 34(21), 2526-2533.
[http://dx.doi.org/10.1200/JCO.2015.65.5167] [PMID: 27247220]
[61]
Huang, W.; Fan, M.; Liu, B.; Fu, Z.; Zhou, T.; Zhang, Z.; Gong, H.; Li, B. Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. J. Nucl. Med., 2014, 55(10), 1584-1590.
[http://dx.doi.org/10.2967/jnumed.114.142919] [PMID: 25214640]
[62]
Hatt, M.; Lee, J.A.; Schmidtlein, C.R.; Naqa, I.E.; Caldwell, C.; De Bernardi, E.; Lu, W.; Das, S.; Geets, X.; Gregoire, V.; Jeraj, R.; MacManus, M.P.; Mawlawi, O.R.; Nestle, U.; Pugachev, A.B.; Schöder, H.; Shepherd, T.; Spezi, E.; Visvikis, D.; Zaidi, H.; Kirov, A.S. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Med. Phys., 2017, 44(6), e1-e42.
[http://dx.doi.org/10.1002/mp.12124] [PMID: 28120467]
[63]
MacManus, M.; Nestle, U.; Rosenzweig, K.E.; Carrio, I.; Messa, C.; Belohlavek, O.; Danna, M.; Inoue, T.; Deniaud-Alexandre, E.; Schipani, S.; Watanabe, N.; Dondi, M.; Jeremic, B. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother. Oncol., 2009, 91(1), 85-94.
[http://dx.doi.org/10.1016/j.radonc.2008.11.008] [PMID: 19100641]
[64]
Black, Q.C.; Grills, I.S.; Kestin, L.L.; Wong, C.Y.; Wong, J.W.; Martinez, A.A.; Yan, D. Defining a radiotherapy target with positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys., 2004, 60(4), 1272-1282.
[http://dx.doi.org/10.1016/j.ijrobp.2004.06.254] [PMID: 15519800]
[65]
Hong, R.; Halama, J.; Bova, D.; Sethi, A.; Emami, B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(3), 720-726.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.039] [PMID: 17293230]
[66]
Biehl, K.J.; Kong, F.M.; Dehdashti, F.; Jin, J.Y.; Mutic, S.; El Naqa, I.; Siegel, B.A.; Bradley, J.D. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J. Nucl. Med., 2006, 47(11), 1808-1812.
[PMID: 17079814]
[67]
Berthon, B.; Spezi, E.; Galavis, P.; Shepherd, T.; Apte, A.; Hatt, M.; Fayad, H.; De Bernardi, E.; Soffientini, C.D.; Ross Schmidtlein, C.; El Naqa, I.; Jeraj, R.; Lu, W.; Das, S.; Zaidi, H.; Mawlawi, O.R.; Visvikis, D.; Lee, J.A.; Kirov, A.S. Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Med. Phys., 2017, 44(8), 4098-4111.
[http://dx.doi.org/10.1002/mp.12312] [PMID: 28474819]
[68]
Pépin, A.; Daouk, J.; Bailly, P.; Hapdey, S.; Meyer, M.E. Management of respiratory motion in PET/computed tomography: the state of the art. Nucl. Med. Commun., 2014, 35(2), 113-122.
[http://dx.doi.org/10.1097/MNM.0000000000000048] [PMID: 24352107]
[69]
Sindoni, A.; Minutoli, F.; Pontoriero, A.; Iatì, G.; Baldari, S.; Pergolizzi, S. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: Review of the literature. Lung Cancer, 2016, 96, 78-86.
[http://dx.doi.org/10.1016/j.lungcan.2016.03.019] [PMID: 27133755]
[70]
Frood, R.; Prestwich, R.; Tsoumpas, C.; Murray, P.; Franks, K.; Scarsbrook, A. Effectiveness of respiratory-gated positron emission tomography/computed tomography for radiotherapy planning in patients with lung carcinoma - a systematic review. Clin. Oncol. (R. Coll. Radiol.), 2018, 30(4), 225-232.
[http://dx.doi.org/10.1016/j.clon.2018.01.005] [PMID: 29397271]
[71]
Minamimoto, R.; Mitsumoto, T.; Miyata, Y.; Sunaoka, F.; Morooka, M.; Okasaki, M.; Iagaru, A.; Kubota, K. Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image. Nucl. Med. Commun., 2016, 37(2), 162-170.
[http://dx.doi.org/10.1097/MNM.0000000000000423] [PMID: 26513056]
[72]
Walker, M.D.; Bradley, K.M.; McGowan, D.R. Evaluation of principal component analysis-based data-driven respiratory gating for positron emission tomography. Br. J. Radiol., 2018, 91(1085)20170793
[http://dx.doi.org/10.1259/bjr.20170793] [PMID: 29419327]
[73]
Büther, F.; Ernst, I.; Frohwein, L.J.; Pouw, J.; Schäfers, K.P.; Stegger, L. Data-driven gating in PET: influence of respiratory signal noise on motion resolution. Med. Phys., 2018, 45(7), 3205-3213.
[http://dx.doi.org/10.1002/mp.12987] [PMID: 29782653]
[74]
Sollini, M.; Cozzi, L.; Antunovic, L.; Chiti, A.; Kirienko, M. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci. Rep., 2017, 7(1), 358.
[http://dx.doi.org/10.1038/s41598-017-00426-y] [PMID: 28336974]
[75]
Frood, R.; McDermott, G.; Scarsbrook, A. Respiratory-gated PET/CT for pulmonary lesion characterisation-promises and problems. Br. J. Radiol., 2018, 91(1086)20170640
[http://dx.doi.org/10.1259/bjr.20170640] [PMID: 29338327]
[76]
Le Roux, P.Y.; Siva, S.; Callahan, J.; Claudic, Y.; Bourhis, D.; Steinfort, D.P.; Hicks, R.J.; Hofman, M.S. Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT. EJNMMI Res., 2017, 7(1), 82.
[http://dx.doi.org/10.1186/s13550-017-0332-x] [PMID: 29019109]
[77]
Vaupel, P.; Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev., 2007, 26(2), 225-239.
[http://dx.doi.org/10.1007/s10555-007-9055-1] [PMID: 17440684]
[78]
Vaupel, P.; Thews, O.; Mayer, A.; Höckel, S.; Höckel, M. Oxygenation status of gynecologic tumors: what is the optimal hemoglobin level? Strahlenther. Onkol., 2002, 178(12), 727-731.
[http://dx.doi.org/10.1007/s00066-002-1081-x] [PMID: 12491062]
[79]
Höckel, M.; Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[http://dx.doi.org/10.1093/jnci/93.4.266] [PMID: 11181773]
[80]
Vaupel, P.; Harrison, L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist, 2004, 9(Suppl. 5), 4-9.
[http://dx.doi.org/10.1634/theoncologist.9-90005-4] [PMID: 15591417]
[81]
Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G. Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516), 464-468.
[http://dx.doi.org/10.1126/science.1059817] [PMID: 11292862]
[82]
Jaakkola, P.; Mole, D.R.; Tian, Y.M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001, 292(5516), 468-472.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[83]
Ikeda, Y.; Taveira-DaSilva, A.M.; Pacheco-Rodriguez, G.; Steagall, W.K.; El-Chemaly, S.; Gochuico, B.R.; May, R.M.; Hathaway, O.M.; Li, S.; Wang, J.A.; Darling, T.N.; Stylianou, M.; Moss, J. Erythropoietin-driven proliferation of cells with mutations in the tumor suppressor gene TSC2. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 300(1), L64-L72.
[http://dx.doi.org/10.1152/ajplung.00095.2010] [PMID: 21036916]
[84]
Bollineni, V.R.; Wiegman, E.M.; Pruim, J.; Groen, H.J.; Langendijk, J.A. Hypoxia imaging using positron emission tomography in non-small cell lung cancer: implications for radiotherapy. Cancer Treat. Rev., 2012, 38(8), 1027-1032.
[http://dx.doi.org/10.1016/j.ctrv.2012.04.003] [PMID: 22560366]
[85]
Koh, W.J.; Rasey, J.S.; Evans, M.L.; Grierson, J.R.; Lewellen, T.K.; Graham, M.M.; Krohn, K.A.; Griffin, T.W. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int. J. Radiat. Oncol. Biol. Phys., 1992, 22(1), 199-212.
[http://dx.doi.org/10.1016/0360-3016(92)91001-4] [PMID: 1727119]
[86]
Rasey, J.S.; Koh, W.J.; Evans, M.L.; Peterson, L.M.; Lewellen, T.K.; Graham, M.M.; Krohn, K.A. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys., 1996, 36(2), 417-428.
[http://dx.doi.org/10.1016/S0360-3016(96)00325-2] [PMID: 8892467]
[87]
Gagel, B.; Reinartz, P.; Demirel, C.; Kaiser, H.J.; Zimny, M.; Piroth, M.; Pinkawa, M.; Stanzel, S.; Asadpour, B.; Hamacher, K.; Coenen, H.H.; Buell, U.; Eble, M.J. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer, 2006, 6, 51.
[http://dx.doi.org/10.1186/1471-2407-6-51] [PMID: 16515707]
[88]
Souvatzoglou, M.; Grosu, A.L.; Röper, B.; Krause, B.J.; Beck, R.; Reischl, G.; Picchio, M.; Machulla, H.J.; Wester, H.J.; Piert, M. Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(10), 1566-1575.
[http://dx.doi.org/10.1007/s00259-007-0424-3] [PMID: 17447061]
[89]
Sorger, D.; Patt, M.; Kumar, P.; Wiebe, L.I.; Barthel, H.; Seese, A.; Dannenberg, C.; Tannapfel, A.; Kluge, R.; Sabri, O. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl. Med. Biol., 2003, 30(3), 317-326.
[http://dx.doi.org/10.1016/S0969-8051(02)00442-0] [PMID: 12745023]
[90]
Piert, M.; Machulla, H.J.; Picchio, M.; Reischl, G.; Ziegler, S.; Kumar, P.; Wester, H.J.; Beck, R.; McEwan, A.J.; Wiebe, L.I.; Schwaiger, M. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med., 2005, 46(1), 106-113.
[PMID: 15632040]
[91]
Dehdashti, F.; Mintun, M.A.; Lewis, J.S.; Bradley, J.; Govindan, R.; Laforest, R.; Welch, M.J.; Siegel, B.A. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(6), 844-850.
[http://dx.doi.org/10.1007/s00259-003-1130-4] [PMID: 12692685]
[92]
Vesselle, H.; Grierson, J.; Muzi, M.; Pugsley, J.M.; Schmidt, R.A.; Rabinowitz, P.; Peterson, L.M.; Vallières, E.; Wood, D.E. In vivo validation of 3‘deoxy-3’-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin. Cancer Res., 2002, 8(11), 3315-3323.
[PMID: 12429617]
[93]
Yamamoto, Y.; Nishiyama, Y.; Ishikawa, S.; Nakano, J.; Chang, S.S.; Bandoh, S.; Kanaji, N.; Haba, R.; Kushida, Y.; Ohkawa, M. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(10), 1610-1616.
[http://dx.doi.org/10.1007/s00259-007-0449-7] [PMID: 17530250]
[94]
Buck, A.K.; Halter, G.; Schirrmeister, H.; Kotzerke, J.; Wurziger, I.; Glatting, G.; Mattfeldt, T.; Neumaier, B.; Reske, S.N.; Hetzel, M. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med., 2003, 44(9), 1426-1431.
[PMID: 12960187]
[95]
Brockenbrough, J.S.; Souquet, T.; Morihara, J.K.; Stern, J.E.; Hawes, S.E.; Rasey, J.S.; Leblond, A.; Wiens, L.W.; Feng, Q.; Grierson, J.; Vesselle, H. Tumor 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J. Nucl. Med., 2011, 52(8), 1181-1188.
[http://dx.doi.org/10.2967/jnumed.111.089482] [PMID: 21764789]
[96]
Muzi, M.; Vesselle, H.; Grierson, J.R.; Mankoff, D.A.; Schmidt, R.A.; Peterson, L.; Wells, J.M.; Krohn, K.A. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J. Nucl. Med., 2005, 46(2), 274-282.
[PMID: 15695787]
[97]
Trigonis, I.; Koh, P.K.; Taylor, B.; Tamal, M.; Ryder, D.; Earl, M.; Anton-Rodriguez, J.; Haslett, K.; Young, H.; Faivre-Finn, C.; Blackhall, F.; Jackson, A.; Asselin, M.C. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(4), 682-693.
[http://dx.doi.org/10.1007/s00259-013-2632-3] [PMID: 24504503]
[98]
Saga, T.; Koizumi, M.; Inubushi, M.; Yoshikawa, K.; Tanimoto, K.; Fukumura, T.; Miyamoto, T.; Nakajima, M.; Yamamoto, N.; Baba, M. PET/CT with 3 '-deoxy-3 '-[F-18]fluorothymidine for lung cancer patients receiving carbon-ion radiotherapy. Nucl. Med. Commun., 2011, 32, 348-355.
[99]
Bollineni, V.R.; Kramer, G.M.; Jansma, E.P.; Liu, Y.; Oyen, W.J. A systematic review on [(18)F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur. J. Cancer, 2016, 55, 81-97.
[http://dx.doi.org/10.1016/j.ejca.2015.11.018] [PMID: 26820682]
[100]
Everitt, S.; Hicks, R.J.; Ball, D.; Kron, T.; Schneider-Kolsky, M.; Walter, T.; Binns, D.; Mac Manus, M. Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(4), 1098-1104.
[http://dx.doi.org/10.1016/j.ijrobp.2008.12.039] [PMID: 19386444]

© 2022 Bentham Science Publishers | Privacy Policy