Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Glycan Carriers As Glycotools for Medicinal Chemistry Applications

Author(s): Mattia Vacchini, Rana Edwards, Roberto Guizzardi, Alessandro Palmioli, Carlotta Ciaramelli, Alice Paiotta, Cristina Airoldi, Barbara La Ferla and Laura Cipolla*

Volume 26 , Issue 35 , 2019

Page: [6349 - 6398] Pages: 50

DOI: 10.2174/0929867326666190104164653

Price: $65

Abstract

Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal chemistry applications. In the last few decades, efforts have been focused, among others, on the development of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general overview of the different carbohydrate carrier systems that have been developed as tools in different medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of this topic, the present review will focus on selected examples that highlight the advancements and potentialities offered by this specific area of research, rather than being an exhaustive literature survey of any specific glyco-functionalized system.

Keywords: Glycodendrimers, glyconanoparticles, glycosylated materials, glycosensors, glycoconjugates and glycoarrays.

[1]
Gabius, H-J.; Roth, J. An introduction to the sugar code. Histochem. Cell Biol., 2017, 147(2), 111-117.
[http://dx.doi.org/10.1007/s00418-016-1521-9] [PMID: 27975142]
[2]
Gabius, H-J. The sugar code: Why glycans are so important. Biosystems, 2018, 164, 102-111.
[http://dx.doi.org/10.1016/j.biosystems.2017.07.003] [PMID: 28709806]
[3]
Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; Schnaar, R.L.; Seeberger, P.H. Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015-2017.
[4]
Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 1999, p. 653.
[5]
Sanchez-Ruderisch, H.; Fischer, C.; Detjen, K.M.; Welzel, M.; Wimmel, A.; Manning, J.C.; André, S.; Gabius, H-J. Tumor suppressor p16 INK4a: Downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J., 2010, 277(17), 3552-3563.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07764.x] [PMID: 20695889]
[6]
van Die, I.; Cummings, R.D. Glycans modulate immune responses in helminth infections and allergy. Chem. Immunol. Allergy, 2006, 90, 91-112.
[PMID: 16210905]
[7]
Kanninen, K.; Goldsteins, G.; Auriola, S.; Alafuzoff, I.; Koistinaho, J. Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approach. Neurosci. Lett., 2004, 367(2), 235-240.
[http://dx.doi.org/10.1016/j.neulet.2004.06.013] [PMID: 15331161]
[8]
Schedin-Weiss, S.; Winblad, B.; Tjernberg, L.O. The role of protein glycosylation in Alzheimer disease. FEBS J., 2014, 281(1), 46-62.
[http://dx.doi.org/10.1111/febs.12590] [PMID: 24279329]
[9]
Zhu, Y.; Shan, X.; Yuzwa, S.A.; Vocadlo, D.J. The emerging link between O-GlcNAc and Alzheimer disease. J. Biol. Chem., 2014, 289(50), 34472-34481.
[http://dx.doi.org/10.1074/jbc.R114.601351] [PMID: 25336656]
[10]
Gizaw, S.T.; Koda, T.; Amano, M.; Kamimura, K.; Ohashi, T.; Hinou, H.; Nishimura, S. A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochim. Biophys. Acta, 2015, 1850(9), 1704-1718.
[http://dx.doi.org/10.1016/j.bbagen.2015.04.006] [PMID: 25907331]
[11]
Du, J.; Yarema, K.J. Carbohydrate engineered cells for regenerative medicine. Adv. Drug Deliv. Rev., 2010, 62(7-8), 671-682.
[http://dx.doi.org/10.1016/j.addr.2010.01.003] [PMID: 20117158]
[12]
Dambuza, I.M.; Brown, G.D. C-type lectins in immunity: recent developments. Curr. Opin. Immunol., 2015, 32, 21-27.
[http://dx.doi.org/10.1016/j.coi.2014.12.002] [PMID: 25553393]
[13]
Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol., 2008, 18(5), 567-576.
[http://dx.doi.org/10.1016/j.sbi.2008.08.001] [PMID: 18809496]
[14]
Raman, R.; Raguram, S.; Venkataraman, G.; Paulson, J.C.; Sasisekharan, R. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods, 2005, 2(11), 817-824.
[http://dx.doi.org/10.1038/nmeth807] [PMID: 16278650]
[15]
Gabius, H-J. Glycans: bioactive signals decoded by lectins. Biochem. Soc. Trans., 2008, 36(Pt 6), 1491-1496.
[http://dx.doi.org/10.1042/BST0361491] [PMID: 19021582]
[16]
Chabre, Y.M.; Roy, R. Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem., 2010, 63, 165-393.
[http://dx.doi.org/10.1016/S0065-2318(10)63006-5] [PMID: 20381707]
[17]
Cecioni, S.; Lalor, R.; Blanchard, B.; Praly, J.P.; Imberty, A.; Matthews, S.E.; Vidal, S. Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Chemistry, 2009, 15(47), 13232-13240.
[http://dx.doi.org/10.1002/chem.200901799] [PMID: 19859921]
[18]
Lundquist, J.J.; Toone, E.J. The cluster glycoside effect. Chem. Rev., 2002, 102(2), 555-578.
[http://dx.doi.org/10.1021/cr000418f] [PMID: 11841254]
[19]
Mammen, M.; Choi, S.K.; Whitesides, G.M. polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. Engl., 1998, 37(20), 2754-2794.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754:AID-ANIE2754>3.0.CO;2-3] [PMID: 29711117]
[20]
Ambrosi, M.; Cameron, N.R.; Davis, B.G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem., 2005, 3(9), 1593-1608.
[http://dx.doi.org/10.1039/b414350g] [PMID: 15858635]
[21]
Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science, 2001, 291(5512), 2357-2364.
[http://dx.doi.org/10.1126/science.1059820] [PMID: 11269316]
[22]
Heldin, C-H. Dimerization of cell surface receptors in signal transduction. Cell, 1995, 80(2), 213-223.
[http://dx.doi.org/10.1016/0092-8674(95)90404-2] [PMID: 7834741]
[23]
Gestwicki, J.E.; Kiessling, L.L. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature, 2002, 415(6867), 81-84.
[http://dx.doi.org/10.1038/415081a] [PMID: 11780121]
[24]
Kiessling, L.L.; Gestwicki, J.E.; Strong, L.E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed. Engl., 2006, 45(15), 2348-2368.
[http://dx.doi.org/10.1002/anie.200502794] [PMID: 16557636]
[25]
Guiard, J.; Fiege, B.; Kitov, P.I.; Peters, T.; Bundle, D.R. “Double-click” protocol for synthesis of heterobifunctional multivalent ligands: toward a focused library of specific norovirus inhibitors. Chemistry, 2011, 17(27), 7438-7441.
[http://dx.doi.org/10.1002/chem.201003414] [PMID: 21469230]
[26]
Rademacher, C.; Guiard, J.; Kitov, P.I.; Fiege, B.; Dalton, K.P.; Parra, F.; Bundle, D.R.; Peters, T. Targeting norovirus infection-multivalent entry inhibitor design based on NMR experiments. Chemistry, 2011, 17(27), 7442-7453.
[http://dx.doi.org/10.1002/chem.201003432] [PMID: 21567493]
[27]
Dam, T.K.; Gerken, T.A.; Brewer, C.F. Thermodynamics of multivalent carbohydrate-lectin cross-linking interactions: importance of entropy in the bind and jump mechanism. Biochemistry, 2009, 48(18), 3822-3827.
[http://dx.doi.org/10.1021/bi9002919] [PMID: 19292456]
[28]
Doores, K.J.; Gamblin, D.P.; Davis, B.G. Exploring and exploiting the therapeutic potential of glycoconjugates. Chemistry, 2006, 12(3), 656-665.
[http://dx.doi.org/10.1002/chem.200500557] [PMID: 16187378]
[29]
Stallforth, P.; Lepenies, B.; Adibekian, A.; Seeberger, P.H. 2009 Claude S. Hudson award in carbohydrate chemistry. carbohydrates: a frontier in medicinal chemistry. J. Med. Chem., 2009, 52(18), 5561-5577.
[http://dx.doi.org/10.1021/jm900819p] [PMID: 19702275]
[30]
Lepenies, B.; Yin, J.; Seeberger, P.H. Applications of synthetic carbohydrates to chemical biology. Curr. Opin. Chem. Biol., 2010, 14(3), 404-411.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.016] [PMID: 20227905]
[31]
Wu, C-Y.; Wong, C-H. Chemistry and glycobiology. Chem. Commun. (Camb.), 2011, 47(22), 6201-6207.
[http://dx.doi.org/10.1039/c0cc04359a] [PMID: 21503322]
[32]
Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov., 2009, 8(8), 661-677.
[http://dx.doi.org/10.1038/nrd2852] [PMID: 19629075]
[33]
Fasting, C.; Schalley, C.A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.W.; Haag, R. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. Engl., 2012, 51(42), 10472-10498.
[http://dx.doi.org/10.1002/anie.201201114] [PMID: 22952048]
[34]
Solís, D.; Bovin, N.V.; Davis, A.P.; Jiménez-Barbero, J.; Romero, A.; Roy, R.; Smetana, K., Jr; Gabius, H.J. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta, 2015, 1850(1), 186-235.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.016] [PMID: 24685397]
[35]
Poveda, A.; Jimenez-Barbero, J. NMR studies of carbohydrate-protein interactions in solution. Chem. Rev., 1998, 27, 133.
[36]
Hudson, K.L.; Bartlett, G.J.; Diehl, R.C.; Agirre, J.; Gallagher, T.; Kiessling, L.L.; Woolfson, D.N. Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc., 2015, 137(48), 15152-15160.
[http://dx.doi.org/10.1021/jacs.5b08424] [PMID: 26561965]
[37]
Marchetti, R.; Perez, S.; Arda, A.; Imberty, A.; Jimenez-Barbero, J.; Silipo, A.; Molinaro, A. “Rules of engagement” of protein-glycoconjugate interactions: a molecular view achievable by using NMR spectroscopy and molecular modeling. ChemistryOpen, 2016, 5(4), 274-296.
[http://dx.doi.org/10.1002/open.201600024] [PMID: 27547635]
[38]
Airoldi, C.; Merlo, S.; Sironi, E. NMR molecular recognition studies for the elucidation of protein and nucleic acid structure and function In:e-Book Series on Applications of NMR Spectroscopy; Atta-ur-Rahman, M. Iqbal Choudhary, Eds.; Bentham Science Publishers: USA. , 2015. Vol. 2, pp. 147-219.
[39]
Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl., 2003, 42(8), 864-890.
[http://dx.doi.org/10.1002/anie.200390233] [PMID: 12596167]
[40]
Nilsson, M.; Connell, M.A.; Davis, A.L.; Morris, G.A. Biexponential fitting of diffusion-ordered NMR data: practicalities and limitations. Anal. Chem., 2006, 78(9), 3040-3045.
[http://dx.doi.org/10.1021/ac060034a] [PMID: 16642991]
[41]
Reina, J.J.; Díaz, I.; Nieto, P.M.; Campillo, N.E.; Páez, J.A.; Tabarani, G.; Fieschi, F.; Rojo, J. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin. Org. Biomol. Chem., 2008, 6(15), 2743-2754.
[http://dx.doi.org/10.1039/b802144a] [PMID: 18633532]
[42]
Angulo, J.; Díaz, I.; Reina, J.J.; Tabarani, G.; Fieschi, F.; Rojo, J.; Nieto, P.M. Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN. ChemBioChem, 2008, 9(14), 2225-2227.
[http://dx.doi.org/10.1002/cbic.200800361] [PMID: 18720494]
[43]
Airoldi, C.; Sommaruga, S.; Merlo, S.; Sperandeo, P.; Cipolla, L.; Polissi, A.; Nicotra, F. Targeting bacterial membranes: NMR spectroscopy characterization of substrate recognition and binding requirements of D-arabinose-5-phosphate isomerase. Chemistry, 2010, 16(6), 1897-1902.
[http://dx.doi.org/10.1002/chem.200902619] [PMID: 20039350]
[44]
Airoldi, C.; Merlo, S.; Nicotra, F. Synthesis of 3-deoxy-D-threopentofuranose 5-phosphate a substrate of arabinose 5-phosphate isomerase. J. Carbohydr. Chem., 2010, 29, 30-38.
[http://dx.doi.org/10.1080/07328300903477812]
[45]
Airoldi, C.; Sommaruga, S.; Merlo, S.; Sperandeo, P.; Cipolla, L.; Polissi, A.; Nicotra, F. Targeting bacterial membranes: identification of Pseudomonas aeruginosa D-arabinose-5P isomerase and NMR characterisation of its substrate recognition and binding properties. ChemBioChem, 2011, 12(5), 719-727.
[http://dx.doi.org/10.1002/cbic.201000754] [PMID: 21337483]
[46]
Gabrielli, L.; Merlo, S.; Airoldi, C.; Sperandeo, P.; Gianera, S.; Polissi, A.; Nicotra, F.; Holler, T.P.; Woodard, R.W.; Cipolla, L. Arabinose 5-phosphate isomerase as a target for antibacterial design: studies with substrate analogues and inhibitors. Bioorg. Med. Chem., 2014, 22(8), 2576-2583.
[http://dx.doi.org/10.1016/j.bmc.2013.08.012] [PMID: 24680056]
[47]
Cipolla, L.; Airoldi, C.; Sperandeo, P.; Gianera, S.; Polissi, A.; Nicotra, F.; Gabrielli, L. Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five. Carbohydr. Res., 2014, 389, 186-191.
[http://dx.doi.org/10.1016/j.carres.2014.01.004] [PMID: 24680510]
[48]
Mari, S.; Serrano-Gómez, D.; Cañada, F.J.; Corbí, A.L.; Jiménez-Barbero, J. 1D saturation transfer difference NMR experiments on living cells: the DC-SIGN/oligomannose interaction. Angew. Chem. Int. Ed. Engl., 2004, 44(2), 296-298.
[http://dx.doi.org/10.1002/anie.200461574] [PMID: 15614901]
[49]
Airoldi, C.; Giovannardi, S.; La Ferla, B.; Jiménez-Barbero, J.; Nicotra, F. Saturation transfer difference NMR experiments of membrane proteins in living cells under HR-MAS conditions: the interaction of the SGLT1 co-transporter with its ligands. Chemistry, 2011, 17(48), 13395-13399.
[http://dx.doi.org/10.1002/chem.201102181] [PMID: 22031470]
[50]
Guzzi, C.; Angulo, J.; Doro, F.; Reina, J.J.; Thépaut, M.; Fieschi, F.; Bernardi, A.; Rojo, J.; Nieto, P.M. Insights into molecular recognition of Lewis(X) mimics by DC-SIGN using NMR and molecular modelling. Org. Biomol. Chem., 2011, 9(22), 7705-7712.
[http://dx.doi.org/10.1039/c1ob05938f] [PMID: 21984435]
[51]
Thépaut, M.; Guzzi, C.; Sutkeviciute, I.; Sattin, S.; Ribeiro-Viana, R.; Varga, N.; Chabrol, E.; Rojo, J.; Bernardi, A.; Angulo, J.; Nieto, P.M.; Fieschi, F. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. J. Am. Chem. Soc., 2013, 135(7), 2518-2529.
[http://dx.doi.org/10.1021/ja3053305] [PMID: 23360500]
[53]
Buzás, E.I.; György, B.; Pásztói, M.; Jelinek, I.; Falus, A.; Gabius, H.J. Carbohydrate recognition systems in autoimmunity. Autoimmunity, 2006, 39(8), 691-704.
[http://dx.doi.org/10.1080/08916930601061470] [PMID: 17178566]
[54]
Jiménez-Barbero, J.; Javier Cañada, F.; Asensio, J.L.; Aboitiz, N.; Vidal, P.; Canales, A.; Groves, P.; Gabius, H.J.; Siebert, H.C. Hevein domains: an attractive model to study carbohydrate-protein interactions at atomic resolution. Adv. Carbohydr. Chem. Biochem., 2006, 60, 303-354.
[http://dx.doi.org/10.1016/S0065-2318(06)60007-3] [PMID: 16750446]
[55]
Ogino, S.; Nishida, N.; Umemoto, R.; Suzuki, M.; Takeda, M.; Terasawa, H.; Kitayama, J.; Matsumoto, M.; Hayasaka, H.; Miyasaka, M.; Shimada, I. Two-state conformations in the hyaluronan-binding domain regulate CD44 adhesiveness under flow condition. Structure, 2010, 18(5), 649-656.
[http://dx.doi.org/10.1016/j.str.2010.02.010] [PMID: 20462498]
[56]
Probert, F.; Whittaker, S.B.; Crispin, M.; Mitchell, D.A.; Dixon, A.M. Solution NMR analyses of the C-type carbohydrate recognition domain of DC-SIGNR protein reveal different binding modes for HIV-derived oligosaccharides and smaller glycan fragments. J. Biol. Chem., 2013, 288(31), 22745-22757.
[http://dx.doi.org/10.1074/jbc.M113.458299] [PMID: 23788638]
[57]
Watson, A.A.; Lebedev, A.A.; Hall, B.A.; Fenton-May, A.E.; Vagin, A.A.; Dejnirattisai, W.; Felce, J.; Mongkolsapaya, J.; Palma, A.S.; Liu, Y.; Feizi, T.; Screaton, G.R.; Murshudov, G.N.; O’Callaghan, C.A. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J. Biol. Chem., 2011, 286(27), 24208-24218.
[http://dx.doi.org/10.1074/jbc.M111.226142] [PMID: 21566123]
[58]
Jayaraman, N. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem. Soc. Rev., 2009, 38(12), 3463-3483.
[http://dx.doi.org/10.1039/b815961k] [PMID: 20449063]
[59]
Chabre, Y.M.; Roy, R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem. Soc. Rev., 2013, 42(11), 4657-4708.
[http://dx.doi.org/10.1039/c3cs35483k] [PMID: 23400414]
[60]
Wittmann, V.; Pieters, R.J. Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev., 2013, 42(10), 4492-4503.
[http://dx.doi.org/10.1039/c3cs60089k] [PMID: 23598793]
[61]
Gabius, H-J. The Sugar Code: Fundamentals of Glycosciences; Wiley-Blackwell: Weinheim, 2009.
[62]
Deniaud, D.; Julienne, K.; Gouin, S.G. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem., 2011, 9(4), 966-979.
[http://dx.doi.org/10.1039/C0OB00389A] [PMID: 21173976]
[63]
Gabius, H-J.; Siebert, H-C.; André, S.; Jiménez-Barbero, J.; Rüdiger, H. Chemical biology of the sugar code. ChemBioChem, 2004, 5(6), 740-764.
[http://dx.doi.org/10.1002/cbic.200300753] [PMID: 15174156]
[64]
Dan, X.; Liu, W.; Ng, T.B. Development and applications of lectins as biological tools in biomedical research. Med. Res. Rev., 2016, 36(2), 221-247.
[http://dx.doi.org/10.1002/med.21363] [PMID: 26290041]
[65]
Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov., 2009, 8(3), 226-234.
[http://dx.doi.org/10.1038/nrd2804] [PMID: 19247305]
[66]
Cipolla, L.; Gregori, M.; So, P.W. Glycans in magnetic resonance imaging: determinants of relaxivity to smart agents, and potential applications in biomedicine. Curr. Med. Chem., 2011, 18(7), 1002-1018.
[http://dx.doi.org/10.2174/092986711794940851] [PMID: 21254975]
[67]
Bojarová, P.; Křen, V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater. Sci., 2016, 4(8), 1142-1160.
[http://dx.doi.org/10.1039/C6BM00088F] [PMID: 27075026]
[68]
Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev., 2015, 115(1), 525-561.
[http://dx.doi.org/10.1021/cr500303t] [PMID: 25495138]
[69]
Hao, N.; Neranon, K.; Ramström, O.; Yan, M. Glyconanomaterials for biosensing applications. Biosens. Bioelectron., 2016, 76, 113-130.
[http://dx.doi.org/10.1016/j.bios.2015.07.031] [PMID: 26212205]
[70]
1 Puvirajesinghe, T. M.; Turnbull, J.E. Glycoarray technologies: deciphering interactions from proteins to live cell responses. Microarrays (Basel), 2016, 5, 3.
[http://dx.doi.org/10.3390/microarrays5010003]
[71]
Russo, L.; Cipolla, L. Glycomics: New Challenges and opportunities in regenerative medicine. Chemistry, 2016, 22(38), 13380-13388.
[http://dx.doi.org/10.1002/chem.201602156] [PMID: 27400428]
[72]
Cunha, C.R.A.; Oliveira, A.D.P.R.; Firmino, T.V.C.; Tenório, D.P.L.A.; Pereira, G.; Carvalho, L.B., Jr; Santos, B.S.; Correia, M.T.S.; Fontes, A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(3), 427-439.
[http://dx.doi.org/10.1016/j.bbagen.2017.11.010] [PMID: 29126854]
[73]
Marradi, M.; Chiodo, F.; García, I.; Penadés, S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem. Soc. Rev., 2013, 42(11), 4728-4745.
[http://dx.doi.org/10.1039/c2cs35420a] [PMID: 23288339]
[74]
Fradet, A.; Chen, J.; Hellwich, K-H.; Horie, K.; Kahovec, J.; Mormann, W.; Stepto, R.F.T.; Vohlidal, J.; Wilks, E.S. Nomenclature and terminology for dendrimers with regular dendrons and for hyperbranched polymers. Chem. Int., 2017, 39, 33-33.
[http://dx.doi.org/10.1515/ci-2017-0155]
[75]
Grayson, S.M.; Fréchet, J.M. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev., 2001, 101(12), 3819-3868.
[http://dx.doi.org/10.1021/cr990116h] [PMID: 11740922]
[76]
Newkome, G.R.; Shreiner, C.D. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedures. Polymer (Guildf.), 2008, 49, 1-173.
[http://dx.doi.org/10.1016/j.polymer.2007.10.021]
[77]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[78]
Wu, L.P.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00031] [PMID: 25654320]
[79]
Andreozzi, E.; Antonelli, A.; Cangiotti, M.; Canonico, B.; Sfara, C.; Pianetti, A.; Bruscolini, F.; Sahre, K.; Appelhans, D.; Papa, S.; Ottaviani, M.F. Interactions of nitroxide-conjugated and non-conjugated glycodendrimers with normal and cancer cells and biocompatibility studies. Bioconjug. Chem., 2017, 28(2), 524-538.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00635] [PMID: 28068077]
[80]
Röglin, L.; Lempens, E.H.; Meijer, E.W. A synthetic “tour de force”: well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew. Chem. Int. Ed. Engl., 2011, 50(1), 102-112.
[http://dx.doi.org/10.1002/anie.201003968] [PMID: 21117109]
[81]
Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V. Light-harvesting dendrimers. Curr. Opin. Chem. Biol., 2003, 7(6), 657-665.
[http://dx.doi.org/10.1016/j.cbpa.2003.10.001] [PMID: 14644173]
[82]
Selin, M.; Peltonen, L.; Hirvonen, J.; Bimbo, L.M. Dendrimers and their supramolecular nanostructures for biomedical applications. J. Drug Deliv. Sci. Technol., 2016, 34, 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.02.008]
[83]
Zeng, Y.; Li, Y.Y.; Chen, J.; Yang, G.; Li, Y. Dendrimers: a mimic natural light-harvesting system. Chem. Asian J., 2010, 5(5), 992-1005.
[http://dx.doi.org/10.1002/asia.200900653] [PMID: 20397185]
[84]
Roy, R.; Zanini, D.; Meunier, S.J.; Romanowska, A. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J. Chem. Soc. Chem. Commun., 1993, 1869-1872.
[http://dx.doi.org/10.1039/c39930001869]
[85]
Janaszewska, A.; Maczynska, K.; Matuszko, G.; Appelhans, D.; Voit, B.; Klajnert, B.; Bryszewska, M. Cytotoxicity of PAMAM, PPI and maltose modified PPI dendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J. Chem., 2012, 36, 428-437.
[http://dx.doi.org/10.1039/C1NJ20489K]
[86]
Janaszewska, A.; Ziemba, B.; Ciepluch, K.; Appelhans, D.; Voit, B.; Klajnert, B.; Bryszewska, M. The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein-proofs of crossing blood-brain-barrier. New J. Chem., 2012, 36, 350-353.
[http://dx.doi.org/10.1039/C1NJ20444K]
[87]
Ciolkowski, M.; Pałecz, B.; Appelhans, D.; Voit, B.; Klajnert, B.; Bryszewska, M. The influence of maltose modified poly(propylene imine) dendrimers on hen egg white lysozyme structure and thermal stability. Colloids Surf. B Biointerfaces, 2012, 95, 103-108.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.021] [PMID: 22410344]
[88]
Manning, J.C.; Romero, A.; Habermann, F.A.; García Caballero, G.; Kaltner, H.; Gabius, H.J. Lectins: a primer for histochemists and cell biologists. Histochem. Cell Biol., 2017, 147(2), 199-222.
[http://dx.doi.org/10.1007/s00418-016-1524-6] [PMID: 28013368]
[89]
Mayer, S.; Raulf, M.K.; Lepenies, B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem. Cell Biol., 2017, 147(2), 223-237.
[http://dx.doi.org/10.1007/s00418-016-1523-7] [PMID: 27999992]
[90]
Kaltner, H.; Toegel, S.; Caballero, G.G.; Manning, J.C.; Ledeen, R.W.; Gabius, H.J. Galectins: their network and roles in immunity/tumor growth control. Histochem. Cell Biol., 2017, 147(2), 239-256.
[http://dx.doi.org/10.1007/s00418-016-1522-8] [PMID: 28012132]
[91]
Gabius, H.J.; Manning, J.C.; Kopitz, J.; André, S.; Kaltner, H. Sweet complementarity: the functional pairing of glycans with lectins. Cell. Mol. Life Sci., 2016, 73(10), 1989-2016.
[http://dx.doi.org/10.1007/s00018-016-2163-8] [PMID: 26956894]
[92]
Wesener, D.A.; Dugan, A.; Kiessling, L.L. Recognition of microbial glycans by soluble human lectins. Curr. Opin. Struct. Biol., 2017, 44, 168-178.
[http://dx.doi.org/10.1016/j.sbi.2017.04.002] [PMID: 28482337]
[93]
Appelhans, D.; Klajnert-Maculewicz, B.; Janaszewska, A.; Lazniewska, J.; Voit, B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem. Soc. Rev., 2015, 44(12), 3968-3996.
[http://dx.doi.org/10.1039/C4CS00339J] [PMID: 25519948]
[94]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[95]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[96]
Nwe, K.; Brechbiel, M.W. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm., 2009, 24(3), 289-302.
[http://dx.doi.org/10.1089/cbr.2008.0626] [PMID: 19538051]
[97]
Aragão-Leoneti, V.; Carvalho, I. Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron, 2010, 66(49), 9475-9492.
[http://dx.doi.org/10.1016/j.tet.2010.10.001]
[98]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693]
[99]
Best, M.D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry, 2009, 48(28), 6571-6584.
[http://dx.doi.org/10.1021/bi9007726] [PMID: 19485420]
[100]
Ladmiral, V.; Mantovani, G.; Clarkson, G.J.; Cauet, S.; Irwin, J.L.; Haddleton, D.M. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc., 2006, 128(14), 4823-4830.
[http://dx.doi.org/10.1021/ja058364k] [PMID: 16594719]
[101]
Azagarsamy, M.A.; Anseth, K.S. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett., 2013, 2(1), 5-9.
[http://dx.doi.org/10.1021/mz300585q] [PMID: 23336091]
[102]
Park, S.; Gildersleeve, J.C.; Blixt, O.; Shin, I. Carbohydrate microarrays. Chem. Soc. Rev., 2013, 42(10), 4310-4326.
[http://dx.doi.org/10.1039/C2CS35401B] [PMID: 23192235]
[103]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[104]
Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003, 189(1-2), 147-163.
[http://dx.doi.org/10.1016/S0300-483X(03)00159-8] [PMID: 12821289]
[105]
Tchounwou, P.B.; Newsome, C.; Williams, J.; Glass, K. Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG(2)) Cells. Met. Ions Biol. Med., 2008, 10, 285-290.
[PMID: 21423838]
[106]
Ahmad, J.; Alhadlaq, H.A.; Alshamsan, A.; Siddiqui, M.A.; Saquib, Q.; Khan, S.T.; Wahab, R.; Al-Khedhairy, A.A.; Musarrat, J.; Akhtar, M.J.; Ahamed, M.J. Differential cytotoxicity of copper ferrite nanoparticles in different human cells. Appl. Toxicol, 2016. 1284-1293.
[107]
Shi, M.; de Mesy Bentley, K.L.; Palui, G.; Mattoussi, H.; Elder, A.; Yang, H. The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale, 2017, 9(14), 4739-4750.
[http://dx.doi.org/10.1039/C6NR09102D] [PMID: 28327771]
[108]
Cao, B.; Zheng, Y.; Xi, T.; Zhang, C.; Song, W.; Burugapalli, K.; Yang, H.; Ma, Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed. Microdevices, 2012, 14(4), 709-720.
[http://dx.doi.org/10.1007/s10544-012-9651-x] [PMID: 22526680]
[109]
Hou, X.; Ke, C.; Fraser Stoddart, J. Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem. Soc. Rev., 2016, 45(14), 3766-3780.
[http://dx.doi.org/10.1039/C6CS00055J] [PMID: 27030885]
[110]
Del Grosso, A.; Galanopoulos, L.D.; Chiu, C.K.C.; Clarkson, G.J.O.; O., Connor P.B.; Wills, M. Strained alkynes derived from 2,2′-dihydroxy-1,1′-biaryls; synthesis and copper-free cycloaddition with azides. Org. Biomol. Chem., 2017, 15(21), 4517-4521.
[http://dx.doi.org/10.1039/C7OB00991G] [PMID: 28513734]
[111]
Ning, X.; Guo, J.; Wolfert, M.A.; Boons, G-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew. Chem. Int. Ed. Engl., 2008, 47(12), 2253-2255.
[http://dx.doi.org/10.1002/anie.200705456] [PMID: 18275058]
[112]
Dondoni, A. The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew. Chem. Int. Ed. Engl., 2008, 47(47), 8995-8997.
[http://dx.doi.org/10.1002/anie.200802516] [PMID: 18846513]
[113]
Dondoni, A.; Marra, A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem. Soc. Rev., 2012, 41(2), 573-586.
[http://dx.doi.org/10.1039/C1CS15157F] [PMID: 21792452]
[114]
McSweeney, L.; Dénès, F.; Scanlan, E.M. Thiyl-radical reactions in carbohydrate chemistry: from thiosugars to glycoconjugate synthesis. Eur. J. Org. Chem., 2016, 2080-2095.
[http://dx.doi.org/10.1002/ejoc.201501543]
[115]
Sangwan, R.; Mandal, P.K. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Advances, 2017, 7, 26256-26321.
[http://dx.doi.org/10.1039/C7RA01858D]
[116]
Bini, D.; Russo, L.; Battocchio, C.; Natalello, A.; Polzonetti, G.; Doglia, S.; Nicotra, F.; Cipolla, L. Dendrons synthesis and immobilization on biomaterial surface by a double click. Org. Lett., 2014, 16, 1298-1301.
[http://dx.doi.org/10.1021/ol403476z] [PMID: 24552198]
[117]
Orbán, E.; Mező, G.; Schlage, P.; Csík, G.; Kulić, Z.; Ansorge, P.; Fellinger, E.; Möller, H.M.; Manea, M. In vitro degradation and antitumor activity of oxime bond-linked daunorubicin-GnRH-III bioconjugates and DNA-binding properties of daunorubicin-amino acid metabolites. Amino Acids, 2011, 41(2), 469-483.
[http://dx.doi.org/10.1007/s00726-010-0766-1] [PMID: 20953647]
[118]
Kalia, J.; Raines, R.T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. Engl., 2008, 47(39), 7523-7526.
[http://dx.doi.org/10.1002/anie.200802651] [PMID: 18712739]
[119]
Ulrich, S.; Boturyn, D.; Marra, A.; Renaudet, O.; Dumy, P. Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry, 2014, 20(1), 34-41.
[http://dx.doi.org/10.1002/chem.201302426] [PMID: 24302514]
[120]
Bini, D.; Nicotra, F.; Cipolla, L. Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry. Beilstein J. Org. Chem., 2014, 10, 1686-1691.
[http://dx.doi.org/10.3762/bjoc.10.177] [PMID: 25161728]
[121]
Berthet, N.; Thomas, B.; Bossu, I.; Dufour, E.; Gillon, E.; Garcia, J.; Spinelli, N.; Imberty, A.; Dumy, P.; Renaudet, O. High affinity glycodendrimers for the lectin LecB from Pseudomonas aeruginosa. Bioconjug. Chem., 2013, 24(9), 1598-1611.
[http://dx.doi.org/10.1021/bc400239m] [PMID: 23888914]
[122]
Thomas, B.; Berthet, N.; Garcia, J.; Dumy, P.; Renaudet, O. Expanding the scope of oxime ligation: facile synthesis of large cyclopeptide-based glycodendrimers. Chem. Commun. (Camb.), 2013, 49(92), 10796-10798.
[http://dx.doi.org/10.1039/c3cc45368e] [PMID: 24121458]
[123]
Guizzardi, R.; Vacchini, M.; Santambrogio, C.; Cipolla, L. Convergent dendrimer synthesis by olefin metathesis and studies toward glycoconjugation. Can. J. Chem., 2017, 95, 1008-1012.
[http://dx.doi.org/10.1139/cjc-2017-0146]
[124]
Palmioli, A.; Aliprandi, A.; Septiadi, D.; Mauro, M.; Bernardi, A.; De Cola, L.; Panigati, M. Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging. Org. Biomol. Chem., 2017, 15(7), 1686-1699.
[http://dx.doi.org/10.1039/C6OB02559E] [PMID: 28134389]
[125]
Pifferi, C.; Daskhan, G.C.; Fiore, M.; Shiao, T.C.; Roy, R.; Renaudet, O. Aminooxylated carbohydrates: synthesis and applications. Chem. Rev., 2017, 117(15), 9839-9873.
[http://dx.doi.org/10.1021/acs.chemrev.6b00733] [PMID: 28682060]
[126]
Turnbull, W.B.; Stoddart, J.F. Design and synthesis of glycodendrimers. J. Biotechnol., 2002, 90(3-4), 231-255.
[PMID: 12071227]
[127]
Dubber, M.; Lindhorst, T.K. Synthesis of chiral carbohydrate-centered dendrimers. Chem. Commun. (Camb.), 1998, 1265-1266.
[http://dx.doi.org/10.1039/a800560e]
[128]
Kitov, P.I.; Sadowska, J.M.; Mulvey, G.; Armstrong, G.D.; Ling, H.; Pannu, N.S.; Read, R.J.; Bundle, D.R. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature, 2000, 403(6770), 669-672.
[http://dx.doi.org/10.1038/35001095] [PMID: 10688205]
[129]
Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues-Beyond the doughnut. Chem. Rev., 1998, 98(5), 1787-1802.
[http://dx.doi.org/10.1021/cr9700181] [PMID: 11848949]
[130]
Ortiz Mellet, C.; Defaye, J.; García Fernández, J.M. Multivalent cyclooligosaccharides: versatile carbohydrate clusters with dual role as molecular receptors and lectin ligands. Chemistry, 2002, 8(9), 1982-1990.
[http://dx.doi.org/10.1002/1521-3765(20020503)8:9<1982:AID-CHEM1982>3.0.CO;2-5] [PMID: 11981882]
[131]
Namazi, H.; Toomari Hamrahloo, Y. Novel pH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. Adv. Pharm. Bull., 2011, 1(1), 40-47.
[PMID: 24312755]
[132]
Zhang, Z-X.; Liu, K.L.; Li, J. Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules, 2011, 44(5), 1182-1193.
[http://dx.doi.org/10.1021/ma102196q]
[133]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M. Study on the spectral and inclusion properties of a sensitive dye, 3-naphthyl-1-phenyl-5-(5-fluoro-2- nitrophenyl)-2-pyrazoline, in solvents and β-cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc, 2015, 136 (Pt B), 661-671.
[http://dx.doi.org/10.1016/j.saa.2014.09.080]] [PMID: 25448966]
[134]
Toomari, Y.; Namazi, H. Supramolecular encapsulation of doxorubicin with β-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem., 2017, 87, 105-115.
[135]
Toomari, Y.; Namazi, H.; Akbar, E.A. Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohydr. Polym., 2015, 132, 205-213.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.087] [PMID: 26256342]
[136]
Fulton, D.A.; Stoddart, J.F. An efficient synthesis of cyclodextrin-based carbohydrate cluster compounds. Org. Lett., 2000, 2(8), 1113-1116.
[http://dx.doi.org/10.1021/ol005668x] [PMID: 10804567]
[137]
Bernardes, G.J.; Kikkeri, R.; Maglinao, M.; Laurino, P.; Collot, M.; Hong, S.Y.; Lepenies, B.; Seeberger, P.H. Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-specific targeting. Org. Biomol. Chem., 2010, 8(21), 4987-4996.
[http://dx.doi.org/10.1039/c0ob00372g] [PMID: 20820666]
[138]
Rodríguez-Lavado, J.; de la Mata, M.; Jiménez-Blanco, J.L.; García-Moreno, M.I.; Benito, J.M.; Díaz-Quintana, A.; Sánchez-Alcázar, J.A.; Higaki, K.; Nanba, E.; Ohno, K.; Suzuki, Y.; Ortiz Mellet, C.; García Fernández, J.M. Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Org. Biomol. Chem., 2014, 12(14), 2289-2301.
[http://dx.doi.org/10.1039/C3OB42530D] [PMID: 24589885]
[139]
Das, R.; Mukhopadhyay, B. Chemical O-Glycosylations: an overview. ChemistryOpen, 2016, 5(5), 401-433.
[http://dx.doi.org/10.1002/open.201600043] [PMID: 27777833]
[140]
Mulani, S.K.; Hung, W.C.; Ingle, A.B.; Shiau, K.S.; Mong, K.K. Modulating glycosylation with exogenous nucleophiles: an overview. Org. Biomol. Chem., 2014, 12(8), 1184-1197.
[http://dx.doi.org/10.1039/c3ob42129e] [PMID: 24382624]
[141]
Sadalapure, K.; Lindhorst, T.K. A General Entry into Gly-copeptide “Dendrons” This work was financed by a grant for the glycobiotechnology program of the German Minis-try of Eduction and Science (BMBF). We thank Dr. V. Sinnwell for the sophisticated NMR experiments and Dipl.-Chem. M. Dubber for the MALDI-TOF measurements. Angew. Chem. Int. Ed. Engl., 2000, 39(11), 2010-2013.
[http://dx.doi.org/10.1002/1521-3773(20000602)39:11 <2010:AID-ANIE2010>3.0.CO;2-1] [PMID: 10941013]
[142]
Turnbull, W.B.; Pease, A.R.; Stoddart, J.F. Toward the synthesis of large oligosaccharide-based dendrimers. ChemBioChem, 2000, 1(1), 70-74.
[http://dx.doi.org/10.1002/1439-7633(20000703)1:1<70:AID-CBIC70>3.0.CO;2-L] [PMID: 11828401]
[143]
Turnbull, W.B.; Kalovidouris, S.A.; Stoddart, J.F. Large oligosaccharide-based glycodendrimers. Chemistry, 2002, 8(13), 2988-3000.
[http://dx.doi.org/10.1002/1521-3765(20020703)8:13<2988:AID-CHEM2988>3.0.CO;2-2] [PMID: 12489230]
[144]
Gabrielli, L.; Russo, L.; Bini, D.; Nicotra, F.; Cipolla, L. Multivalent glycidic constructs toward anti-cancer therapeutics. In:SPR - Carbohydrate Chemistry; Amelia Pilar Rauter, Thisbe Lindhorst, Yves Queneau, Eds. , 2014, Vol. 40, pp. 491-505.
[http://dx.doi.org/10.1039/9781849739986-00491]
[145]
Franiak-Pietryga, I.; Ostrowska, K.; Maciejewski, H.; Appelhans, D.; Misiewicz, M.; Ziemba, B.; Bednarek, M.; Bryszewska, M.; Borowiec, M. PPI-G4 Glycodendrimers Upregulate TRAIL-induced apoptosis in chronic lymphocytic leukemia cells. Macromol. Biosci., 2017, 17(5)1600169
[http://dx.doi.org/10.1002/mabi.201600169] [PMID: 27996200]
[146]
Franiak-Pietryga, I.; Maciejewski, H.; Ziemba, B.; Appelhans, D.; Voit, B.; Robak, T.; Jander, M.; Treliński, J.; Bryszewska, M.; Borowiec, M. Blockage of Wnt/β-catenin signaling by nanoparticles reduces survival and proliferation of cll cells in vitro-preliminary study. Macromol. Biosci., 2017, 17(11) epub ahead of print
[http://dx.doi.org/10.1002/mabi.201700130] [PMID: 28762636]
[147]
Laubreton, D.; Bay, S.; Sedlik, C.; Artaud, C.; Ganneau, C.; Dériaud, E.; Viel, S.; Puaux, A.L.; Amigorena, S.; Gérard, C.; Lo-Man, R.; Leclerc, C. The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity. Cancer Immunol. Immunother., 2016, 65(3), 315-325.
[http://dx.doi.org/10.1007/s00262-016-1802-0] [PMID: 26847142]
[148]
Ganneau, C.; Simenel, C.; Emptas, E.; Courtiol, T.; Coïc, Y-M.; Artaud, C.; Dériaud, E.; Bonhomme, F.; Delepierre, M.; Leclerc, C.; Lo-Man, R.; Bay, S. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org. Biomol. Chem., 2016, 15(1), 114-123.
[http://dx.doi.org/10.1039/C6OB01931E] [PMID: 27812586]
[149]
Pajot, A.; Michel, M.L.; Fazilleau, N.; Pancré, V.; Auriault, C.; Ojcius, D.M.; Lemonnier, F.A.; Lone, Y.C. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Eur. J. Immunol., 2004, 34(11), 3060-3069.
[http://dx.doi.org/10.1002/eji.200425463] [PMID: 15468058]
[150]
Zhang, S.; Cordon-Cardo, C.; Zhang, H.S.; Reuter, V.E.; Adluri, S.; Hamilton, W.B.; Lloyd, K.O.; Livingston, P.O. Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int. J. Cancer, 1997, 73(1), 42-49.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970926)73:1<42:AID-IJC8>3.0.CO;2-1] [PMID: 9334808]
[151]
Zhang, S.; Zhang, H.S.; Cordon-Cardo, C.; Reuter, V.E.; Singhal, A.K.; Lloyd, K.O.; Livingston, P.O. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer, 1997, 73(1), 50-56.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970926)73:1<50:AID-IJC9>3.0.CO;2-0] [PMID: 9334809]
[152]
Zhang, S.; Zhang, H.S.; Reuter, V.E.; Slovin, S.F.; Scher, H.I.; Livingston, P.O. Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin. Cancer Res., 1998, 4(2), 295-302.
[PMID: 9516914]
[153]
Dube, D.H.; Bertozzi, C.R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov., 2005, 4(6), 477-488.
[http://dx.doi.org/10.1038/nrd1751] [PMID: 15931257]
[154]
Livingston, P. The unfulfilled promise of melanoma vaccines. Clin. Cancer Res., 2001, 7(7), 1837-1838.
[PMID: 11448892]
[155]
Meezan, E.; Wu, H.C.; Black, P.H.; Robbins, P.W. Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry, 1969, 8(6), 2518-2524.
[http://dx.doi.org/10.1021/bi00834a039] [PMID: 4307997]
[156]
Hakomori, S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res., 1985, 45(6), 2405-2414.
[PMID: 3886132]
[157]
Lloyd, K.O. Humoral immune responses to tumor-associated carbohydrate antigens. Semin. Cancer Biol., 1991, 2(6), 421-431.
[PMID: 1725731]
[158]
Livingston, P.O. Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside-KLH conjugate vaccines. Immunol. Rev., 1995, 145, 147-166.
[http://dx.doi.org/10.1111/j.1600-065X.1995.tb00080.x] [PMID: 7590824]
[159]
Pifferi, C.; Thomas, B.; Goyard, D.; Berthet, N.; Renaudet, O. Heterovalent glycodendrimers as epitope carriers for antitumor synthetic vaccines. Chemistry, 2017, 23(64), 16283-16296.
[http://dx.doi.org/10.1002/chem.201702708] [PMID: 28845889]
[160]
Gesuete, R.; Storini, C.; Fantin, A.; Stravalaci, M.; Zanier, E.R.; Orsini, F.; Vietsch, H.; Mannesse, M.L.M.; Ziere, B.; Gobbi, M.; De Simoni, M-G. Recombinant C1 inhibitor in brain ischemic injury. Ann. Neurol., 2009, 66(3), 332-342.
[http://dx.doi.org/10.1002/ana.21740] [PMID: 19798727]
[161]
Orsini, F.; Villa, P.; Parrella, S.; Zangari, R.; Zanier, E.R.; Gesuete, R.; Stravalaci, M.; Fumagalli, S.; Ottria, R.; Reina, J.J.; Paladini, A.; Micotti, E.; Ribeiro-Viana, R.; Rojo, J.; Pavlov, V.I.; Stahl, G.L.; Bernardi, A.; Gobbi, M.; De Simoni, M-G. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation, 2012, 126(12), 1484-1494.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.103051] [PMID: 22879370]
[162]
Stravalaci, M.; De Blasio, D.; Orsini, F.; Perego, C.; Palmioli, A.; Goti, G.; Bernardi, A.; De Simoni, M-G.; Gobbi, M. A new Surface Plasmon Resonance-based assay for in vitro screening of mannose binding lectin inhibitors. J. Biomol. Screen., 2016, 21(7), 749-757.
[http://dx.doi.org/10.1177/1087057116637563] [PMID: 26969323]
[163]
De Blasio, D.; Fumagalli, S.; Longhi, L.; Orsini, F.; Palmioli, A.; Stravalaci, M.; Vegliante, G.; Zanier, E.R.; Bernardi, A.; Gobbi, M.; De Simoni, M-G. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J. Cereb. Blood Flow Metab., 2017, 37(3), 938-950.
[http://dx.doi.org/10.1177/0271678X16647397] [PMID: 27165013]
[164]
Petitbarat, M.; Durigutto, P.; Macor, P.; Bulla, R.; Palmioli, A.; Bernardi, A.; De Simoni, M-G.; Ledee, N.; Chaouat, G.; Tedesco, F. Critical role and therapeutic control of the lectin pathway of complement activation in an animal model of pre-eclampsia. J. Immunol., 2015, 195(12), 5602-5607.
[http://dx.doi.org/10.4049/jimmunol.1501361] [PMID: 26561549]
[165]
Goti, G.; Palmioli, A.; Stravalaci, M.; Sattin, S.; De Simoni, M-G.; Gobbi, M.; Bernardi, A. Scaffold optimization of tetravalent antagonists of the Mannose Binding Lectin. Chemistry, 2016, 22(11), 3686-3691.
[http://dx.doi.org/10.1002/chem.201504388] [PMID: 26696414]
[166]
Jatczak-Pawlik, I.; Gorzkiewicz, M.; Studzian, M.; Appelhans, D.; Voit, B.; Pulaski, L.; Klajnert-Maculewicz, B. Sugar-modified poly(propylene imine) dendrimers stimulate the NF-κB pathway in a myeloid cell line. Pharm. Res., 2017, 34(1), 136-147.
[http://dx.doi.org/10.1007/s11095-016-2049-3] [PMID: 27766462]
[167]
Gorzkiewicz, M.; Sztandera, K.; Jatczak-Pawlik, I.; Zinke, R.; Appelhans, D.; Klajnert-Maculewicz, B.; Pulaski, Ł. Terminal sugar moiety determines immunomodulatory properties of poly(propyleneimine) glycodendrimers. Biomacromolecules, 2018, 19(5), 1562-1572.
[http://dx.doi.org/10.1021/acs.biomac.8b00168] [PMID: 29569917]
[168]
Westergard, L.; Christensen, H.M.; Harris, D.A. The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim. Biophys. Acta, 2007, 1772(6), 629-644.
[http://dx.doi.org/10.1016/j.bbadis.2007.02.011] [PMID: 17451912]
[169]
Lazzari, C.; Peggion, C.; Stella, R.; Massimino, M.L.; Lim, D.; Bertoli, A.; Sorgato, M.C. Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J. Neurochem., 2011, 116(5), 881-890.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07015.x] [PMID: 21214552]
[170]
Aguzzi, A.; Lakkaraju, A.K.K.; Frontzek, K. Toward therapy of human prion diseases. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 331-351.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052745] [PMID: 28961066]
[171]
McCarthy, J.M.; Appelhans, D.; Tatzelt, J.; Rogers, M.S. Nanomedicine for prion disease treatment: new insights into the role of dendrimers. Prion, 2013, 7(3), 198-202.
[http://dx.doi.org/10.4161/pri.24431] [PMID: 23764833]
[172]
Verma, M.; Vats, A.; Taneja, V. Toxic species in amyloid disorders: oligomers or mature fibrils. Ann. Indian Acad. Neurol., 2015, 18(2), 138-145.
[http://dx.doi.org/10.4103/0972-2327.144284] [PMID: 26019408]
[173]
He, Y.; Zheng, M.M.; Ma, Y.; Han, X.J.; Ma, X.Q.; Qu, C.Q.; Du, Y.F. Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem. Biophys. Res. Commun., 2012, 429(3-4), 125-130.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.129] [PMID: 23146634]
[174]
Zhang, Y.; Lu, L.; Jia, J.; Jia, L.; Geula, C.; Pei, J.; Xu, Z.; Qin, W.; Liu, R.; Li, D.; Pan, N. A lifespan observation of a novel mouse model: in vivo evidence supports aβ oligomer hypothesis. PLoS One, 2014, 9(1)e85885
[http://dx.doi.org/10.1371/journal.pone.0085885] [PMID: 24465766]
[175]
Janaszewska, A.; Klajnert-Maculewicz, B.; Marcinkowska, M.; Duchnowicz, P.; Appelhans, D.; Grasso, G.; Deriu, M.A.; Danani, A.; Cangiotti, M.; Ottaviani, M.F. Multivalent interacting glycodendrimer to prevent amyloid-peptide fibril formation induced by Cu(II): a multidisciplinary approach. Nano Res., 2018, 11, 1204-122.
[http://dx.doi.org/10.1007/s12274-017-1734-9]
[176]
Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord. Chem. Rev., 2012, 256, 2129-2141.
[http://dx.doi.org/10.1016/j.ccr.2012.03.013]
[177]
Klementieva, O.; Aso, E.; Filippini, D.; Benseny-Cases, N.; Carmona, M.; Juvés, S.; Appelhans, D.; Cladera, J.; Ferrer, I. Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules, 2013, 14(10), 3570-3580.
[http://dx.doi.org/10.1021/bm400948z] [PMID: 24004423]
[178]
Klementieva, O.; Benseny-Cases, N.; Gella, A.; Appelhans, D.; Voit, B.; Cladera, J. Dense shell glycodendrimers as potential nontoxic anti-amyloidogenic agents in Alzheimer’s disease. Amyloid-dendrimer aggregates morphology and cell toxicity. Biomacromolecules, 2011, 12(11), 3903-3909.
[http://dx.doi.org/10.1021/bm2008636] [PMID: 21936579]
[179]
Ziemba, B.; Janaszewska, A.; Ciepluch, K.; Krotewicz, M.; Fogel, W.A.; Appelhans, D.; Voit, B.; Bryszewska, M.; Klajnert, B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. A, 2011, 99(2), 261-268.
[http://dx.doi.org/10.1002/jbm.a.33196] [PMID: 21976451]
[180]
Klajnert, B.; Appelhans, D.; Komber, H.; Morgner, N.; Schwarz, S.; Richter, S.; Brutschy, B.; Ionov, M.; Tonkikh, A.K.; Bryszewska, M.; Voit, B. The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chemistry, 2008, 14(23), 7030-7041.
[http://dx.doi.org/10.1002/chem.200800342] [PMID: 18576443]
[181]
McCarthy, J.M.; Rasines Moreno, B.; Filippini, D.; Komber, H.; Maly, M.; Cernescu, M.; Brutschy, B.; Appelhans, D.; Rogers, M.S. Influence of surface groups on poly(propylene imine) dendrimers antiprion activity. Biomacromolecules, 2013, 14(1), 27-37.
[http://dx.doi.org/10.1021/bm301165u] [PMID: 23234313]
[182]
Nagao, M.; Fujiwara, Y.; Matsubara, T.; Hoshino, Y.; Sato, T.; Miura, Y. Design of glycopolymers carrying sialyl oligosaccharides for controlling the interaction with the Influenza Virus. Biomacromolecules, 2017, 18(12), 4385-4392.
[http://dx.doi.org/10.1021/acs.biomac.7b01426] [PMID: 29111681]
[183]
Geijtenbeek, T.B.H.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.F.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000, 100(5), 575-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80693-5] [PMID: 10721994]
[184]
Švajger, U.; Anderluh, M.; Jeras, M.; Obermajer, N. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell. Signal., 2010, 22(10), 1397-1405.
[http://dx.doi.org/10.1016/j.cellsig.2010.03.018] [PMID: 20363321]
[185]
van Kooyk, Y.; Geijtenbeek, T.B.H. DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol., 2003, 3(9), 697-709.
[http://dx.doi.org/10.1038/nri1182] [PMID: 12949494]
[186]
Anderluh, M.; Jug, G.; Svajger, U.; Obermajer, N. DC-SIGN antagonists, a potential new class of anti-infectives. Curr. Med. Chem., 2012, 19(7), 992-1007.
[http://dx.doi.org/10.2174/092986712799320664] [PMID: 22257062]
[187]
Ordanini, S.; Goti, G.; Bernardi, B. From optimized monovalent ligands to size-controlled dendrimers: an efficient strategy towards high-activity DC-SIGN antagonists. Can. J. Chem., 2017, 95, 881-890.
[http://dx.doi.org/10.1139/cjc-2017-0138]
[188]
Ordanini, S.; Varga, N.; Porkolab, V.; Thépaut, M.; Belvisi, L.; Bertaglia, A.; Palmioli, A.; Berzi, A.; Trabattoni, D.; Clerici, M.; Fieschi, F.; Bernardi, A. Designing nanomolar antagonists of DC-SIGN-mediated HIV infection: ligand presentation using molecular rods. Chem. Commun. (Camb.), 2015, 51(18), 3816-3819.
[http://dx.doi.org/10.1039/C4CC09709B] [PMID: 25648900]
[189]
Ordanini, S.; Zanchetta, G.; Porkolab, V.; Ebel, C.; Fieschi, F.; Guzzetti, I.; Potenza, D.; Palmioli, A.; Podlipnik, Č.; Meroni, D.; Bernardi, A. Solution behaviour of amphiphilic glycodendrimers with a rod-like core. Macromol. Biosci., 2016, 16(6), 896-905.
[http://dx.doi.org/10.1002/mabi.201500452] [PMID: 26898184]
[190]
Berzi, A.; Ordanini, S.; Joosten, B.; Trabattoni, D.; Cambi, A.; Bernardi, A.; Clerici, M. Pseudo-mannosylated DC-SIGN ligands as immunomodulants. Sci. Rep., 2016, 6, 35373.
[http://dx.doi.org/10.1038/srep35373] [PMID: 27734954]
[191]
Porkolab, V.; Chabrol, E.; Varga, N.; Ordanini, S.; Sutkevičiu Tė, I.; Thépaut, M.; García-Jiménez, M.J.; Girard, E.; Nieto, P.M.; Bernardi, A.; Fieschi, F. Rational-differential design of highly specific glycomimetic ligands: targeting dc-sign and excluding langerin recognition. ACS Chem. Biol., 2018, 13(3), 600-608.
[http://dx.doi.org/10.1021/acschembio.7b00958] [PMID: 29272097]
[192]
Mauro, N.; Ferruti, P.; Ranucci, E.; Manfredi, A.; Berzi, A.; Clerici, M.; Cagno, V.; Lembo, D.; Palmioli, A.; Sattin, S. Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Sci. Rep., 2016, 6, 33393.
[http://dx.doi.org/10.1038/srep33393] [PMID: 27641362]
[193]
Doknic, D.; Abramo, M.; Sutkeviciute, I.; Reinhardt, A.; Guzzi, C.; Schlegel, M.K.; Potenza, D.; Nieto, P.M.; Fieschi, F.; Seeberger, P.H.; Bernardi, A. Synthesis and characterization of linker-armed fucose-based glycomimetics. Eur. J. Org. Chem., 2013, 24, 5303-5314.
[http://dx.doi.org/10.1002/ejoc.201300236]
[194]
Reina, J.J.; Sattin, S.; Invernizzi, D.; Mari, S.; Martínez-Prats, L.; Tabarani, G.; Fieschi, F.; Delgado, R.; Nieto, P.M.; Rojo, J.; Bernardi, A. 1,2-Mannobioside mimic: synthesis, DC-SIGN interaction by NMR and docking, and antiviral activity. ChemMedChem, 2007, 2(7), 1030-1036.
[http://dx.doi.org/10.1002/cmdc.200700047] [PMID: 17508368]
[195]
Wang, S-K.; Liang, P-H.; Astronomo, R.D.; Hsu, T-L.; Hsieh, S-L.; Burton, D.R.; Wong, C-H. Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl. Acad. Sci. USA, 2008, 105, 3690-3695.
[196]
Cholley, P.; Thouverez, M.; Hocquet, D.; van der Mee-Marquet, N.; Talon, D.; Bertrand, X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J. Clin. Microbiol., 2011, 49(7), 2578-2583.
[http://dx.doi.org/10.1128/JCM.00102-11] [PMID: 21593258]
[197]
Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2003, 2(2), 114-122.
[http://dx.doi.org/10.1038/nrd1008] [PMID: 12563302]
[198]
Melander, R.J.; Melander, C. The Challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect. Dis., 2017, 3(8), 559-563.
[http://dx.doi.org/10.1021/acsinfecdis.7b00071] [PMID: 28548487]
[199]
Callaghan, M.; McClean, S. Bacterial host interactions in cystic fibrosis. Curr. Opin. Microbiol., 2012, 15(1), 71-77.
[http://dx.doi.org/10.1016/j.mib.2011.11.001] [PMID: 22137884]
[200]
Venkatakrishnan, V.; Packer, N.H.; Thaysen-Andersen, M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev. Respir. Med., 2013, 7(5), 553-576.
[http://dx.doi.org/10.1586/17476348.2013.837752] [PMID: 24138697]
[201]
Wagner, V.E.; Iglewski, B.H. P. aeruginosa Biofilms in CF Infection. Clin. Rev. Allergy Immunol., 2008, 35(3), 124-134.
[http://dx.doi.org/10.1007/s12016-008-8079-9] [PMID: 18509765]
[202]
Blanchard, B.; Nurisso, A.; Hollville, E.; Tétaud, C.; Wiels, J.; Pokorná, M.; Wimmerová, M.; Varrot, A.; Imberty, A. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J. Mol. Biol., 2008, 383(4), 837-853.
[http://dx.doi.org/10.1016/j.jmb.2008.08.028] [PMID: 18762193]
[203]
Giraud, C.; Bernard, C.; Ruer, S.; De Bentzmann, S. Biological ‘glue’ and ‘Velcro’: molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. Environ. Microbiol. Rep., 2010, 2(3), 343-358.
[http://dx.doi.org/10.1111/j.1758-2229.2009.00070.x] [PMID: 23766107]
[204]
Gilboa-Garber, N. Pseudomonas aeruginosa lectins. Methods Enzymol., 1982, 83, 378-385.
[http://dx.doi.org/10.1016/0076-6879(82)83034-6] [PMID: 6808301]
[205]
Imberty, A. wimmerová, M.; Mitchell, E.P.; Gilboa-Garber, N. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes Infect., 2004, 6(2), 221-228.
[http://dx.doi.org/10.1016/j.micinf.2003.10.016] [PMID: 15049333]
[206]
Mishra, N.K.; Kríz, Z.; Wimmerová, M.; Koca, J. Recognition of selected monosaccharides by Pseudomonas aeruginosa Lectin II analyzed by molecular dynamics and free energy calculations. Carbohydr. Res., 2010, 345(10), 1432-1441.
[http://dx.doi.org/10.1016/j.carres.2010.04.021] [PMID: 20546713]
[207]
Mitchell, E.; Houles, C.; Sudakevitz, D.; Wimmerova, M.; Gautier, C.; Pérez, S.; Wu, A.M.; Gilboa-Garber, N.; Imberty, A. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol., 2002, 9(12), 918-921.
[http://dx.doi.org/10.1038/nsb865] [PMID: 12415289]
[208]
Bini, D.; Marchetti, R.; Russo, L.; Molinaro, A.; Silipo, A.; Cipolla, L. Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies. Carbohydr. Res., 2016, 429, 23-28.
[http://dx.doi.org/10.1016/j.carres.2016.04.023] [PMID: 27185108]
[209]
de Bentzmann, S.; Plésiat, P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol., 2011, 13(7), 1655-1665.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02469.x] [PMID: 21450006]
[210]
Lameignere, E.; Shiao, T.C.; Roy, R.; Wimmerova, M.; Dubreuil, F.; Varrot, A.; Imberty, A. Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. Glycobiology, 2010, 20(1), 87-98.
[http://dx.doi.org/10.1093/glycob/cwp151] [PMID: 19770128]
[211]
Consoli, G.M.L.; Granata, G.; Cafiso, V.; Stefani, S.; Geraci, C. Multivalent calixarene-based C-fucosyl derivative: a new Pseudomonas aeruginosa biofilm inhibitor. Tetrahedron Lett., 2011, 52, 5831-5834.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.142]
[212]
Kadam, R.U.; Bergmann, M.; Garg, D.; Gabrieli, G.; Stocker, A.; Darbre, T.; Reymond, J-L. Structure-based optimization of the terminal tripeptide in glycopeptide dendrimer inhibitors of Pseudomonas aeruginosa biofilms targeting LecA. Chemistry, 2013, 19(50), 17054-17063.
[http://dx.doi.org/10.1002/chem.201302587] [PMID: 24307364]
[213]
Kadam, R.U.; Garg, D.; Schwartz, J.; Visini, R.; Sattler, M.; Stocker, A.; Darbre, T.; Reymond, J-L. CH-π “T-shape” interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA. ACS Chem. Biol., 2013, 8(9), 1925-1930.
[http://dx.doi.org/10.1021/cb400303w] [PMID: 23869965]
[214]
Visini, R.; Jin, X.; Bergmann, M.; Michaud, G.; Pertici, F.; Fu, O.; Pukin, A.; Branson, T.R.; Thies-Weesie, D.M.E.; Kemmink, J.; Gillon, E.; Imberty, A.; Stocker, A.; Darbre, T.; Pieters, R.J.; Reymond, J-L. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA. ACS Chem. Biol., 2015, 10(11), 2455-2462.
[http://dx.doi.org/10.1021/acschembio.5b00302] [PMID: 26295304]
[215]
Bergmann, M.; Michaud, G.; Visini, R.; Jin, X.; Gillon, E.; Stocker, A.; Imberty, A.; Darbre, T.; Reymond, J-L. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA. Org. Biomol. Chem., 2016, 14(1), 138-148.
[http://dx.doi.org/10.1039/C5OB01682G] [PMID: 26416170]
[216]
Michaud, G.; Visini, R.; Bergmann, M.; Salerno, G.; Bosco, R.; Gillon, E.; Richichi, B.; Nativi, C.; Imberty, A.; Stocker, A.; Darbre, T.; Reymond, J-L. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chem. Sci. (Camb.), 2016, 7(1), 166-182.
[http://dx.doi.org/10.1039/C5SC03635F] [PMID: 29896342]
[217]
Kadam, R.U.; Bergmann, M.; Hurley, M.; Garg, D.; Cacciarini, M.; Swiderska, M.A.; Nativi, C.; Sattler, M.; Smyth, A.R.; Williams, P.; Cámara, M.; Stocker, A.; Darbre, T.; Reymond, J-L. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl., 2011, 50(45), 10631-10635.
[http://dx.doi.org/10.1002/anie.201104342] [PMID: 21919164]
[218]
Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev., 2013, 65(1), 21-23.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[219]
Bhatia, S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications In: Natural Polymer Drug Delivery Systems; Saurabh Bhatia, Ed.; Springer. , 2016. Vol.1, pp. 33-93.
[220]
Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. Engl., 2001, 40(22), 4128-4158.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4128:AID-ANIE4128>3.0.CO;2-S] [PMID: 29712109]
[221]
Katz, E.; Willner, I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl., 2004, 43(45), 6042-6108.
[http://dx.doi.org/10.1002/anie.200400651] [PMID: 15538757]
[222]
Lee, Y.C.; Lee, R.T. Carbohydrate-protein interactions: basis of glycobiology. Acc. Chem. Res., 1995, 28, 321-327.
[http://dx.doi.org/10.1021/ar00056a001]
[223]
Marradi, M.; Chiodo, F.; Garcia, I.; Penades, S. Glycoliposomes and metallic glyconanoparticles in glycoscience., 2011, 164-20.
[224]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A Review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[225]
Hill, M.W.; Lester, R. Mixtures of gangliosides and phosphatidylcholine in aqueous dispersions. Biochim. Biophys. Acta, 1972, 282(1), 18-30.
[http://dx.doi.org/10.1016/0005-2736(72)90307-0] [PMID: 5070075]
[226]
Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci., 2004, 93(8), 1980-1992.
[http://dx.doi.org/10.1002/jps.20098] [PMID: 15236448]
[227]
Derksen, J.T.; Scherphof, G.L. An improved method for the covalent coupling of proteins to liposomes. Biochim. Biophys. Acta, 1985, 814, 151-155.
[http://dx.doi.org/10.1016/0005-2736(85)90430-4]
[228]
Martin, F.J.; Hubbell, W.L.; Papahadjopoulos, D. Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab’ fragments via disulfide bonds. Biochemistry, 1981, 20(14), 4229-4238.
[http://dx.doi.org/10.1021/bi00517a043] [PMID: 7284322]
[229]
Ishida, O.; Maruyama, K.; Tanahashi, H.; Iwatsuru, M.; Sasaki, K.; Eriguchi, M.; Yanagie, H. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res., 2001, 18(7), 1042-1048.
[http://dx.doi.org/10.1023/A:1010960900254] [PMID: 11496943]
[230]
Chua, M.M.; Fan, S.T.; Karush, F. Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim. Biophys. Acta, 1984, 800(3), 291-300.
[http://dx.doi.org/10.1016/0304-4165(84)90408-2] [PMID: 6432057]
[231]
Zalipsky, S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug. Chem., 1993, 4(4), 296-299.
[http://dx.doi.org/10.1021/bc00022a008] [PMID: 8218486]
[232]
Hein, C.D.; Liu, X.M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res., 2008, 25(10), 2216-2230.
[http://dx.doi.org/10.1007/s11095-008-9616-1] [PMID: 18509602]
[233]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[234]
Pavot, V.; Berthet, M.; Rességuier, J.; Legaz, S.; Handké, N.; Gilbert, S.C.; Paul, S.; Verrier, B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond.), 2014, 9(17), 2703-2718.
[http://dx.doi.org/10.2217/nnm.14.156] [PMID: 25529572]
[235]
Alsaheb, R.A.A.; Aladdin, A.; Othman, N.Z.; Abd Malek, R.A.; Leng, O. M: Aziz, R.; El Enshasy, H.A. Recent applications of polylactic acid in pharmaceutical and medical industries. J. Chem. Pharm. Res., 2015, 7, 51-63.
[236]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[237]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[238]
Leo, E.; Brina, B.; Forni, F.; Vandelli, M.A. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form. Int. J. Pharm., 2004, 278(1), 133-141.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.002] [PMID: 15158956]
[239]
Wang, Y.; Qu, W.; Choi, S. FDA’s Regulatory Science Program for Generic PLA/PLGA-Based Drug Products. Am. Pharm. Rev., 2016, 19, 5-9.
[240]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[241]
Prasad Rao, J.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36, 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[242]
Plard, J.P.; Bazile, D. Comparison of the safety profiles of PLA50 and Me. PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloid. Surfaces B, 1999, 16, 173-183.
[http://dx.doi.org/10.1016/S0927-7765(99)00068-5]
[243]
Nah, J.W.; Paek, Y.W.; Jeong, Y.I.; Kim, D.W.; Cho, C.S.; Kim, S.H.; Kim, M.Y. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method. Arch. Pharm. Res., 1998, 21(4), 418-422.
[http://dx.doi.org/10.1007/BF02974636] [PMID: 9875469]
[244]
Abd Ellah, N.H.; Abouelmagd, S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv., 2017, 14(2), 201-214.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[245]
Palmioli, A.; La Ferla, B. Glycofunctionalization of poly(lactic- co-glycolic acid) polymers: building blocks for the generation of defined sugar-coated nanoparticles. Org. Lett., 2018, 20(12), 3509-3512.
[http://dx.doi.org/10.1021/acs.orglett.8b01287] [PMID: 29792709]
[246]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[247]
Singla, R.; Guliani, A.; Kumari, A.; Yadav, S.K. Metallic Nanoparticles, Toxicity Issues and Applications in Medicine. In: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration, Yadav S. Springer: Singapore, 2016.
[248]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine (Lond.), 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[249]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[250]
Schröfel, A.; Kratošová, G.; Šafařík, I.; Šafaříková, M.; Raška, I.; Shor, L.M. Applications of biosynthesized metallic nanoparticles - a review. Acta Biomater., 2014, 10(10), 4023-4042.
[http://dx.doi.org/10.1016/j.actbio.2014.05.022] [PMID: 24925045]
[251]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[252]
Edwards, P.P.; Thomas, J.M. Gold in a metallic divided state--from Faraday to present-day nanoscience. Angew. Chem. Int. Ed. Engl., 2007, 46(29), 5480-5486.
[http://dx.doi.org/10.1002/anie.200700428] [PMID: 17562538]
[253]
El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett., 2005, 5(5), 829-834.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[254]
Stepanov, A.L.; Popok, V.N.; Hole, D.E. Formation of metallic nanoparticles in silicate glass through ion implantation. Glass Phys. Chem., 2002, 28, 90-95.
[http://dx.doi.org/10.1023/A:1015377530708]
[255]
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[256]
Schultz, S.; Smith, D.R.; Mock, J.J.; Schultz, D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA, 2000, 97(3), 996-1001.
[http://dx.doi.org/10.1073/pnas.97.3.996] [PMID: 10655473]
[257]
Hildebrandt, N.; Hermsdorf, D.; Signorell, R.; Schmitz, S.A.; Diederichsen, U. Superparamagnetic iron oxide nanoparticles functionalized with peptides by electrostatic interactions. ARKIVOC, 2007, 5, 79-90.
[258]
García, I.; Marradi, M.; Penadés, S. Glyconanoparticles: multifunctional nanomaterials for biomedical applications. Nanomedicine (Lond.), 2010, 5(5), 777-792.
[http://dx.doi.org/10.2217/nnm.10.48] [PMID: 20662648]
[259]
Huang, G. Glyconanoparticles-an update. Curr. Med. Chem., 2013, 20(6), 782-788.
[PMID: 23276135]
[260]
Dosekova, E.; Filip, J.; Bertok, T.; Both, P.; Kasak, P.; Tkac, J. Nanotechnology in glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med. Res. Rev., 2017, 37(3), 514-626.
[http://dx.doi.org/10.1002/med.21420] [PMID: 27859448]
[261]
Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev., 2012, 64(2), 129-137.
[http://dx.doi.org/10.1016/j.addr.2011.09.001] [PMID: 21925220]
[262]
Yildirimer, L.; Thanh, N.T.K.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today, 2011, 6(6), 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[263]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[PMID: 26286636]
[264]
Mo, L.; Song, J.G.; Lee, H.; Zhao, M.; Kim, H.Y.; Lee, Y.J. Nanomedicine (Lond.), 2018, 14, 557-567.
[http://dx.doi.org/10.1016/j.nano.2017.12.003]
[265]
Kang, B.S.; Choi, J.S.; Lee, S.E.; Lee, J.K.; Kim, T.H.; Jang, W.S.; Tunsirikongkon, A.; Kim, J.K.; Park, J.S. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr. Polym., 2017, 159, 39-47.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.009] [PMID: 28038752]
[266]
Dong, H.; Tian, L.; Gao, M.; Xu, H.; Zhang, C.; Lv, L.; Zhang, J.; Wang, C.; Tian, Y.; Ma, X. Promising galactose-decorated biodegradable poloxamer 188-PLGA diblock copolymer nanoparticles of resibufogenin for enhancing liver cancer therapy. Drug Deliv., 2017, 24(1), 1302-1316.
[http://dx.doi.org/10.1080/10717544.2017.1373165] [PMID: 28895767]
[267]
Sungsuwan, S.; Yin, Z.; Huang, X. Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl. Mater. Interfaces, 2015, 7(31), 17535-17544.
[http://dx.doi.org/10.1021/acsami.5b05497] [PMID: 26200668]
[268]
García Calavia, P.; Chambrier, I.; Cook, M.J.; Haines, A.H.; Field, R.A.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci., 2018, 512, 249-259.
[http://dx.doi.org/10.1016/j.jcis.2017.10.030] [PMID: 29073466]
[269]
Chiodo, F.; Marradi, M.; Calvo, J.; Yuste, E.; Penadés, S. Glycosystems in nanotechnology: gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J. Org. Chem., 2014, 10, 1339-1346.
[http://dx.doi.org/10.3762/bjoc.10.136] [PMID: 24991287]
[270]
Murray, R.A.; Qiu, Y.; Chiodo, F.; Marradi, M.; Penadés, S.; Moya, S.E. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy. Small, 2014, 10(13), 2602-2610.
[http://dx.doi.org/10.1002/smll.201303604] [PMID: 24639360]
[271]
Fallarini, S.; Paoletti, T.; Battaglini, C.O.; Ronchi, P.; Lay, L.; Bonomi, R.; Jha, S.; Mancin, F.; Scrimin, P.; Lombardi, G. Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale, 2013, 5(1), 390-400.
[http://dx.doi.org/10.1039/C2NR32338A] [PMID: 23175231]
[272]
Arosio, D.; Chiodo, F.; Reina, J.J.; Marelli, M.; Penadés, S.; van Kooyk, Y.; Garcia-Vallejo, J.J.; Bernardi, A. Effective targeting of DC-SIGN by α-fucosylamide functionalized gold nanoparticles. Bioconjug. Chem., 2014, 25(12), 2244-2251.
[http://dx.doi.org/10.1021/bc500467u] [PMID: 25379972]
[273]
Martínez-Avila, O.; Hijazi, K.; Marradi, M.; Clavel, C.; Campion, C.; Kelly, C.; Penadés, S. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chemistry, 2009, 15(38), 9874-9888.
[http://dx.doi.org/10.1002/chem.200900923] [PMID: 19681073]
[274]
Martínez-Avila, O.; Bedoya, L.M.; Marradi, M.; Clavel, C.; Alcamí, J.; Penadés, S. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem, 2009, 10(11), 1806-1809.
[http://dx.doi.org/10.1002/cbic.200900294] [PMID: 19565596]
[275]
Arnáiz, B.; Martínez-Ávila, O.; Falcon-Perez, J.M.; Penadés, S. Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug. Chem., 2012, 23(4), 814-825.
[http://dx.doi.org/10.1021/bc200663r] [PMID: 22433013]
[276]
Clement, J.L.; Jarrett, P.S. Antibacterial silver. Met. Based Drugs, 1994, 1(5-6), 467-482.
[http://dx.doi.org/10.1155/MBD.1994.467] [PMID: 18476264]
[277]
Zhang, C.; Chen, J.D.; Yang, F.Q. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym., 2014, 104, 175-181.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.081] [PMID: 24607175]
[278]
Chen, H.; Lan, G.; Ran, L.; Xiao, Y.; Yu, K.; Lu, B.; Dai, F.; Wu, D.; Lu, F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym., 2018, 183, 70-80.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.029] [PMID: 29352894]
[279]
Tian, B.; Liu, R.; Chen, S.; Chen, L.; Liu, F.; Jia, G.; Dong, Y.; Li, J.; Chen, H.; Lu, J. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int. J. Nanomedicine, 2017, 12, 1127-1141.
[http://dx.doi.org/10.2147/IJN.S123290] [PMID: 28260882]
[280]
Moon, H.; Park, H.E.; Kang, J.; Lee, H.; Cheong, C.; Lim, Y.T.; Ihm, S.H.; Seung, K.B.; Jaffer, F.A.; Narula, J.; Chang, K.; Hong, K.S. Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis. Circulation, 2012, 125(21), 2603-2612.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.075283] [PMID: 22550157]
[281]
Dong, Y.; Chen, H.; Chen, C.; Zhang, X.; Tian, X.; Zhang, Y.; Shi, Z.; Liu, Q. Polymer-lipid hybrid theranostic nanoparticles co-delivering ultrasmall superparamagnetic iron oxide and paclitaxel for targeted magnetic resonance imaging and therapy in atherosclerotic plaque. J. Biomed. Nanotechnol., 2016, 12(6), 1245-1257.
[http://dx.doi.org/10.1166/jbn.2016.2239] [PMID: 27319218]
[282]
Moskvin, M.; Babič, M.; Reis, S.; Cruz, M.M.; Ferreira, L.P.; Carvalho, M.D.; Lima, S.A.C.; Horák, D. Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf. B Biointerfaces, 2018, 161, 35-41.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.034] [PMID: 29040832]
[283]
Horák, D.; Babič, M.; Jendelová, P.; Herynek, V.; Trchová, M.; Likavčanová, K.; Syková, E. Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J. Magn. Magn. Mater., 2009, 321(10), 1539-1547.
[http://dx.doi.org/10.1016/j.jmmm.2009.02.082]
[284]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[285]
Cherukuri, P.; Glazer, E.S.; Curley, S.A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(3), 339-345.
[http://dx.doi.org/10.1016/j.addr.2009.11.006] [PMID: 19909777]
[286]
Kania, G.; Sternak, M.; Jasztal, A.; Chlopicki, S.; Błażejczyk, A.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Jasiński, K.; Skórka, T.; Zapotoczny, S.; Nowakowska, M. Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine (Lond.), 2018, 14(1), 131-140.
[http://dx.doi.org/10.1016/j.nano.2017.09.004] [PMID: 28939490]
[287]
Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14452-14459.
[http://dx.doi.org/10.1073/pnas.1508520112] [PMID: 26598661]
[288]
Bianco, P.; Robey, P.G. Stem cells in tissue engineering. Nature, 2001, 414(6859), 118-121.
[http://dx.doi.org/10.1038/35102181] [PMID: 11689957]
[289]
Heath, C.A. Cells for tissue engineering. Trends Biotechnol., 2000, 18(1), 17-19.
[http://dx.doi.org/10.1016/S0167-7799(99)01396-7] [PMID: 10631775]
[290]
Ingber, D.E. From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009. Ann. Biomed. Eng., 2010, 38(3), 1148-1161.
[http://dx.doi.org/10.1007/s10439-010-9946-0] [PMID: 20140519]
[291]
McMurray, R.J.; Dalby, M.J.; Tsimbouri, P.M. Using biomaterials to study stem cell mechanotransduction, growth and differentiation. J. Tissue Eng. Regen. Med., 2015, 9(5), 528-539.
[http://dx.doi.org/10.1002/term.1957] [PMID: 25370612]
[292]
Kim, H.N.; Jiao, A.; Hwang, N.S.; Kim, M.S.; Kang, D.H.; Kim, D.H.; Suh, K.Y. Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev., 2013, 65(4), 536-558.
[http://dx.doi.org/10.1016/j.addr.2012.07.014] [PMID: 22921841]
[293]
Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng., 2009, 103(4), 655-663.
[http://dx.doi.org/10.1002/bit.22361] [PMID: 19472329]
[294]
Kyburz, K.A.; Anseth, K.S. Synthetic mimics of the extracellular matrix: how simple is complex enough? Ann. Biomed. Eng., 2015, 43(3), 489-500.
[http://dx.doi.org/10.1007/s10439-015-1297-4] [PMID: 25753017]
[295]
Hinderer, S.; Layland, S.L.; Schenke-Layland, K. ECM and ECM-like materials - biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev., 2016, 97, 260-269.
[http://dx.doi.org/10.1016/j.addr.2015.11.019] [PMID: 26658243]
[296]
Werz, D.B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C-W.; Seeberger, P.H. Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem. Biol., 2007, 2(10), 685-691.
[http://dx.doi.org/10.1021/cb700178s] [PMID: 18041818]
[297]
Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5), 855-867.
[http://dx.doi.org/10.1016/j.cell.2006.08.019] [PMID: 16959566]
[298]
Furth, M.E.; Atala, A.; Van Dyke, M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 2007, 28(34), 5068-5073.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.042] [PMID: 17706763]
[299]
Engel, E.; Michiardi, A.; Navarro, M.; Lacroix, D.; Planell, J.A. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol., 2008, 26(1), 39-47.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.005] [PMID: 18036685]
[300]
Yang, C.; Hillas, P.J.; Báez, J.A.; Nokelainen, M.; Balan, J.; Tang, J.; Spiro, R.; Polarek, J.W. The application of recombinant human collagen in tissue engineering. BioDrugs, 2004, 18(2), 103-119.
[http://dx.doi.org/10.2165/00063030-200418020-00004] [PMID: 15046526]
[301]
Londono, R.; Badylak, S.F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Eng., 2015, 43(3), 577-592.
[http://dx.doi.org/10.1007/s10439-014-1103-8] [PMID: 25213186]
[302]
Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 2005, 23(1), 47-55.
[http://dx.doi.org/10.1038/nbt1055] [PMID: 15637621]
[303]
Griffith, L.G. Polymeric biomaterials. Acta Mater., 2000, 48, 263-277.
[http://dx.doi.org/10.1016/S1359-6454(99)00299-2]
[304]
Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci., 2007, 32, 698-725.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.04.002]
[305]
Amass, W.; Amass, A.; Tighe, B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int., 1998, 47, 89-144.
[http://dx.doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89:AID-PI86>3.0.CO;2-F]
[306]
Vert, M.; Mauduit, J.; Li, S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials, 1994, 15(15), 1209-1213.
[http://dx.doi.org/10.1016/0142-9612(94)90271-2] [PMID: 7703316]
[307]
Chevalier, J.; Gremillard, L. Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc., 2009, 29, 1245-1255.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2008.08.025]
[308]
Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med., 2006, 17(11), 967-978.
[http://dx.doi.org/10.1007/s10856-006-0432-z] [PMID: 17122907]
[309]
Russo, L.; Landi, E.; Tampieri, A.; Natalello, A.; Doglia, S.M.; Gabrielli, L.; Cipolla, L.; Nicotra, F. Sugar-decorated hydroxyapatite: an inorganic material bioactivated with carbohydrates. Carbohydr. Res., 2011, 346(12), 1564-1568.
[http://dx.doi.org/10.1016/j.carres.2011.04.044] [PMID: 21600566]
[310]
Sandri, M.; Natalello, A.; Bini, D.; Gabrielli, L.; Cipolla, L.; Nicotra, F. Sweet and salted: sugars meet hydroxyapatite. Synlett, 2011, (13), 1845-1848.
[311]
Russo, L.; Zanini, S.; Giannoni, P.; Landi, E.; Villa, A.; Sandri, M.; Riccardi, C.; Quarto, R.; Doglia, S.M.; Nicotra, F.; Cipolla, L. The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite. J. Mater. Sci. Mater. Med., 2012, 23, 2727-2738.
[http://dx.doi.org/10.1007/s10856-012-4727-y]
[312]
Russo, L.; Taraballi, F.; Lupo, C.; Poveda, A.; Jiménez-Barbero, J.; Sandri, M.; Tampieri, A.; Nicotra, F.; Cipolla, L. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus, 2014, 4(1)20130040
[http://dx.doi.org/10.1098/rsfs.2013.0040] [PMID: 24501671]
[313]
Jones, J.R. Review of bioactive glass: from Hench to hybrids. Acta Biomater., 2013, 9(1), 4457-4486.
[http://dx.doi.org/10.1016/j.actbio.2012.08.023] [PMID: 22922331]
[314]
Connell, L.S.; Gabrielli, L.; Mahony, O.; Russo, L.; Cipolla, L.; Jones, J.R. Functionalizing natural polymers with alkoxysilane coupling agents: reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin. Polym. Chem., 2017, 8, 1095-1103.
[http://dx.doi.org/10.1039/C6PY01425A]
[315]
Gabrielli, L.; Russo, L.; Poveda, A.; Jones, J.R.; Nicotra, F.; Jiménez-Barbero, J.; Cipolla, L. Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis. Chemistry, 2013, 19(24), 7856-7864.
[http://dx.doi.org/10.1002/chem.201204326] [PMID: 23576425]
[316]
Russo, L.; Gabrielli, L.; Valliant, E.M.; Nicotra, F.; Jiménez-Barbero, J.; Cipolla, L.; Jones, J.R. Novel silica/bis(3-aminopropyl) polyethylene glycol inorganic/organic hybrids by sol-gel chemistry. J. Mater. Chem. Phys., 2013, 140, 168-175.
[http://dx.doi.org/10.1016/j.matchemphys.2013.03.016]
[317]
Gabrielli, G.; Connell, L.; Russo, L.; Jimenez-Barbero, J.; Nicotra, F.; Jones, J.R.; Cipolla, L. Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Advances, 2014, 4, 1988-1995.
[http://dx.doi.org/10.1039/C3RA44748K]
[318]
DeForest, C.A.; Polizzotti, B.D.; Anseth, K.S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater., 2009, 8(8), 659-664.
[http://dx.doi.org/10.1038/nmat2473] [PMID: 19543279]
[319]
Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater., 2009, 8(6), 457-470.
[http://dx.doi.org/10.1038/nmat2441] [PMID: 19458646]
[320]
Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003, 24(24), 4385-4415.
[http://dx.doi.org/10.1016/S0142-9612(03)00343-0] [PMID: 12922151]
[321]
Oka, J.A.; Weigel, P.H. Binding and spreading of hepatocytes on synthetic galactose culture surfaces occur as distinct and separable threshold responses. J. Cell Biol., 1986, 103(3), 1055-1060.
[http://dx.doi.org/10.1083/jcb.103.3.1055] [PMID: 3745264]
[322]
Mager, M.D.; LaPointe, V.; Stevens, M.M. Exploring and exploiting chemistry at the cell surface. Nat. Chem., 2011, 3(8), 582-589.
[http://dx.doi.org/10.1038/nchem.1090] [PMID: 21778976]
[323]
Cho, C.S.; Seo, S.J.; Park, I.K.; Kim, S.H.; Kim, T.H.; Hoshiba, T.; Harada, I.; Akaike, T. Galactose-carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials, 2006, 27(4), 576-585.
[http://dx.doi.org/10.1016/j.biomaterials.2005.06.008] [PMID: 16084586]
[324]
Griffith, L.G.; Lopina, S. Microdistribution of substratum-bound ligands affects cell function: hepatocyte spreading on PEO-tethered galactose. Biomaterials, 1998, 19(11-12), 979-986.
[http://dx.doi.org/10.1016/S0142-9612(97)00185-3] [PMID: 9692796]
[325]
Kobayashi, K.; Kobayashi, A.; Akaike, T. Culturing hepatocytes on lactose-carrying polystyrene layer via asialoglycoprotein receptor-mediated interactions. Methods Enzymol., 1994, 247, 409-418.
[http://dx.doi.org/10.1016/S0076-6879(94)47032-4] [PMID: 7898369]
[326]
Kang, I.K.; Kim, G.J.; Kwon, O.H.; Ito, Y. Co-culture of hepatocytes and fibroblasts by micropatterned immobilization of beta-galactose derivatives. Biomaterials, 2004, 25(18), 4225-4232.
[http://dx.doi.org/10.1016/j.biomaterials.2003.11.004] [PMID: 15046912]
[327]
Park, K.H.; Takei, R.; Goto, M.; Maruyama, A.; Kobayashi, A.; Kobayashi, K.; Akaike, T. Specific interaction between erythrocytes and a glucose-carrying polymer mediated by the type-1 glucose transporter (GLUT-1) on the cell membrane. J. Biochem., 1997, 121(6), 997-1001.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021714] [PMID: 9354367]
[328]
Russo, L.; Russo, T.; Battocchio, C.; Taraballi, F.; Gloria, A.; D’Amora, U.; De Santis, R.; Polzonetti, G.; Nicotra, F.; Ambrosio, L.; Cipolla, L. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study. Carbohydr. Res., 2015, 405, 39-46.
[http://dx.doi.org/10.1016/j.carres.2014.07.027] [PMID: 25498202]
[329]
Secchi, V.; Guizzardi, R.; Russo, L. Pastori, V.; Lecchi, M.; Franchi, S.; Iucci, G.; Battocchio, C.; Cipolla, L. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties. J. Mol. Struct., 2018, 1159, 74-78.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.051]
[330]
Russo, L.; Gloria, A.; Russo, T.; D’Amora, U.; Taraballi, F.; De Santis, R.; Ambrosio, L.; Nicotra, F.; Cipolla, L. Glucosamine grafting on poly(ε-caprolactone): a novel glycated polyester as a substrate for tissue engineering. RSC Advances, 2013, 3, 6286-6289.
[http://dx.doi.org/10.1039/c3ra40408k]
[331]
Yang, J.; Goto, M.; Ise, H.; Cho, C.S.; Akaike, T. Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials, 2002, 23(2), 471-479.
[http://dx.doi.org/10.1016/S0142-9612(01)00129-6] [PMID: 11761168]
[332]
Glicklis, R.; Merchuk, J.C.; Cohen, S. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol. Bioeng., 2004, 86, 672-680.
[http://dx.doi.org/10.1002/bit.20086] [PMID: 15137079]
[333]
Gutsche, A.T.; Lo, H.; Zurlo, J.; Yager, J.; Leong, K.W. Engineering of a sugar-derivatized porous network for hepatocyte culture. Biomaterials, 1996, 17, 387-393.
[http://dx.doi.org/10.1016/0142-9612(96)85577-3] [PMID: 8745336]
[334]
Meng, Q.; Haque, A.; Hexig, B.; Akaike, T. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata. Biomaterials, 2012, 33(5), 1414-1427.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.007] [PMID: 22118818]
[335]
Abou Neel, E.A.; Bozec, L.; Knowles, J.C.; Syed, O.; Mudera, V.; Day, R.; Hyun, J.K. Collagen--emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev., 2013, 65(4), 429-456.
[http://dx.doi.org/10.1016/j.addr.2012.08.010] [PMID: 22960357]
[336]
Taraballi, F.; Zanini, S.; Lupo, C.; Panseri, S.; Cunha, C.; Riccardi, C.; Marcacci, M.; Campione, M.; Cipolla, L. Amino and carboxyl plasma functionalization of collagen films for tissue engineering applications. J. Colloid Interface Sci., 2013, 394, 590-597.
[http://dx.doi.org/10.1016/j.jcis.2012.11.041] [PMID: 23266023]
[337]
Russo, L.; Sgambato, A.; Giannoni, P.; Quarto, R.; Vesentini, S.; Gautieri, A.; Cipolla, L. Response of osteoblast-like MG63 on neoglycosylated collagen matrices. MedChemComm, 2014, 5, 1208-1212.
[http://dx.doi.org/10.1039/C4MD00056K]
[338]
Russo, L.; Gautieri, A.; Raspanti, M.; Taraballi, F.; Nicotra, F.; Vesentini, S.; Cipolla, L. Carbohydrate-functionalized collagen matrices: design and characterization of a novel neoglycosylated biomaterial. Carbohydr. Res., 2014, 389, 12-17.
[http://dx.doi.org/10.1016/j.carres.2013.11.008] [PMID: 24332940]
[339]
Russo, L.; Battocchio, C.; Secchi, V.; Magnano, E.; Nappini, S.; Taraballi, F.; Gabrielli, L.; Comelli, F.; Papagni, A.; Costa, B.; Polzonetti, G.; Nicotra, F.; Natalello, A.; Doglia, S.M.; Cipolla, L. Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study. Langmuir, 2014, 30(5), 1336-1342.
[http://dx.doi.org/10.1021/la404310p] [PMID: 24443819]
[340]
Sgambato, A.; Russo, L.; Montesi, M.; Panseri, S.; Marcacci, M.; Caravà, E.; Raspanti, M.; Cipolla, L. Different sialoside epitopes on collagen film surfaces direct mesenchymal stem cell fate. ACS Appl. Mater. Interfaces, 2016, 8(24), 14952-14957.
[http://dx.doi.org/10.1021/acsami.5b08270] [PMID: 26697920]
[341]
Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci., 2004, 5(3), 195-208.
[http://dx.doi.org/10.1038/nrn1349] [PMID: 14976519]
[342]
Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci., 2015, 38, 105-125.
[http://dx.doi.org/10.1146/annurev-neuro-071714-034019] [PMID: 25840006]
[343]
Russo, L.; Sgambato, A.; Guizzardi, R.; Vesentini, S.; Cipolla, L.; Nicotra, F. Glyco-functionalysed biomaterials in neuroregeneration in drug and gene delivery to the central nervous system for neuroprotection; Nanotechnological Advances, 2017, pp. 179-198.
[http://dx.doi.org/10.1007/978-3-319-57696-1_6]
[344]
Russo, L.; Sgambato, A.; Lecchi, M.; Pastori, V.; Raspanti, M.; Natalello, A.; Doglia, S.M.; Nicotra, F.; Cipolla, L. Neoglucosylated collagen matrices drive neuronal cells to differentiate. ACS Chem. Neurosci., 2014, 5(4), 261-265.
[http://dx.doi.org/10.1021/cn400222s] [PMID: 24625037]
[345]
Kalovidouris, S.A.; Gama, C.I.; Lee, L.W.; Hsieh-Wilson, L.C. A role for fucose α(1-2) galactose carbohydrates in neuronal growth. J. Am. Chem. Soc., 2005, 127(5), 1340-1341.
[http://dx.doi.org/10.1021/ja044631v] [PMID: 15686343]
[346]
Hirabayashi, J. Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J., 2004, 21(1-2), 35-40.
[http://dx.doi.org/10.1023/B:GLYC.0000043745.18988.a1] [PMID: 15467396]
[347]
Hirabayashi, J. Concept, strategy and realization of lectin-based glycan profiling. J. Biochem., 2008, 144(2), 139-147.
[http://dx.doi.org/10.1093/jb/mvn043] [PMID: 18390573]
[348]
Cummings, R.D.; Pierce, J.M. The challenge and promise of glycomics. Chem. Biol., 2014, 21(1), 1-15.
[http://dx.doi.org/10.1016/j.chembiol.2013.12.010] [PMID: 24439204]
[349]
Cunningham, S.; Gerlach, J.Q.; Kane, M.; Joshi, L. Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst (Lond.), 2010, 135(10), 2471-2480.
[http://dx.doi.org/10.1039/c0an00276c] [PMID: 20714521]
[350]
Turnbull, J.E.; Field, R.A. Emerging glycomics technologies. Nat. Chem. Biol., 2007, 3(2), 74-77.
[http://dx.doi.org/10.1038/nchembio0207-74] [PMID: 17235338]
[351]
Jelinek, R.; Kolusheva, S. Carbohydrate biosensors. Chem. Rev., 2004, 104(12), 5987-6015.
[http://dx.doi.org/10.1021/cr0300284] [PMID: 15584694]
[352]
Müller, C.; Despras, G.; Lindhorst, T.K. Organizing multivalency in carbohydrate recognition. Chem. Soc. Rev., 2016, 45, 3275-3302.
[353]
Chaudhary, P.M.; Gade, M.; Yellin, R.A.; Sangabathuni, S.; Kikkeri, R. Targeting label free carbohydrate–protein interactions for biosensor design. Anal. Methods, 2016, 8, 3410-3418.
[http://dx.doi.org/10.1039/C6AY00276E]
[354]
Harté, E.; Maalouli, N.; Shalabney, A.; Texier, E.; Berthelot, K.; Lecomte, S.; Alves, I.D. Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance. Chem. Commun. (Camb.), 2014, 50(32), 4168-4171.
[http://dx.doi.org/10.1039/C4CC00571F] [PMID: 24618747]
[355]
Alves, I.; Kurylo, I.; Coffinier, Y.; Siriwardena, A.; Zaitsev, V.; Harté, E.; Boukherroub, R.; Szunerits, S. Plasmon waveguide resonance for sensing glycan-lectin interactions. Anal. Chim. Acta, 2015, 873, 71-79.
[http://dx.doi.org/10.1016/j.aca.2015.02.060] [PMID: 25911432]
[356]
Luo, S.C.; Kantchev, E.A.; Zhu, B.; Siang, Y.W.; Yu, H.H. alfa-MnO2 nanotubes: high surface area and enhanced lithium battery properties. Chem. Commun. (Camb.), 2012, 48, 6942-6944.
[http://dx.doi.org/10.1039/c2cc31789c] [PMID: 22673452]
[357]
Ma, F.; Rehman, A.; Liu, H.; Zhang, J.; Zhu, S.; Zeng, X. Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli. Anal. Chem., 2015, 87(3), 1560-1568.
[http://dx.doi.org/10.1021/ac502712q] [PMID: 25569130]
[358]
Mahon, E.; Mouline, Z.; Silion, M.; Gilles, A.; Pinteala, M.; Barboiu, M. Multilayer lectin-glyconanoparticles architectures for QCM enhanced detection of sugar-protein interaction. Chem. Commun. (Camb.), 2013, 49(29), 3004-3006.
[http://dx.doi.org/10.1039/c3cc41074a] [PMID: 23459764]
[359]
Ogiso, M.; Matsuoka, K.; Okada, T.; Imai, T.; Itoh, M.; Imamura, T.; Haga, Y.; Hatanaka, K.; Minoura, N. Immobilization of carbohydrate clusters on a quartz crystal microbalance sensor surface. J. Colloid Interface Sci., 2013, 393, 257-263.
[http://dx.doi.org/10.1016/j.jcis.2012.10.056] [PMID: 23200344]
[360]
Wang, Y.; Kotsuchibashi, Y.; Liu, Y.; Narain, R. Study of bacterial adhesion on biomimetic temperature responsive glycopolymer surfaces. ACS Appl. Mater. Interfaces, 2015, 7(3), 1652-1661.
[http://dx.doi.org/10.1021/am508792k] [PMID: 25548940]
[361]
Li, X.; Pei, Y.; Zhang, R.; Shuai, Q.; Wang, F.; Aastrup, T.; Pei, Z. A suspension-cell biosensor for real-time determination of binding kinetics of protein-carbohydrate interactions on cancer cell surfaces. Chem. Commun. (Camb.), 2013, 49(85), 9908-9910.
[http://dx.doi.org/10.1039/c3cc45006f] [PMID: 23948717]
[362]
Li, X.; Song, S.; Shuai, Q.; Pei, Y.; Aastrup, T.; Pei, Y.; Pei, Z. Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor. Sci. Rep., 2015, 5, 14066.
[http://dx.doi.org/10.1038/srep14066] [PMID: 26369583]
[363]
Yang, J.; Chazalviel, J.N.; Siriwardena, A.; Boukherroub, R.; Ozanam, F.; Szunerits, S.; Gouget-Laemmel, A.C. Quantitative assessment of the multivalent protein-carbohydrate interactions on silicon. Anal. Chem., 2014, 86(20), 10340-10349.
[http://dx.doi.org/10.1021/ac502624m] [PMID: 25216376]
[364]
Laemmel, A.C.G.; Yang, J.; Lodhi, M.A.; Siriwardena, A.; Aureau, D.; Boukherroub, R.; Chazalviel, J.N.; Ozanamand, F.; Szunerits, S. Functionalization of azide-terminated silicon surfaces with glycans using click chemistry: XPS and FTIR study. J. Phys. Chem. C, 2013, 117, 368-375.
[http://dx.doi.org/10.1021/jp309866d]
[365]
Gruber, K.; Horlacher, T.; Castelli, R.; Mader, A.; Seeberger, P.H.; Hermann, B.A. Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity. ACS Nano, 2011, 5(5), 3670-3678.
[http://dx.doi.org/10.1021/nn103626q] [PMID: 21388220]
[366]
Mader, A.; Gruber, K.; Castelli, R.; Hermann, B.A.; Seeberger, P.H.; Rädler, J.O.; Leisner, M. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Lett., 2012, 12(1), 420-423.
[http://dx.doi.org/10.1021/nl203736u] [PMID: 22136522]
[367]
Kesel, S.; Mader, A.; Seeberger, P.H.; Lieleg, O.; Opitz, M. Carbohydrate coating reduces adhesion of biofilm-forming Bacillus subtilis to gold surfaces. Appl. Environ. Microbiol., 2014, 80(19), 5911-5917.
[http://dx.doi.org/10.1128/AEM.01600-14] [PMID: 25038098]
[368]
Hideshima, S.; Hinou, H.; Ebihara, D.; Sato, R.; Kuroiwa, S.; Nakanishi, T.; Nishimura, S.; Osaka, T. Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Anal. Chem., 2013, 85(12), 5641-5644.
[http://dx.doi.org/10.1021/ac401085c] [PMID: 23675869]
[369]
Zhang, G.J.; Huang, M.J.; Ang, J.J.; Yao, Q.; Ning, Y. Label-free detection of carbohydrate-protein interactions using nanoscale field-effect transistor biosensors. Anal. Chem., 2013, 85(9), 4392-4397.
[http://dx.doi.org/10.1021/ac3036525] [PMID: 23577836]
[370]
Vedala, H.; Chen, Y.; Cecioni, S.; Imberty, A.; Vidal, S.; Star, A. Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett., 2011, 11(1), 170-175.
[http://dx.doi.org/10.1021/nl103286k] [PMID: 21133392]
[371]
Maeda, Y.; Matsumoto, A.; Miura, Y.; Miyahara, Y. Preparation of α-mannoside hydrogel and electrical detection of saccharide-protein interactions using the smart gel-modified gate field effect transistor. Nanoscale Res. Lett., 2012, 7, 108-115.
[http://dx.doi.org/10.1186/1556-276X-7-108] [PMID: 22313907]
[372]
Chen, Y.; Vedala, H.; Kotchey, G.P.; Audfray, A.; Cecioni, S. Imberty, A.; Vidal, S.; Star, A. ACS Nano, 2012, 6, 760-770.
[http://dx.doi.org/10.1021/nn2042384] [PMID: 22136380]
[373]
Bowers, C.M.; Carlson, D.A.; Rivera, M.; Clark, R.L.; Toone, E.J. Effect of compressive force on unbinding specific protein-ligand complexes with force spectroscopy. J. Phys. Chem. B, 2013, 117(17), 4755-4762.
[http://dx.doi.org/10.1021/jp309393s] [PMID: 23537272]
[374]
Pandey, B.; Bhattarai, J.K.; Pornsuriyasak, P.; Fujikawa, K.; Catania, R.; Demchenko, A.V.; Stine, K.J. Square-wave voltammetry assays for glycoproteins on nanoporous gold. J. Electroanal. Chem. (Lausanne), 2014, 717-718, 47-60.
[http://dx.doi.org/10.1016/j.jelechem.2014.01.009] [PMID: 24611035]
[375]
Xu, Q.; Davis, J.J. The diagnostic utility of electrochemical impedance. Electroanalysis, 2014, 26, 1249-1258.
[http://dx.doi.org/10.1002/elan.201400035]
[376]
Li, Z.; Fu, Y.; Fang, W.; Li, Y. Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157:H7 with Signal amplification using lectin. Sensors (Basel), 2015, 15(8), 19212-19224.
[http://dx.doi.org/10.3390/s150819212] [PMID: 26251911]
[377]
Cui, L.; Zhu, B-W.; Qu, S.; He, X-P.; Chen, G-R. “Clicked” galactosyl anthraquinone on graphene electrodes for the label-free impedance detection of live cancer cells. Dyes Pigm., 2015, 121, 312-315.
[http://dx.doi.org/10.1016/j.dyepig.2015.05.034]
[378]
Wilson, G.S.; Hu, Y. Enzyme-based biosensors for in vivo measurements. Chem. Rev., 2000, 100(7), 2693-2704.
[http://dx.doi.org/10.1021/cr990003y] [PMID: 11749301]
[379]
Marzouk, S.A.; Ashraf, S.S.; Tayyari, K.A. Prototype amperometric biosensor for sialic acid determination. Anal. Chem., 2007, 79(4), 1668-1674.
[http://dx.doi.org/10.1021/ac061886d] [PMID: 17297971]
[380]
Hsu, K.L.; Gildersleeve, J.C.; Mahal, L.K. A simple strategy for the creation of a recombinant lectin microarray. Mol. Biosyst., 2008, 4(6), 654-662.
[http://dx.doi.org/10.1039/b800725j] [PMID: 18493664]
[381]
Zheng, T.; Peelen, D.; Smith, L.M. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc., 2005, 127(28), 9982-9983.
[http://dx.doi.org/10.1021/ja0505550] [PMID: 16011345]
[382]
Rosenfeld, R.; Bangio, H.; Gerwig, G.J.; Rosenberg, R.; Aloni, R.; Cohen, Y.; Amor, Y.; Plaschkes, I.; Kamerling, J.P.; Maya, R.B-Y. A lectin array-based methodology for the analysis of protein glycosylation. J. Biochem. Biophys. Methods, 2007, 70(3), 415-426.
[http://dx.doi.org/10.1016/j.jbbm.2006.09.008] [PMID: 17112594]
[383]
Tateno, H.; Uchiyama, N.; Kuno, A.; Togayachi, A.; Sato, T.; Narimatsu, H.; Hirabayashi, J. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology, 2007, 17(10), 1138-1146.
[http://dx.doi.org/10.1093/glycob/cwm084] [PMID: 17693441]
[384]
Hsu, K-L.; Pilobello, K.T.; Mahal, L.K. Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat. Chem. Biol., 2006, 2(3), 153-157.
[http://dx.doi.org/10.1038/nchembio767] [PMID: 16462751]
[385]
Capila, I.; Linhardt, R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl., 2002, 41(3), 391-412.
[http://dx.doi.org/10.1002/1521-3773(20020201)41:3<390:AID-ANIE390>3.0.CO;2-B] [PMID: 12491369]
[386]
Borza, D-B.; Morgan, W.T. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by pH and metals. J. Biol. Chem., 1998, 273(10), 5493-5499.
[http://dx.doi.org/10.1074/jbc.273.10.5493] [PMID: 9488672]
[387]
Engström, H.A.; Andersson, P.O.; Gregorius, K.; Ohlson, S. Towards a FRET-based immunosensor for continuous carbohydrate monitoring. J. Immunol. Methods, 2008, 333(1-2), 107-114.
[http://dx.doi.org/10.1016/j.jim.2008.01.021] [PMID: 18329038]
[388]
Bordoni, V.; Porkolab, V.; Sattin, S.; Thépaut, M.; Frau, I.; Favero, L.; Crotti, P.; Bernardi, A.; Fieschi, F.; Di Bussolo, V. Stereoselective innovative synthesis and biological evaluation of new real carba analogues of minimal epitope Manα(1,2)Man as DC-SIGN inhibitors. RSC Advances, 2016, 6, 89578-89584.
[http://dx.doi.org/10.1039/C6RA20401E]
[389]
Nagata, K.; Handa, H. Real-time analysis of biomolecular interactions. Applications of Biacore, 1st ed; Springer, 2000, pp. 13-22.
[390]
Safina, G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Anal. Chim. Acta, 2012, 712, 9-29.
[http://dx.doi.org/10.1016/j.aca.2011.11.016] [PMID: 22177061]
[391]
Huang, C-F.; Yao, G-H.; Liang, R-P.; Qiu, J-D. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens. Bioelectron., 2013, 50, 305-310.
[http://dx.doi.org/10.1016/j.bios.2013.07.002] [PMID: 23876541]
[392]
Liu, X.; Ou, X.; Lu, Q.; Chen, S.; Wei, S. A biorecognition system for concanavalin a using a glassy carbon electrode modified with silver nanoparticles, dextran and glucose oxidase. Mikrochim. Acta, 2015, 182, 797-803.
[http://dx.doi.org/10.1007/s00604-014-1390-7]
[393]
Zhang, J.; Chen, S.; Ruo, Y.; Zhong, X.; Wu, X. An ultrasensitive electrochemiluminescent biosensor for the detection of concanavalin A based on poly(ethylenimine) reduced graphene oxide and hollow gold nanoparticles. Anal. Bioanal. Chem., 2015, 407(2), 447-453.
[http://dx.doi.org/10.1007/s00216-014-8290-x] [PMID: 25433682]
[394]
Yu, K.; Creagh, A.L.; Haynes, C.A.; Kizhakkedathu, J.N. Lectin interactions on surface-grafted glycostructures: influence of the spatial distribution of carbohydrates on the binding kinetics and rupture forces. Anal. Chem., 2013, 85(16), 7786-7793.
[http://dx.doi.org/10.1021/ac401306b] [PMID: 23931124]
[395]
Narla, S.N.; Sun, X.L. Immobilized sialyloligo-macroligand and its protein binding specificity. Biomacromolecules, 2012, 13(5), 1675-1682.
[http://dx.doi.org/10.1021/bm3003896] [PMID: 22519294]
[396]
Kaplan, J.M.; Shang, J.; Gobbo, P.; Antonello, S.; Armelao, L.; Chatare, V.; Ratner, D.M.; Andrade, R.B.; Maran, F. Conformationally constrained functional peptide monolayers for the controlled display of bioactive carbohydrate ligands. Langmuir, 2013, 29(26), 8187-8192.
[http://dx.doi.org/10.1021/la4008894] [PMID: 23782319]
[397]
Öberg, K.; Ropponen, J.; Kelly, J.; Löwenhielm, P.; Berglin, M.; Malkoch, M. Templating gold surfaces with function: a self-assembled dendritic monolayer methodology based on monodisperse polyester scaffolds. Langmuir, 2013, 29(1), 456-465.
[http://dx.doi.org/10.1021/la3041314] [PMID: 23214500]
[398]
Zagorodko, O.; Bouckaert, J.; Dumych, T.; Bilyy, R.; Larroulet, I.; Yanguas Serrano, A.; Alvarez Dorta, D.; Gouin, S.G.; Dima, S.O.; Oancea, F.; Boukherroub, R.; Szunerits, S. Surface Plasmon Resonance (SPR) for the evaluation of shear-force-dependent bacterial adhesion. Biosensors (Basel), 2015, 5(2), 276-287.
[http://dx.doi.org/10.3390/bios5020276] [PMID: 26018780]
[399]
Maalouli, N.; Barras, A.; Siriwardena, A.; Bouazaoui, M.; Boukherroub, R.; Szunerits, S. Comparison of photo- and Cu(I)-catalyzed “click” chemistries for the formation of carbohydrate SPR interfaces. Analyst (Lond.), 2013, 138(3), 805-812.
[http://dx.doi.org/10.1039/C2AN36272D] [PMID: 23223216]
[400]
Ogiso, M.; Kobayashi, J.; Imai, T.; Matsuoka, K.; Itoh, M.; Imamura, T.; Okada, T.; Miura, H.; Nishiyama, T.; Hatanaka, K.; Minoura, N. Carbohydrate immobilized on a dendrimer-coated colloidal gold surface for fabrication of a lectin-sensing device based on localized surface plasmon resonance spectroscopy. Biosens. Bioelectron., 2013, 41, 465-470.
[http://dx.doi.org/10.1016/j.bios.2012.09.003] [PMID: 23036773]
[401]
Gade, M.; Khandelwal, P.; Sangabathuni, S.; Bavireddi, H.; Murthy, R.V.; Poddar, P.; Kikkeri, R. Immobilization of multivalent glycoprobes on gold surfaces for sensing proteins and macrophages. Analyst (Lond.), 2016, 141(7), 2250-2258.
[http://dx.doi.org/10.1039/C5AN02336J] [PMID: 26934683]
[402]
Sadik, O.A.; Aluoch, A.O.; Zhou, A. Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron., 2009, 24(9), 2749-2765.
[http://dx.doi.org/10.1016/j.bios.2008.10.003] [PMID: 19054662]
[403]
Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev., 2016, 116(16), 9001-9090.
[http://dx.doi.org/10.1021/acs.chemrev.6b00220] [PMID: 27428515]
[404]
Sánchez-Pomales, G.; Zangmeister, R.A. Recent advances in electrochemical glycobiosensing. Int. J. Electrochem., 2011.article id 825790
[405]
Pihíková, D.; Kasák, P.; Tkac, J. Glycoprofiling of cancer biomarkers: label-free electrochemical lectin-based biosensors. Open Chem., 2015, 13(1), 636-655.
[http://dx.doi.org/10.1515/chem-2015-0082] [PMID: 27275016]
[406]
Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanal., 2001, 13, 983-988.
[http://dx.doi.org/10.1002/1521-4109(200108)13:12<983:AID-ELAN983>3.0.CO;2-#]
[407]
Belický, Š.; Katrlík, J.; Tkáč, J. Glycan and lectin biosensors. Essays Biochem., 2016, 60(1), 37-47.
[http://dx.doi.org/10.1042/EBC20150005] [PMID: 27365034]
[408]
Sugawara, K.; Kuramitz, H.; Kaneko, T.; Hoshi, S.; Akatsuka, K.; Tanaka, S. Voltammetric detection of lectin using sugar labeled with electroactive substance. Anal. Sci., 2001, 17(1), 21-25.
[http://dx.doi.org/10.2116/analsci.17.21] [PMID: 11993666]
[409]
Min, I.H.; Choi, L.; Ahn, K.S.; Kim, B.K.; Lee, B.Y.; Kim, K.S.; Choi, H.N.; Lee, W.Y. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens. Bioelectron., 2010, 26(4), 1326-1331.
[http://dx.doi.org/10.1016/j.bios.2010.07.038] [PMID: 20685103]
[410]
Zeng, H.; Yu, J.; Jiang, Y.; Zeng, X. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins. Biosens. Bioelectron., 2014, 55, 157-161.
[http://dx.doi.org/10.1016/j.bios.2013.11.018] [PMID: 24373955]
[411]
Bhattarai, J.K.; Tan, Y.H.; Pandey, B.; Fujikawa, K.; Demchenko, A.V.; Stine, K.J. J. Electroanal. Chem. (Lausanne Switz.), 2016, 780, 311-320.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.045]
[412]
La Ferla, B.; D’Orazio, G.; Zotti, G.; Vercelli, B. Electrochemical characterization of CdSe monolayers modified with glycosylated molecules. Electroanalysis, 2018, 30, 798-802.
[http://dx.doi.org/10.1002/elan.201700786]
[413]
Zhu, B.W.; Cai, L.; He, X.P.; Chen, G.R.; Long, Y.T. Anthraquinonyl glycoside facilitates the standardization of graphene electrodes for the impedance detection of lectins. Chem. Cent. J., 2014, 8(1), 67-72.
[http://dx.doi.org/10.1186/s13065-014-0067-y] [PMID: 25435901]
[414]
Zhang, X.Y.; Zhou, L.Y.; Luo, H.Q.; Li, N.B. A sensitive and label-free impedimetric biosensor based on an adjunct probe. Anal. Chim. Acta, 2013, 776, 11-16.
[http://dx.doi.org/10.1016/j.aca.2013.03.030] [PMID: 23601275]
[415]
Hushegyi, A.; Bertok, T.; Damborsky, P.; Katrlik, J.; Tkac, J. An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chem. Commun. (Camb.), 2015, 51(35), 7474-7477.
[http://dx.doi.org/10.1039/C5CC00922G] [PMID: 25828081]
[416]
Dong, X.; Huang, Y.; Cho, B.G.; Zhong, J.; Gautam, S.; Peng, W.; Williamson, S.D.; Banazadeh, A.; Torres-Ulloa, K.Y.; Mechref, Y. Advances in mass spectrometry-based glycomics. Electrophoresis, 2018, 39(24), 3063-3081.
[http://dx.doi.org/10.1002/elps.201800273] [PMID: 30199110]
[417]
Palaniappan, K.K.; Bertozzi, C.R. Chemical glycoproteomics. Chem. Rev., 2016, 116(23), 14277-14306.
[http://dx.doi.org/10.1021/acs.chemrev.6b00023] [PMID: 27960262]
[418]
Naresh, K.; Schumacher, F.; Hahm, H.S.; Seeberger, P.H. Pushing the limits of automated glycan assembly: synthesis of a 50mer polymannoside. Chem. Commun. (Camb.), 2017, 53(65), 9085-9088.
[http://dx.doi.org/10.1039/C7CC04380E] [PMID: 28758650]
[419]
Pardo-Vargas, A.; Delbianco, M.; Seeberger, P.H. Automated glycan assembly as an enabling technology. Curr. Opin. Chem. Biol., 2018, 46, 48-55.
[http://dx.doi.org/10.1016/j.cbpa.2018.04.007] [PMID: 29715619]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy