Biomarkers Associated with Atrial Fibrosis and Remodeling

Author(s): Polychronis Dilaveris*, Christos-Konstantinos Antoniou, Panagiota Manolakou, Eleftherios Tsiamis, Konstantinos Gatzoulis, Dimitris Tousoulis.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 5 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Atrial fibrillation is the most common rhythm disturbance encountered in clinical practice. Although often considered as solely arrhythmic in nature, current evidence has established that atrial myopathy constitutes both the substrate and the outcome of atrial fibrillation, thus initiating a vicious, self-perpetuating cycle. This myopathy is triggered by stress-induced (including pressure/volume overload, inflammation, oxidative stress) responses of atrial tissue, which in the long term become maladaptive, and combine elements of both structural, especially fibrosis, and electrical remodeling, with contemporary approaches yielding potentially useful biomarkers of these processes. Biomarker value becomes greater given the fact that they can both predict atrial fibrillation occurrence and treatment outcome. This mini-review will focus on the biomarkers of atrial remodeling (both electrical and structural) and fibrosis that have been validated in human studies, including biochemical, histological and imaging approaches.

Keywords: Atrial fibrillation, biomarker, structural remodeling, fibrosis, electrical remodeling, collagen peptides, advanced glycosylation end-products, miRNAs.

[1]
Biomarkers definitions working group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[2]
WHO. International programme on chemical safety. Biomarkers in risk assessment: Validity and validation. Available from: http://www.inchem.org/documents/ehc/ehc/ ehc222.htm2016.
[3]
Lloyd-Jones, D.M.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; Massaro, J.M.; Beiser, A.; Wolf, P.A.; Benjamin, E.J. Lifetime risk for development of atrial fibrillation: The Framingham heart study. Circulation, 2004, 110(9), 1042-1046.
[4]
Burstein, B.; Nattel, S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol., 2008, 51(8), 802-809.
[5]
Dollery, C.M.; McEwan, J.R.; Henney, A.M. Matrix metalloproteinases and cardiovascular disease. Circ. Res., 1995, 77(5), 863-868.
[6]
Heppell, R.M.; Berkin, K.E.; McLenachan, J.M.; Davies, J.A. Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in non-rheumatic atrial fibrillation. Heart, 1997, 77(5), 407-411.
[7]
Mondillo, S.; Sabatini, L.; Agricola, E.; Ammaturo, T.; Guerrini, F.; Barbati, R.; Pastore, M.; Fineschi, D.; Nami, R. Correlation between left atrial size, prothrombotic state and markers of endothelial dysfunction in patients with lone chronic nonrheumatic atrial fibrillation. Int. J. Cardiol., 2000, 75(2-3), 227-232.
[8]
Kim, M.H.; Johnston, S.S.; Chu, B.C.; Dalal, M.R.; Schulman, K.L. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ. Cardiovasc. Qual. Outcomes, 2011, 4(3), 313-320.
[9]
Kallergis, E.M.; Manios, E.G.; Kanoupakis, E.M.; Mavrakis, H.E.; Arfanakis, D.A.; Maliaraki, N.E.; Lathourakis, C.E.; Chlouverakis, G.I.; Vardas, P.E. Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: Biochemical assessment of collagen type-I turnover. J. Am. Coll. Cardiol., 2008, 52(3), 211-215.
[10]
Kawamura, M.; Ito, H.; Onuki, T.; Miyoshi, F.; Watanabe, N.; Asano, T.; Tanno, K.; Kobayashi, Y. Candesartan decreases type III procollagen-N-peptide levels and inflammatory marker levels and maintains sinus rhythm in patients with atrial fibrillation. J. Cardiovasc. Pharmacol., 2010, 55(5), 511-517.
[11]
Kawamura, M.; Munetsugu, Y.; Kawasaki, S.; Onishi, K.; Onuma, Y.; Kikuchi, M.; Tanno, K.; Kobayashi, Y. Type III procollagen-n-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace, 2012, 14, 1719-1725.
[12]
Sezai, A.; Hata, M.; Niino, T.; Kasamaki, Y.; Nakai, T.; Hirayama, A.; Minami, K. Study of the factors related to atrial fibrillation after coronary artery bypass grafting: a search for a marker to predict the occurrence of atrial fibrillation before surgical intervention. J. Thorac. Cardiovasc. Surg., 2009, 137(4), 895-900.
[13]
Timonen, P.; Magga, J.; Risteli, J.; Punnonen, K.; Vanninen, E.; Turpeinen, A.; Tuomainen, P.; Kuusisto, J.; Vuolteenaho, O.; Peuhkurinen, K. Cytokines, interstitial collagen and ventricular remodelling in dilated cardiomyopathy. Int. J. Cardiol., 2008, 124(3), 293-300.
[14]
Tziakas, D.N.; Chalikias, G.K.; Papanas, N.; Stakos, D.A.; Chatzikyriakou, S.V.; Maltezos, E. Circulating levels of collagen type I degradation marker depend on the type of atrial fibrillation. Europace, 2007, 29, 589-596.
[15]
Atienza, F.B.O. Dominant frequency and the mechanisms of initiation and maintenance of atrial fibrillation. In: Zipes/Jalife, ed. Cardiac electrophysiology - from cell to bedside; , 2014; pp. 419-432.
[16]
Libby, P.; Lee, R.T. Matrix matters. Circulation, 2000, 102(16), 1874-1876.
[17]
Aimé-Sempé, C.; Folliguet, T.; Rücker-Martin, C.; Krajewska, M.; Krajewska, S.; Heimburger, M.; Aubier, M.; Mercadier, J.J.; Reed, J.C.; Hatem, S.N. Myocardial cell death in fibrillating and dilated human right atria. J. Am. Coll. Cardiol., 1999, 34(5), 1577-1586.
[18]
Corradi, D.; Callegari, S.; Maestri, R.; Benussi, S.; Alfieri, O. Structural remodeling in atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(12), 782-796.
[19]
Frustaci, A.; Chimenti, C.; Bellocci, F.; Morgante, E.; Russo, M.A.; Maseri, A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation, 1997, 96(4), 1180-1184.
[20]
Issac, T.T.; Dokainish, H.; Lakkis, N.M. Role of inflammation in initiation and perpetuation of atrial fibrillation: A systematic review of the published data. J. Am. Coll. Cardiol., 2007, 50(21), 2021-2028.
[21]
Verheule, S.; Wilson, E.; Everett, T.I.V.; Shanbhag, S.; Golden, C.; Olgin, J. Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation, 2003, 107(20), 2615-2622.
[22]
Raposeiras-Roubín, S.; Rodiño-Janeiro, B.K.; Grigorian-Shamagian, L.; Seoane-Blanco, A.; Moure-González, M.; Varela-Román, A.; Álvarez, E.; González-Juanatey, J.R. Evidence for a role of advanced glycation end products in atrial fibrillation. Int. J. Cardiol., 2012, 157(3), 397-402.
[23]
Li, D.; Fareh, S.; Leung, T.K.; Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation, 1999, 100(1), 87-95.
[24]
Thijssen, V.L.; Ausma, J.; Borgers, M. Structural remodelling during chronic atrial fibrillation: act of programmed cell survival. Cardiovasc. Res., 2001, 52(1), 14-24.
[25]
Shirani, J.; Alaeddini, J. Structural remodeling of the left atrial appendage in patients with chronic non-valvular atrial fibrillation: Implications for thrombus formation, systemic embolism, and assessment by transesophageal echocardiography. Cardiovasc. Pathol., 2000, 9, 95-101.
[26]
Allessie, M.; Ausma, J.; Schotten, U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res., 2002, 54(2), 230-246.
[27]
Wijffels, M.C.; Kirchhof, C.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation, 1995, 92(7), 1954-1968.
[28]
Yu, W.C.; Lee, S.H.; Tai, C.T.; Tsai, C.F.; Hsieh, M.H.; Chen, C.C.; Ding, Y.A.; Chang, M.S.; Chen, S.A. Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc. Res., 1999, 42(2), 470-476.
[29]
Cardin, S.; Li, D.; Thorin-Trescases, N.; Leung, T.K.; Thorin, E.; Nattel, S. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: Angiotensin-dependent and -independent pathways. Cardiovasc. Res., 2003, 60(2), 315-325.
[30]
Ausma, J.; van der Velden, H.M.; Lenders, M.H.; van Ankeren, E.P.; Jongsma, H.J.; Ramaekers, F.C.; Borgers, M.; Allessie, M.A. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation, 2003, 107(15), 2051-2058.
[31]
Nattel, S.; Harada, M. Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J. Am. Coll. Cardiol., 2014, 63(22), 2335-2345.
[32]
Goldberger, J.J.; Arora, R.; Green, D.; Greenland, P.; Lee, D.C.; Lloyd-Jones, D.M.; Markl, M.; Ng, J.; Shah, S.J. Evaluating the atrial myopathy underlying atrial fibrillation: Identifying the arrhythmogenic and thrombogenic substrate. Circulation, 2015, 132(4), 278-291.
[33]
Burstein, B.; Libby, E.; Calderone, A.; Nattel, S. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation, 2008, 117(13), 1630-1641.
[34]
Everett, T.H., IV; Li, H.; Mangrum, J.M.; McRury, I.D.; Mitchell, M.A.; Redick, J.A.; Haines, D.E. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation, 2000, 102(12), 1454-1460.
[35]
Lapointe, N.; Rouleau, J.L. Activation of vascular tissue angiotensin-converting enzyme (ACE) in heart failure. Effects of ACE inhibitors. J. Am. Coll. Cardiol., 2002, 39(5), 776-779.
[36]
Ehrlich, J.R.; Hohnloser, S.H.; Nattel, S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur. Heart J., 2006, 27(5), 512-518.
[37]
Goette, A.; Arndt, M.; Röcken, C.; Spiess, A.; Staack, T.; Geller, J.C.; Huth, C.; Ansorge, S.; Klein, H.U.; Lendeckel, U. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation, 2000, 101(23), 2678-2681.
[38]
Kumagai, K.; Nakashima, H.; Urata, H.; Gondo, N.; Arakawa, K.; Saku, K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol., 2003, 41(12), 2197-2204.
[39]
Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol. Rev., 2011, 91(1), 265-325.
[40]
Zou, Y.; Komuro, I.; Yamazaki, T.; Kudoh, S.; Aikawa, R.; Zhu, W.; Shiojima, I.; Hiroi, Y.; Tobe, K.; Kadowaki, T.; Yazaki, Y. Cell type-specific angiotensin II-evoked signal transduction pathways: Critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circ. Res., 1998, 82(3), 337-345.
[41]
Kato, K.; Fujimaki, T.; Yoshida, T.; Oguri, M.; Yajima, K.; Hibino, T.; Murohara, T. Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electrical cardioversion in patients with atrial fibrillation. Europace, 2009, 11, 332-337.
[42]
Li, J.; Solus, J.; Chen, Q.; Rho, Y.H.; Milne, G.; Stein, C.M.; Darbar, D. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm, 2010, 7, 438-444.
[43]
Okumura, Y.; Watanabe, I.; Nakai, T.; Ohkubo, K.; Kofune, T.; Kofune, M.; Nagashima, K.; Mano, H.; Sonoda, K.; Kasamaki, Y.; Hirayama, A. Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. J. Cardiovasc. Electrophysiol., 2011, 22(9), 987-993.
[44]
Youn, J.Y.; Zhang, J.; Zhang, Y.; Chen, H.; Liu, D.; Ping, P.; Weiss, J.N.; Cai, H. Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J. Mol. Cell. Cardiol., 2013, 62, 72-79.
[45]
Miyajima, A.; Chen, J.; Lawrence, C.; Ledbetter, S.; Soslow, R.A.; Stern, J.; Jha, S.; Pigato, J.; Lemer, M.L.; Poppas, D.P.; Vaughan, E.D.; Felsen, D. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int., 2000, 58(6), 2301-2313.
[46]
Blobe, G.C.; Schiemann, W.P.; Lodish, H.F. Role of transforming growth factor beta in human disease. N. Engl. J. Med., 2000, 342(18), 1350-1358.
[47]
Henson, P.M.; Bratton, D.L.; Fadok, V.A. Apoptotic cell removal. Curr. Biol., 2001, 11(19), R795-R805.
[48]
Kupfahl, C.; Pink, D.; Friedrich, K.; Zurbrügg, H.R.; Neuss, M.; Warnecke, C.; Fielitz, J.; Graf, K.; Fleck, E.; Regitz-Zagrosek, V. Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovasc. Res., 2000, 46(3), 463-475.
[49]
Ivarsson, M.; McWhirter, A.; Borg, T.K.; Rubin, K. Type i collagen synthesis in cultured human fibroblasts: Regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biol., 1998, 16, 409-425.
[50]
De Jong, A.M.; Maass, A.H.; Oberdorf-Maass, S.U.; Van Veldhuisen, D.J.; Van Gilst, W.H.; Van Gelder, I.C. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc. Res., 2011, 89(4), 754-765.
[51]
Ausma, J.; Dispersyn, G.D.; Duimel, H.; Thoné, F.; Ver Donck, L.; Allessie, M.A.; Borgers, M. Changes in ultrastructural calcium distribution in goat atria during atrial fibrillation. J. Mol. Cell. Cardiol., 2000, 32(3), 355-364.
[52]
van der Velden, H.M.; van Kempen, M.J.; Wijffels, M.C.; van Zijverden, M.; Groenewegen, W.A.; Allessie, M.A.; Jongsma, H.J. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol., 1998, 9(6), 596-607.
[53]
Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; Chung, M.K. Inflammation as a risk factor for atrial fibrillation. Circulation, 2003, 108(24), 3006-3010.
[54]
Boos, C.J.; Anderson, R.A.; Lip, G.Y. Is atrial fibrillation an inflammatory disorder? Eur. Heart J., 2006, 27(2), 136-149.
[55]
Chung, M.K.; Martin, D.O.; Sprecher, D.; Wazni, O.; Kanderian, A.; Carnes, C.A.; Bauer, J.A.; Tchou, P.J.; Niebauer, M.J.; Natale, A.; Van Wagoner, D.R. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of atrial fibrillation. Circulation, 2001, 104(24), 2886-2891.
[56]
Lip, G.Y.; Patel, J.V.; Hughes, E.; Hart, R.G. High-sensitivity C-reactive protein and soluble CD40 ligand as indices of inflammation and platelet activation in 880 patients with nonvalvular atrial fibrillation: Relationship to stroke risk factors, stroke risk stratification schema, and prognosis. Stroke, 2007, 38(4), 1229-1237.
[57]
Mihm, M.J.; Yu, F.; Carnes, C.A.; Reiser, P.J.; McCarthy, P.M.; Van Wagoner, D.R.; Bauer, J.A. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 2001, 104(2), 174-180.
[58]
Sossalla, S.; Kallmeyer, B.; Wagner, S.; Mazur, M.; Maurer, U.; Toischer, K.; Schmitto, J.D.; Seipelt, R.; Schöndube, F.A.; Hasenfuss, G.; Belardinelli, L.; Maier, L.S. Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J. Am. Coll. Cardiol., 2010, 55(21), 2330-2342.
[59]
Christ, T.; Boknik, P.; Wöhrl, S.; Wettwer, E.; Graf, E.M.; Bosch, R.F.; Knaut, M.; Schmitz, W.; Ravens, U.; Dobrev, D. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation, 2004, 110(17), 2651-2657.
[60]
Van Wagoner, D.R.; Pond, A.L.; Lamorgese, M.; Rossie, S.S.; McCarthy, P.M.; Nerbonne, J.M. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res., 1999, 85(5), 428-436.
[61]
Caballero, R.; de la Fuente, M.G.; Gómez, R.; Barana, A.; Amorós, I.; Dolz-Gaitón, P.; Osuna, L.; Almendral, J.; Atienza, F.; Fernández-Avilés, F.; Pita, A.; Rodríguez-Roda, J.; Pinto, A.; Tamargo, J.; Delpón, E. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J. Am. Coll. Cardiol., 2010, 55(21), 2346-2354.
[62]
Lai, L.P.; Su, M.J.; Lin, J.L.; Lin, F.Y.; Tsai, C.H.; Chen, Y.S.; Huang, S.K.; Tseng, Y.Z.; Lien, W.P. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: An insight into the mechanism of atrial electrical remodeling. J. Am. Coll. Cardiol., 1999, 33(5), 1231-1237.
[63]
El-Armouche, A.; Boknik, P.; Eschenhagen, T.; Carrier, L.; Knaut, M.; Ravens, U.; Dobrev, D. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation, 2006, 114(7), 670-680.
[64]
Heijman, J.; Erfanian Abdoust, P.; Voigt, N.; Nattel, S.; Dobrev, D. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J. Physiol., 2016, 594(3), 537-553.
[65]
Brundel, B.J.; Ausma, J.; van Gelder, I.C.; Van der Want, J.J.; van Gilst, W.H.; Crijns, H.J.; Henning, R.H. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc. Res., 2002, 54(2), 380-389.
[66]
Van Wagoner, D.R.; Pond, A.L.; McCarthy, P.M.; Trimmer, J.S.; Nerbonne, J.M. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res., 1997, 80(6), 772-781.
[67]
Levi, A.J.; Dalton, G.R.; Hancox, J.C.; Mitcheson, J.S.; Issberner, J.; Bates, J.A.; Evans, S.J.; Howarth, F.C.; Hobai, I.A.; Jones, J.V. Role of intracellular sodium overload in the genesis of cardiac arrhythmias. J. Cardiovasc. Electrophysiol., 1997, 8(6), 700-721.
[68]
Pandit, S. Ionic mechanisms of atrial action potentials. In Cardiac Electrophysiology: From Cell to Bedside (pp. 309- 318). WB Saunders. , 2014.
[69]
Jost, N.; Kohajda, Z.; Kristóf, A.; Kovács, P.P.; Husti, Z.; Juhász, V.; Kiss, L.; Varró, A.; Virág, L.; Baczkó, I. Atrial remodeling and novel pharmacological strategies for antiarrhythmic therapy in atrial fibrillation. Curr. Med. Chem., 2011, 18(24), 3675-3694.
[70]
Lee, Y.S.; Hwang, M.; Song, J.S.; Li, C.; Joung, B.; Sobie, E.A.; Pak, H.N. The contribution of ionic currents to rate-dependent action potential duration and pattern of reentry in a mathematical model of human atrial fibrillation. PLoS One, 2016, 11(3), e0150779.
[71]
Schotten, U.; Dobrev, D.; Platonov, P.G.; Kottkamp, H.; Hindricks, G. Current controversies in determining the main mechanisms of atrial fibrillation. J. Intern. Med., 2016, 279(5), 428-438.
[72]
Li, H.; Lichter, J.G.; Seidel, T.; Tomaselli, G.F.; Bridge, J.H.; Sachse, F.B. Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, t-tubules, and ca2+ sparks produced by dyssynchronous heart failure. Circ Heart Fail, 2015, 8(6), 1105-1114.
[73]
Greiser, M.; Schotten, U. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J. Mol. Cell. Cardiol., 2013, 58, 134-142.
[74]
Nadar, S.; Blann, A.D.; Lip, G.Y. Endothelial dysfunction: methods of assessment and application to hypertension. Curr. Pharm. Des., 2004, 10(29), 3591-3605.
[75]
Ashihara, T.; Haraguchi, R.; Nakazawa, K.; Namba, T.; Ikeda, T.; Nakazawa, Y.; Ozawa, T.; Ito, M.; Horie, M.; Trayanova, N.A. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation. Circ. Res., 2012, 110(2), 275-284.
[76]
Kostin, S.; Klein, G.; Szalay, Z.; Hein, S.; Bauer, E.P.; Schaper, J. Structural correlate of atrial fibrillation in human patients. Cardiovasc. Res., 2002, 54(2), 361-379.
[77]
Polyakova, V.; Miyagawa, S.; Szalay, Z.; Risteli, J.; Kostin, S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med., 2008, 12(1), 189-208.
[78]
Tsang, T.S.; Barnes, M.E.; Bailey, K.R.; Leibson, C.L.; Montgomery, S.C.; Takemoto, Y.; Diamond, P.M.; Marra, M.A.; Gersh, B.J.; Wiebers, D.O.; Petty, G.W.; Seward, J.B. Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin. Proc., 2001, 76(5), 467-475.
[79]
Cho, K.; Cha, T. Fibroblasts, electrophysiological changes, and atrial fibrillation: Focus on the arrhythmogenic properties of fibroblasts. J. Arrhythm., 2013, 29, 201-203.
[80]
Spanakis, S.G.; Petridou, S.; Masur, S.K. Functional gap junctions in corneal fibroblasts and myofibroblasts. Invest. Ophthalmol. Vis. Sci., 1998, 39(8), 1320-1328.
[81]
Askar, S.F.; Bingen, B.O.; Schalij, M.J.; Swildens, J.; Atsma, D.E.; Schutte, C.I.; de Vries, A.A.; Zeppenfeld, K.; Ypey, D.L.; Pijnappels, D.A. Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms. Cardiovasc. Res., 2013, 97(1), 171-181.
[82]
Porter, K.E.; Turner, N.A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther., 2009, 123(2), 255-278.
[83]
Rohr, S. Arrhythmogenic implications of fibroblast-myocyte interactions. Circ Arrhythm Electrophysiol, 2012, 5(2), 442-452.
[84]
Camelliti, P.; Green, C.R.; LeGrice, I.; Kohl, P. Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res., 2004, 94(6), 828-835.
[85]
Thompson, S.A.; Copeland, C.R.; Reich, D.H.; Tung, L. Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 2011, 123(19), 2083-2093.
[86]
Jacquemet, V.; Henriquez, C.S. Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis. Heart Rhythm, 2009, 6, 803-810.
[87]
Xie, Y.; Garfinkel, A.; Weiss, J.N.; Qu, Z. Cardiac alternans induced by fibroblast-myocyte coupling: Mechanistic insights from computational models. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(2), H775-H784.
[88]
Neuberger, H.R.; Schotten, U.; Blaauw, Y.; Vollmann, D.; Eijsbouts, S.; van Hunnik, A.; Allessie, M. Chronic atrial dilation, electrical remodeling, and atrial fibrillation in the goat. J. Am. Coll. Cardiol., 2006, 47(3), 644-653.
[89]
Hussain, W.; Patel, P.M.; Chowdhury, R.A.; Cabo, C.; Ciaccio, E.J.; Lab, M.J.; Duffy, H.S.; Wit, A.L.; Peters, N.S. The Renin-Angiotensin system mediates the effects of stretch on conduction velocity, connexin43 expression, and redistribution in intact ventricle. J. Cardiovasc. Electrophysiol., 2010, 21(11), 1276-1283.
[90]
Boixel, C.; Gavillet, B.; Rougier, J.S.; Abriel, H. Aldosterone increases voltage-gated sodium current in ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(6), H2257-H2266.
[91]
Domenighetti, A.A.; Boixel, C.; Cefai, D.; Abriel, H.; Pedrazzini, T. Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation. J. Mol. Cell. Cardiol., 2007, 42(1), 63-70.
[92]
Tillmann, H.C.; Schumacher, B.; Yasenyev, O.; Junker, M.; Christ, M.; Feuring, M.; Wehling, M. Acute effects of aldosterone on intracardiac monophasic action potentials. Int. J. Cardiol., 2002, 84(1), 33-39.
[93]
Du, J.; Xie, J.; Zhang, Z.; Tsujikawa, H.; Fusco, D.; Silverman, D.; Liang, B.; Yue, L. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ. Res., 2010, 106(5), 992-1003.
[94]
Harada, M.; Luo, X.; Qi, X.Y.; Tadevosyan, A.; Maguy, A.; Ordog, B.; Ledoux, J.; Kato, T.; Naud, P.; Voigt, N.; Shi, Y.; Kamiya, K.; Murohara, T.; Kodama, I.; Tardif, J.C.; Schotten, U.; Van Wagoner, D.R.; Dobrev, D.; Nattel, S. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation, 2012, 126(17), 2051-2064.
[95]
Qi, X.Y.; Yeh, Y.H.; Xiao, L.; Burstein, B.; Maguy, A.; Chartier, D.; Villeneuve, L.R.; Brundel, B.J.; Dobrev, D.; Nattel, S. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ. Res., 2008, 103(8), 845-854.
[96]
Zhang, D.; Wu, C.T.; Qi, X.; Meijering, R.A.; Hoogstra-Berends, F.; Tadevosyan, A.; Cubukcuoglu Deniz, G.; Durdu, S.; Akar, A.R.; Sibon, O.C.; Nattel, S.; Henning, R.H.; Brundel, B.J. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation, 2014, 129(3), 346-358.
[97]
Mesubi, O.O.; Anderson, M.E. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc. Res., 2016, 109(4), 542-557.
[98]
Odagiri, K.; Katoh, H.; Kawashima, H.; Tanaka, T.; Ohtani, H.; Saotome, M.; Urushida, T.; Satoh, H.; Hayashi, H. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J. Mol. Cell. Cardiol., 2009, 46(6), 989-997.
[99]
Dorn, G.W., II; Force, T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3), 527-537.
[100]
Sherman, V.R.; Yang, W.; Meyers, M.A. The materials science of collagen. J. Mech. Behav. Biomed. Mater., 2015, 52, 22-50.
[101]
Boldt, A.; Wetzel, U.; Lauschke, J.; Weigl, J.; Gummert, J.; Hindricks, G.; Kottkamp, H.; Dhein, S. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 2004, 90(4), 400-405.
[102]
Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Cell junctions, cell adhesion, and the extracellular matrix; , 2008. New York: Garland Science.
[103]
Grammer, J.B.; Böhm, J.; Dufour, A.; Benz, M.; Lange, R.; Bauernschmitt, R. Atrial fibrosis in heart surgery patients decreased collagen III/I ratio in postoperative atrial fibrillation. Basic Res. Cardiol., 2005, 100(3), 288-294.
[104]
Bellamy, G.; Bornstein, P. Evidence for procollagen, a biosynthetic precursors of collagen. Proc. Natl. Acad. Sci. USA, 1971, 68(6), 1138-1142.
[105]
Nagase, H. Substrate specificity of MMPs. In:Matrix Metalloproteinase Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development; Clendeninn, N.J.; Appelt, K., Eds.; Humana Press: Totowa, NJ, 2001.
[106]
Okumura, K. Extracellular matrix remodeling as a cause of persistent atrial fibrillation: Another therapeutic target. J. Cardiovasc. Electrophysiol., 2007, 18(10), 1083-1085.
[107]
Li, Y.Y.; McTiernan, C.F.; Feldman, A.M. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc. Res., 2000, 46(2), 214-224.
[108]
Lijnen, P.J.; Petrov, V.V.; Fagard, R.H. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol. Genet. Metab., 2000, 71(1-2), 418-435.
[109]
Forsyth, P.A.; Wong, H.; Laing, T.D.; Rewcastle, N.B.; Morris, D.G.; Muzik, H.; Leco, K.J.; Johnston, R.N.; Brasher, P.M.; Sutherland, G.; Edwards, D.R. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer, 1999, 79(11-12), 1828-1835.
[110]
Jensen, L.T.; Hørslev-Petersen, K.; Toft, P.; Bentsen, K.D.; Grande, P.; Simonsen, E.E.; Lorenzen, I. Serum aminoterminal type III procollagen peptide reflects repair after acute myocardial infarction. Circulation, 1990, 81(1), 52-57.
[111]
Ulrich, D.; Noah, E.M.; Burchardt, E.R.; Atkins, D.; Pallua, N. Serum concentration of amino-terminal propeptide of type III procollagen (piiinp) as a prognostic marker for skin fibrosis after scar correction in burned patients. Burns, 2002, 28, 766-771.
[112]
Brew, K.; Dinakarpandian, D.; Nagase, H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta, 2000, 1477(1-2), 267-283.
[113]
Marín, F.; Roldán, V.; Climent, V.; Garcia, A.; Marco, P.; Lip, G.Y. Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke, 2003, 34(5), 1181-1186.
[114]
Neuberger, H.R.; Cacciatore, A.; Reil, J.C.; Gräber, S.; Schäfers, H.J.; Ukena, C.; Böhm, M.; Mewis, C. Procollagen propeptides: serum markers for atrial fibrosis? Clin. Res. Cardiol., 2012, 101(8), 655-661.
[115]
Xu, J.; Cui, G.; Esmailian, F.; Plunkett, M.; Marelli, D.; Ardehali, A.; Odim, J.; Laks, H.; Sen, L. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation, 2004, 109(3), 363-368.
[116]
Ehrlich, J.R.; Kaluzny, M.; Baumann, S.; Lehmann, R.; Hohnloser, S.H. Biomarkers of structural remodelling and endothelial dysfunction for prediction of cardiovascular events or death in patients with atrial fibrillation. Clin. Res. Cardiol., 2011, 100(11), 1029-1036.
[117]
Richter, B.; Gwechenberger, M.; Socas, A.; Zorn, G.; Albinni, S.; Marx, M.; Wolf, F.; Bergler-Klein, J.; Loewe, C.; Bieglmayer, C.; Binder, T.; Wojta, J.; Gössinger, H.D. Time course of markers of tissue repair after ablation of atrial fibrillation and their relation to left atrial structural changes and clinical ablation outcome. Int. J. Cardiol., 2011, 152(2), 231-236.
[118]
Kallergis, E.M.; Goudis, C.A.; Kanoupakis, E.M.; Mavrakis, H.E.; Maliaraki, N.E.; Tzanakis, N.; Vardas, P.E. Sinus rhythm restoration affects collagen turnover in patients with persistent atrial fibrillation. Europace, 2014, 16, 1726-1730.
[119]
Sonmez, O.; Ertem, F.U.; Vatankulu, M.A.; Erdogan, E.; Tasal, A.; Kucukbuzcu, S.; Goktekin, O. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation. Med. Sci. Monit., 2014, 20, 463-470.
[120]
Koura, T.; Hara, M.; Takeuchi, S.; Ota, K.; Okada, Y.; Miyoshi, S.; Watanabe, A.; Shiraiwa, K.; Mitamura, H.; Kodama, I.; Ogawa, S. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation, 2002, 105(17), 2092-2098.
[121]
Rosenberg, MA; Maziarz, M; Tan, AY; Glazer, NL; Zieman, SJ; Kizer, JR; Ix, JH; Djousse, L; Siscovick, DS; Heckbert, SR; Mukamal, KJ Circulating fibrosis biomarkers and risk of atrial fibrillation: The cardiovascular health study (chs). Am. Heart J, 2014, 167, 723-728. e722.
[122]
Martos, R.; Baugh, J.; Ledwidge, M.; O’Loughlin, C.; Conlon, C.; Patle, A.; Donnelly, S.C.; McDonald, K. Diastolic heart failure: Evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation, 2007, 115(7), 888-895.
[123]
Mukherjee, R.; Akar, J.G.; Wharton, J.M.; Adams, D.K.; McClure, C.D.; Stroud, R.E.; Rice, A.D.; DeSantis, S.M.; Spinale, F.G.; Gold, M.R. Plasma profiles of matrix metalloproteinases and tissue inhibitors of the metalloproteinases predict recurrence of atrial fibrillation following cardioversion. J. Cardiovasc. Transl. Res., 2013, 6(4), 528-535.
[124]
Huxley, R.R.; Lopez, F.L.; MacLehose, R.F.; Eckfeldt, J.H.; Couper, D.; Leiendecker-Foster, C.; Hoogeveen, R.C.; Chen, L.Y.; Soliman, E.Z.; Agarwal, S.K.; Alonso, A. Novel association between plasma matrix metalloproteinase-9 and risk of incident atrial fibrillation in a case-cohort study: The atherosclerosis risk in communities study. PLoS One, 2013, 8(3), e59052.
[125]
Zile, M.R.; Desantis, S.M.; Baicu, C.F.; Stroud, R.E.; Thompson, S.B.; McClure, C.D.; Mehurg, S.M.; Spinale, F.G. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail, 2011, 4(3), 246-256.
[126]
Marcus, G.M.; Smith, L.M.; Ordovas, K.; Scheinman, M.M.; Kim, A.M.; Badhwar, N.; Lee, R.J.; Tseng, Z.H.; Lee, B.K.; Olgin, J.E. Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm, 2010, 7, 149-154.
[127]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[128]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[129]
Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta, 2010, 1803(11), 1231-1243.
[130]
Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027), 769-773.
[131]
Bazzini, A.A.; Lee, M.T.; Giraldez, A.J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 2012, 336(6078), 233-237.
[132]
Place, R.F.; Li, L.C.; Pookot, D.; Noonan, E.J.; Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1608-1613.
[133]
Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet., 2007, 8(2), 93-103.
[134]
Tanzer, A.; Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol., 2004, 339(2), 327-335.
[135]
Thomson, D.W.; Bracken, C.P.; Goodall, G.J. Experimental strategies for microRNA target identification. Nucleic Acids Res., 2011, 39(16), 6845-6853.
[136]
Kumarswamy, R.; Thum, T. Non-coding RNAs in cardiac remodeling and heart failure. Circ. Res., 2013, 113(6), 676-689.
[137]
Mraz, M.; Malinova, K.; Mayer, J.; Pospisilova, S. MicroRNA isolation and stability in stored RNA samples. Biochem. Biophys. Res. Commun., 2009, 390(1), 1-4.
[138]
Mause, S.F.; Weber, C. Microparticles: Protagonists of a novel communication network for intercellular information exchange. Circ. Res., 2010, 107(9), 1047-1057.
[139]
Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res., 2009, 37(Database issue), D98-D104.
[140]
Bernardo, B.C.; Gao, X.M.; Tham, Y.K.; Kiriazis, H.; Winbanks, C.E.; Ooi, J.Y.; Boey, E.J.; Obad, S.; Kauppinen, S.; Gregorevic, P.; Du, X.J.; Lin, R.C.; McMullen, J.R. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS One, 2014, 9(2), e90337.
[141]
Sayed, D.; Hong, C.; Chen, I.Y.; Lypowy, J.; Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res., 2007, 100(3), 416-424.
[142]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[143]
Duisters, R.F.; Tijsen, A.J.; Schroen, B.; Leenders, J.J.; Lentink, V.; van der Made, I.; Herias, V.; van Leeuwen, R.E.; Schellings, M.W.; Barenbrug, P; Maessen, JG; Heymans, S; Pinto, YM; Creemers, EE Mir-133 and mir-30 regulate connective tissue growth factor: Implications for a role of micrornas in myocardial matrix remodeling. Circ. Res., 2009, 104 170-178. 176p following 178.
[144]
Shan, H.; Zhang, Y.; Lu, Y.; Zhang, Y.; Pan, Z.; Cai, B.; Wang, N.; Li, X.; Feng, T.; Hong, Y.; Yang, B. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res., 2009, 83(3), 465-472.
[145]
van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13027-13032.
[146]
Cardin, S.; Guasch, E.; Luo, X.; Naud, P.; Le Quang, K.; Shi, Y.; Tardif, J.C.; Comtois, P.; Nattel, S. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol, 2012, 5(5), 1027-1035.
[147]
Zhong, X.; Chung, A.C.; Chen, H.Y.; Meng, X.M.; Lan, H.Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol., 2011, 22(9), 1668-1681.
[148]
Dawson, K.; Wakili, R.; Ordog, B.; Clauss, S.; Chen, Y.; Iwasaki, Y.; Voigt, N.; Qi, X.Y.; Sinner, M.F.; Dobrev, D.; Kaab, S.; Nattel, S. Microrna29: A mechanistic contributor and potential biomarker in atrial fibrillation. Circulation., 2013, 127 1466-1475. 1475e1461-1428
[149]
Roy, S.; Khanna, S.; Hussain, S.R.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1), 21-29.
[150]
Luo, X.; Pan, Z.; Shan, H.; Xiao, J.; Sun, X.; Wang, N.; Lin, H.; Xiao, L.; Maguy, A.; Qi, X.Y.; Li, Y.; Gao, X.; Dong, D.; Zhang, Y.; Bai, Y.; Ai, J.; Sun, L.; Lu, H.; Luo, X.Y.; Wang, Z.; Lu, Y.; Yang, B.; Nattel, S. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest., 2013, 123(5), 1939-1951.
[151]
Xu, G.J.; Gan, T.Y.; Tang, B.P.; Chen, Z.H.; Ailiman, M.; Zhou, X.H.; Jiang, T.; Song, J.G.; Guo, X.; Li, Y.D.; Miao, H.J.; Zhang, Y.; Li, J.X. Changes in microRNAs expression are involved in age-related atrial structural remodeling and atrial fibrillation. Chin. Med. J. (Engl.), 2013, 126(8), 1458-1463.
[152]
Mott, J.L.; Kurita, S.; Cazanave, S.C.; Bronk, S.F.; Werneburg, N.W.; Fernandez-Zapico, M.E. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J. Cell. Biochem., 2010, 110(5), 1155-1164.
[153]
Luo, X.; Zhang, H.; Xiao, J.; Wang, Z. Regulation of human cardiac ion channel genes by micrornas: Theoretical perspective and pathophysiological implications. Cell. Physiol. Biochem., 2010, 25, 571-586.
[154]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, O.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[155]
Castoldi, G.; Di Gioia, C.R.; Bombardi, C.; Catalucci, D.; Corradi, B.; Gualazzi, M.G.; Leopizzi, M.; Mancini, M.; Zerbini, G.; Condorelli, G.; Stella, A. MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol., 2012, 227(2), 850-856.
[156]
Tao, L.; Bei, Y.; Zhou, Y.; Xiao, J.; Li, X. Non-coding RNAs in cardiac regeneration. Oncotarget, 2015, 6(40), 42613-42622.
[157]
Gomes da Silva, A.M.; Silbiger, V.N. Mirnas as biomarkers of atrial fibrillation. Biomarkers, 2014, 19, 631-636.
[158]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[159]
Hartog, J.W.; Voors, A.A.; Bakker, S.J.; Smit, A.J.; van Veldhuisen, D.J. Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. Eur. J. Heart Fail., 2007, 9(12), 1146-1155.
[160]
Wong, R.K.; Pettit, A.I.; Quinn, P.A.; Jennings, S.C.; Davies, J.E.; Ng, L.L. Advanced glycation end products stimulate an enhanced neutrophil respiratory burst mediated through the activation of cytosolic phospholipase A2 and generation of arachidonic Acid. Circulation, 2003, 108(15), 1858-1864.
[161]
Shaikh, S.; Nicholson, L.F. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J. Neurosci. Res., 2008, 86(9), 2071-2082.
[162]
van Heerebeek, L.; Hamdani, N.; Handoko, M.L.; Falcao-Pires, I.; Musters, R.J.; Kupreishvili, K.; Ijsselmuiden, A.J.; Schalkwijk, C.G.; Bronzwaer, J.G.; Diamant, M.; Borbély, A.; van der Velden, J.; Stienen, G.J.; Laarman, G.J.; Niessen, H.W.; Paulus, W.J. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation, 2008, 117(1), 43-51.
[163]
Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation, 2006, 114(6), 597-605.
[164]
Yamagishi, S.; Adachi, H.; Nakamura, K.; Matsui, T.; Jinnouchi, Y.; Takenaka, K.; Takeuchi, M.; Enomoto, M.; Furuki, K.; Hino, A.; Shigeto, Y.; Imaizumi, T. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism, 2006, 55(9), 1227-1231.
[165]
Begieneman, M.P.; Rijvers, L.; Kubat, B.; Paulus, W.J.; Vonk, A.B.; van Rossum, A.C.; Schalkwijk, C.G.; Stooker, W.; Niessen, H.W.; Krijnen, P.A. Atrial fibrillation coincides with the advanced glycation end product N(ε)-(carboxymethyl)lysine in the atrium. Am. J. Pathol., 2015, 185(8), 2096-2104.
[166]
Cronstein, B.N.; Weissmann, G. The adhesion molecules of inflammation. Arthritis Rheum., 1993, 36(2), 147-157.
[167]
Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2009, (191), 341-366.
[168]
Yan, W.; Wu, F.; Morser, J.; Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8525-8529.
[169]
Chopra, S.; Cherian, D.; Verghese, P.P.; Jacob, J.J. Physiology and clinical significance of natriuretic hormones. Indian J. Endocrinol. Metab., 2013, 17(1), 83-90.
[170]
Giebisch, G.; Windhager, E. Transport of sodium and chloride. In: “Medical Physiology – A cellular and Molecular Approach”; Walter F. Boron, Emile L. Boulpaep, Eds.; Saunders: Philadelphia, 2003, pp. 774-789.
[171]
Zhao, J.; Liu, T.; Liu, E.; Li, G.; Qi, L.; Li, J. The potential role of atrial natriuretic peptide in the effects of Angiotensin-(1-7) in a chronic atrial tachycardia canine model. J. Renin Angiotensin Aldosterone Syst., 2016, 17(1), 1470320315627409.
[172]
Hwang, H.J.; Son, J.W.; Nam, B.H.; Joung, B.; Lee, B.; Kim, J.B.; Lee, M.H.; Jang, Y.; Chung, N.; Shim, W.H.; Cho, S.Y.; Kim, S.S. Incremental predictive value of pre-procedural N-terminal pro-B-type natriuretic peptide for short-term recurrence in atrial fibrillation ablation. Clin. Res. Cardiol., 2009, 98(4), 213-218.
[173]
Ellinor, P.T.; Low, A.F.; Patton, K.K.; Shea, M.A.; Macrae, C.A. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J. Am. Coll. Cardiol., 2005, 45(1), 82-86.
[174]
Letsas, K.P.; Filippatos, G.S.; Pappas, L.K.; Mihas, C.C.; Markou, V.; Alexanian, I.P.; Efremidis, M.; Sideris, A.; Maisel, A.S.; Kardaras, F. Determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation and preserved left ventricular ejection fraction. Clin. Res. Cardiol., 2009, 98(2), 101-106.
[175]
Solheim, E.; Off, M.K.; Hoff, P.I.; De Bortoli, A.; Schuster, P.; Ohm, O.J.; Chen, J. N-terminal pro-b-type natriuretic peptide level at long-term follow-up after atrial fibrillation ablation: A marker of reverse atrial remodelling and successful ablation. J. Interv. Card. Electrophysiol., 2012, 34, 129-136.
[176]
Patton, K.K.; Ellinor, P.T.; Heckbert, S.R.; Christenson, R.H.; DeFilippi, C.; Gottdiener, J.S.; Kronmal, R.A. N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: The cardiovascular health study. Circulation, 2009, 120(18), 1768-1774.
[177]
Ravassa, S.; Kuznetsova, T.; Varo, N.; Thijs, L.; Delles, C.; Dominiczak, A.; Díez, J.; Staessen, J.A. Biomarkers of cardiomyocyte injury and stress identify left atrial and left ventricular remodelling and dysfunction: A population-based study. Int. J. Cardiol., 2015, 185, 177-185.
[178]
Govindan, M.; Borgulya, G.; Kiotsekoglou, A.; Saha, S.K.; Camm, A.J. Prognostic value of left atrial expansion index and exercise-induced change in atrial natriuretic peptide as long-term predictors of atrial fibrillation recurrence. Europace, 2012, 14, 1302-1310.
[179]
Barondes, S.H.; Cooper, D.N.; Gitt, M.A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem., 1994, 269(33), 20807-20810.
[180]
Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: an open-ended story. Biochim. Biophys. Acta, 2006, 1760(4), 616-635.
[181]
Henderson, N.C.; Sethi, T. The regulation of inflammation by galectin-3. Immunol. Rev., 2009, 230(1), 160-171.
[182]
Henderson, N.C.; Mackinnon, A.C.; Farnworth, S.L.; Kipari, T.; Haslett, C.; Iredale, J.P.; Liu, F.T.; Hughes, J.; Sethi, T. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol., 2008, 172(2), 288-298.
[183]
Lin, Y.H.; Lin, L.Y.; Wu, Y.W.; Chien, K.L.; Lee, C.M.; Hsu, R.B.; Chao, C.L.; Wang, S.S.; Hsein, Y.C.; Liao, L.C.; Ho, Y.L.; Chen, M.F. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin. Chim. Acta, 2009, 409, 96-99.
[184]
Sharma, U.C.; Pokharel, S.; van Brakel, T.J.; van Berlo, J.H.; Cleutjens, J.P.; Schroen, B.; André, S.; Crijns, H.J.; Gabius, H.J.; Maessen, J.; Pinto, Y.M. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 2004, 110(19), 3121-3128.
[185]
Lippi, G.; Cervellin, G.; Sanchis-Gomar, F. Galectin-3 in atrial fibrillation: Simple bystander, player or both? Clin. Biochem., 2015, 48(12), 818-822.
[186]
Kortekaas, K.A.; Hoogslag, G.E.; de Boer, R.A.; Dokter, M.M.; Versteegh, M.I.; Braun, J.; Marsan, N.A.; Verwey, H.F.; Delgado, V.; Schalij, M.J.; Klautz, R.J. Galectin-3 and left ventricular reverse remodelling after surgical mitral valve repair. Eur. J. Heart Fail., 2013, 15(9), 1011-1018.
[187]
Yu, L.; Ruifrok, W.P.; Meissner, M.; Bos, E.M.; van Goor, H.; Sanjabi, B.; van der Harst, P.; Pitt, B.; Goldstein, I.J.; Koerts, J.A.; van Veldhuisen, D.J.; Bank, R.A.; van Gilst, W.H.; Silljé, H.H.; de Boer, R.A. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail, 2013, 6(1), 107-117.
[188]
Yalcin, M.U.; Gurses, K.M.; Kocyigit, D.; Canpinar, H.; Canpolat, U.; Evranos, B.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Hazirolan, T.; Tokgozoglu, L.; Oto, M.A.; Ozer, N.; Guc, D.; Aytemir, K. The association of serum galectin-3 levels with atrial electrical and structural remodeling. J. Cardiovasc. Electrophysiol., 2015, 26(6), 635-640.
[189]
Gurses, K.M.; Yalcin, M.U.; Kocyigit, D.; Canpinar, H.; Evranos, B.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Ozer, N.; Tokgozoglu, L.; Oto, M.A.; Guc, D.; Aytemir, K. Effects of persistent atrial fibrillation on serum galectin-3 levels. Am. J. Cardiol., 2015, 115(5), 647-651.
[190]
Kornej, J.; Schmidl, J.; Ueberham, L.; John, S.; Daneschnejad, S.; Dinov, B.; Hindricks, G.; Adams, V.; Husser, D.; Bollmann, A. Galectin-3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation. PLoS One, 2015, 10(4), e0123574.
[191]
Garber, K. Galecto Biotech. Nat. Biotechnol., 2013, 31(6), 481.
[192]
Letterio, J.J.; Roberts, A.B. Regulation of immune responses by TGF-beta. Annu. Rev. Immunol., 1998, 16, 137-161.
[193]
Fu, H.; Li, G.; Liu, C.; Li, J.; Wang, X.; Cheng, L.; Liu, T. Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits. J. Cardiovasc. Electrophysiol., 2015, 26(2), 211-222.
[194]
Kim, S.K.; Park, J.H.; Kim, J.Y.; Choi, J.I.; Joung, B.; Lee, M.H.; Kim, S.S.; Kim, Y.H.; Pak, H.N. High plasma concentrations of transforming growth factor-beta and tissue inhibitor of metalloproteinase-1: Potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation. Circ. J., 2011, 75, 557-564.
[195]
Ki, M.R.; Shin, D.G.; Park, J.S.; Hong, K.S.; Hong, I.H.; Park, J.K.; Jeong, K.S. Frequency of vacuolating cytotoxin A (VacA)-positive Helicobacter pylori seropositivity and TGF-β1 decrease in atrial fibrillation. Int. J. Cardiol., 2010, 145(2), 345-346.
[196]
Kim, S.K.; Pak, H.N.; Park, J.H.; Ko, K.J.; Lee, J.S.; Choi, J.I.; Choi, D.H.; Kim, Y.H. Clinical and serological predictors for the recurrence of atrial fibrillation after electrical cardioversion. Europace, 2009, 11, 1632-1638.
[197]
Hofbauer, L.C.; Khosla, S.; Dunstan, C.R.; Lacey, D.L.; Boyle, W.J.; Riggs, B.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res., 2000, 15, 2-12.
[198]
Cao, H.; Li, Q.; Li, M.; Od, R.; Wu, Z.; Zhou, Q.; Cao, B.; Chen, B.; Chen, Y.; Wang, D. Osteoprotegerin/RANK/RANKL axis and atrial remodeling in mitral valvular patients with atrial fibrillation. Int. J. Cardiol., 2013, 166(3), 702-708.
[199]
Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear factor-kappaB: its role in health and disease. J. Mol. Med. (Berl.), 2004, 82(7), 434-448.
[200]
Anderson, D.M.; Maraskovsky, E.; Billingsley, W.L.; Dougall, W.C.; Tometsko, M.E.; Roux, E.R.; Teepe, M.C.; DuBose, R.F.; Cosman, D.; Galibert, L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997, 390(6656), 175-179.
[201]
Ueland, T.; Yndestad, A.; Øie, E.; Florholmen, G.; Halvorsen, B.; Frøland, S.S.; Simonsen, S.; Christensen, G.; Gullestad, L.; Aukrust, P. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation, 2005, 111(19), 2461-2468.
[202]
Schnabel, R.B.; Larson, M.G.; Yamamoto, J.F.; Kathiresan, S.; Rong, J.; Levy, D.; Keaney, J.F., Jr; Wang, T.J.; Vasan, R.S.; Benjamin, E.J. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am. J. Cardiol., 2009, 104(1), 92-96.
[203]
McCauliffe, D.P.; Zappi, E.; Lieu, T.S.; Michalak, M.; Sontheimer, R.D.; Capra, J.D. A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with onchocercal RAL-1 antigen and an aplysia “memory molecule”. J. Clin. Invest., 1990, 86(1), 332-335.
[204]
Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005, 123(2), 321-334.
[205]
Gold, L.I.; Eggleton, P.; Sweetwyne, M.T.; Van Duyn, L.B.; Greives, M.R.; Naylor, S.M.; Michalak, M.; Murphy-Ullrich, J.E. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J., 2010, 24(3), 665-683.
[206]
Nanney, L.B.; Woodrell, C.D.; Greives, M.R.; Cardwell, N.L.; Pollins, A.C.; Bancroft, T.A.; Chesser, A.; Michalak, M.; Rahman, M.; Siebert, J.W.; Gold, L.I. Calreticulin enhances porcine wound repair by diverse biological effects. Am. J. Pathol., 2008, 173(3), 610-630.
[207]
Zhao, F.; Zhang, S.; Shao, Y.; Wu, Y.; Qin, J.; Chen, Y.; Chen, L.; Gu, H.; Wang, X.; Huang, C.; Zhang, W. Calreticulin overexpression correlates with integrin-α5 and transforming growth factor-β1 expression in the atria of patients with rheumatic valvular disease and atrial fibrillation. Int. J. Cardiol., 2013, 168(3), 2177-2185.
[208]
Maass, A.; Leinwand, L.A. A role for calreticulin in the adult heart? J. Clin. Invest., 2001, 107(10), 1223-1225.
[209]
Sheikh, M.S.; Fornace, A.J., Jr Death and decoy receptors and p53-mediated apoptosis. Leukemia, 2000, 14(8), 1509-1513.
[210]
Schneider, P.; Bodmer, J.L.; Holler, N.; Mattmann, C.; Scuderi, P.; Terskikh, A.; Peitsch, M.C.; Tschopp, J. Characterization of fas (apo-1, cd95)-fas ligand interaction. J. Biol. Chem., 1997, 272(30), 18827-18833.
[211]
Müller, P.; Hars, C.; Schiedat, F.; Bösche, L.I.; Gotzmann, M.; Strauch, J.; Dietrich, J.W.; Vogt, M.; Tannapfel, A.; Deneke, T.; Mügge, A.; Ewers, A. Correlation between total atrial conduction time estimated via tissue Doppler imaging (PA-TDI Interval), structural atrial remodeling and new-onset of atrial fibrillation after cardiac surgery. J. Cardiovasc. Electrophysiol., 2013, 24(6), 626-631.
[212]
Muller, P.; Maier, J.; Dietrich, J.W.; Barth, S.; Griese, D.P.; Schiedat, F.; Szollosi, A.; Halbfass, P.; Nentwich, K.; Roos, M.; Krug, J.; Schade, A.; Schmitt, R.; Mugge, A.; Deneke, T. Association between left atrial low-voltage area, serum apoptosis, and fibrosis biomarkers and incidence of silent cerebral events after catheter ablation of atrial fibrillation. J. Interv. Card. Electrophysiol., 2015, 44, 55-62.
[213]
Wang, R.; Yi, X.; Li, X.; Jiang, X. Fibroblast growth factor-21 is positively associated with atrial fibrosis in atrial fibrillation patients with rheumatic heart disease. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14901-14908.
[214]
Zimmers, T.A.; Jin, X.; Hsiao, E.C.; McGrath, S.A.; Esquela, A.F.; Koniaris, L.G. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock, 2005, 23(6), 543-548.
[215]
González-Ramos, M.; Calleros, L.; López-Ongil, S.; Raoch, V.; Griera, M.; Rodríguez-Puyol, M.; de Frutos, S.; Rodríguez-Puyol, D. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 up-regulation. Int. J. Biochem. Cell Biol., 2013, 45(2), 232-242.
[216]
Spach, M.S.; Dolber, P.C. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ. Res., 1986, 58(3), 356-371.
[217]
Redfearn, D.P.; Skanes, A.C.; Lane, J.; Stafford, P.J. Signal-averaged P wave reflects change in atrial electrophysiological substrate afforded by verapamil following cardioversion from atrial fibrillation. Pacing Clin. Electrophysiol., 2006, 29(10), 1089-1095.
[218]
Schueller, P.O.; Steiner, S.; Enayat, M.; Schannwell, C.M.; Hennersdorf, M.; Strauer, B.E. Signal-averaged p-wave ecg as a marker of atrial electrical instability in patients with right ventricular dysfunction. J. Physiol. Pharmacol., 2007, 5(58)(Suppl.), 627-632.
[219]
Raitt, M.H.; Kusumoto, W.; Giraud, G.; McAnulty, J.H. Reversal of electrical remodeling after cardioversion of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol., 2004, 15(5), 507-512.
[220]
Raitt, M.H.; Kusumoto, W.; Giraud, G.D.; McAnulty, J.H. Electrophysiologic predictors of the recurrence of persistent atrial fibrillation within 30 days of cardioversion. Am. J. Cardiol., 2004, 93(1), 107-110.
[221]
Dixen, U.; Joens, C.; Parner, J.; Rasmussen, V.; Pehrson, S.M.; Jensen, G.B. Prolonged signal-averaged P wave duration after elective cardioversion increases the risk of recurrent atrial fibrillation. Scand. Cardiovasc. J., 2004, 38(3), 147-151.
[222]
Todaro, M.C.; Choudhuri, I.; Belohlavek, M.; Jahangir, A.; Carerj, S.; Oreto, L.; Khandheria, B.K. New echocardiographic techniques for evaluation of left atrial mechanics. Eur. Heart J. Cardiovasc. Imaging, 2012, 13(12), 973-984.
[223]
Dilaveris, P.E.; Gialafos, J.E. P-wave dispersion: A novel predictor of paroxysmal atrial fibrillation. Ann. Noninvasive Electrocardiol., 2001, 6(2), 159-165.
[224]
Dilaveris, P.E.; Gialafos, E.J.; Sideris, S.K.; Theopistou, A.M.; Andrikopoulos, G.K.; Kyriakidis, M.; Gialafos, J.E.; Toutouzas, P.K. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am. Heart J., 1998, 135(5 Pt 1), 733-738.
[225]
Corradi, D. Atrial fibrillation from the pathologist’s perspective. Cardiovasc. Pathol., 2014, 23, 71-84.
[226]
Dupont, E.; Ko, Y.; Rothery, S.; Coppen, S.R.; Baghai, M.; Haw, M.; Severs, N.J. The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation, 2001, 103(6), 842-849.
[227]
Nao, T.; Ohkusa, T.; Hisamatsu, Y.; Inoue, N.; Matsumoto, T.; Yamada, J.; Shimizu, A.; Yoshiga, Y.; Yamagata, T.; Kobayashi, S.; Yano, M.; Hamano, K.; Matsuzaki, M. Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am. J. Cardiol., 2003, 91(6), 678-683.
[228]
Polontchouk, L.; Haefliger, J.A.; Ebelt, B.; Schaefer, T.; Stuhlmann, D.; Mehlhorn, U.; Kuhn-Regnier, F.; De Vivie, E.R.; Dhein, S. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J. Am. Coll. Cardiol., 2001, 38(3), 883-891.
[229]
Wetzel, U.; Boldt, A.; Lauschke, J.; Weigl, J.; Schirdewahn, P.; Dorszewski, A.; Doll, N.; Hindricks, G.; Dhein, S.; Kottkamp, H. Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart, 2005, 91(2), 166-170.
[230]
Hsieh, M.H.; Lin, Y.J.; Wang, H.H.; Lo, L.W.; Chang, S.L.; Yan, Y.L.; Chou, T.Y.; Chen, S.A.; Yeh, H.I. Functional characterization of atrial electrograms in a pacing-induced heart failure model of atrial fibrillation: Importance of regional atrial connexin40 remodeling. J. Cardiovasc. Electrophysiol., 2013, 24(5), 573-582.
[231]
Allessie, M.A.; de Groot, N.M.; Houben, R.P.; Schotten, U.; Boersma, E.; Smeets, J.L.; Crijns, H.J. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: Longitudinal dissociation. Circ Arrhythm Electrophysiol, 2010, 3(6), 606-615.
[232]
Girmatsion, Z.; Biliczki, P.; Bonauer, A.; Wimmer-Greinecker, G.; Scherer, M.; Moritz, A.; Bukowska, A.; Goette, A.; Nattel, S.; Hohnloser, S.H.; Ehrlich, J.R. Changes in microrna-1 expression and ik1 up-regulation in human atrial fibrillation. Heart Rhythm, 2009, 6, 1802-1809.
[233]
Voigt, N.; Heijman, J.; Wang, Q.; Chiang, D.Y.; Li, N.; Karck, M.; Wehrens, X.H.T.; Nattel, S.; Dobrev, D. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation, 2014, 129(2), 145-156.
[234]
Satoh, M.; Minami, Y.; Takahashi, Y.; Tabuchi, T.; Nakamura, M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J. Card. Fail., 2010, 16(5), 404-410.
[235]
Lo, C.W. Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ. Res., 2000, 87(5), 346-348.
[236]
Orenes-Piñero, E.; Quintana-Giner, M.; Romero-Aniorte, A.I.; Valdés, M.; Marín, F. Novel biomarkers in cardiology: MicroRNAs in atrial fibrillation. Arch. Cardiol. Mex., 2015, 85(3), 225-229.
[237]
Lu, Y.; Zhang, Y.; Wang, N.; Pan, Z.; Gao, X.; Zhang, F.; Zhang, Y.; Shan, H.; Luo, X.; Bai, Y.; Sun, L.; Song, W.; Xu, C.; Wang, Z.; Yang, B. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation, 2010, 122(23), 2378-2387.
[238]
Del Carpio Munoz, F.; Buescher, T.L.; Asirvatham, S.J. Three-dimensional mapping of cardiac arrhythmias: what do the colors really mean? Circ Arrhythm Electrophysiol, 2010, 3(6), e6-e11.
[239]
Park, J.H.; Pak, H.N.; Choi, E.J.; Jang, J.K.; Kim, S.K.; Choi, D.H.; Choi, J.I.; Hwang, C.; Kim, Y.H. The relationship between endocardial voltage and regional volume in electroanatomical remodeled left atria in patients with atrial fibrillation: comparison of three-dimensional computed tomographic images and voltage mapping. J. Cardiovasc. Electrophysiol., 2009, 20(12), 1349-1356.
[240]
Jadidi, A.S.; Cochet, H.; Shah, A.J.; Kim, S.J.; Duncan, E.; Miyazaki, S.; Sermesant, M.; Lehrmann, H.; Lederlin, M.; Linton, N.; Forclaz, A.; Nault, I.; Rivard, L.; Wright, M.; Liu, X.; Scherr, D.; Wilton, S.B.; Roten, L.; Pascale, P.; Derval, N.; Sacher, F.; Knecht, S.; Keyl, C.; Hocini, M.; Montaudon, M.; Laurent, F.; Haïssaguerre, M.; Jaïs, P. Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation: combined magnetic resonance imaging and high-density mapping. J. Am. Coll. Cardiol., 2013, 62(9), 802-812.
[241]
Spragg, D.D.; Khurram, I.; Zimmerman, S.L.; Yarmohammadi, H.; Barcelon, B.; Needleman, M.; Edwards, D.; Marine, J.E.; Calkins, H.; Nazarian, S. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: Success and limitations. Heart Rhythm, 2012, 9, 2003-2209.
[242]
Kapa, S.; Desjardins, B.; Callans, D.J.; Marchlinski, F.E.; Dixit, S. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol., 2014, 25(10), 1044-1052.
[243]
Vlachos, K.; Letsas, K.P.; Korantzopoulos, P.; Liu, T.; Georgopoulos, S.; Bakalakos, A.; Karamichalakis, N.; Xydonas, S.; Efremidis, M.; Sideris, A. Prediction of atrial fibrillation development and progression: Current perspectives. World J. Cardiol., 2016, 8(3), 267-276.
[244]
Stiles, M.K.; John, B.; Wong, C.X.; Kuklik, P.; Brooks, A.G.; Lau, D.H.; Dimitri, H.; Roberts-Thomson, K.C.; Wilson, L.; De Sciscio, P.; Young, G.D.; Sanders, P. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: Characterizing the “second factor”. J. Am. Coll. Cardiol., 2009, 53(14), 1182-1191.
[245]
Kottkamp, H.; Bender, R.; Berg, J. Catheter ablation of atrial fibrillation: how to modify the substrate? J. Am. Coll. Cardiol., 2015, 65(2), 196-206.
[246]
Abraham, T.P.; Nishimura, R.A. Myocardial strain: Can we finally measure contractility? J. Am. Coll. Cardiol., 2001, 37(3), 731-734.
[247]
Rosen, B.D.; Gerber, B.L.; Edvardsen, T.; Castillo, E.; Amado, L.C.; Nasir, K.; Kraitchman, D.L.; Osman, N.F.; Bluemke, D.A.; Lima, J.A. Late systolic onset of regional LV relaxation demonstrated in three-dimensional space by MRI tissue tagging. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(4), H1740-H1746.
[248]
Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; Sicari, R.; Smiseth, O.A.; Smulevitz, B.; Takeuchi, M.; Thomas, J.D.; Vannan, M.; Voigt, J.U.; Zamorano, J.L. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr., 2011, 24(3), 277-313.
[249]
Kim, H.K.; Chang, S.A.; Ahn, H.S.; Shin, D.H.; Kim, J.H.; Lee, S.P.; Kim, Y.J.; Cho, G.Y.; Sohn, D.W.; Oh, B.H.; Park, Y.B. Load independence of two-dimensional speckle-tracking-derived left ventricular twist and apex-to-base rotation delay in nonischemic dilated cardiomyopathy: Implications for left ventricular dyssynchrony assessment. J. Am. Soc. Echocardiogr., 2012, 25(6), 652-660.
[250]
Karaahmet, T.; Gürel, E.; Tigen, K.; Güler, A.; Dündar, C.; Fotbolcu, H.; Basaran, Y. The effect of myocardial fibrosis on left ventricular torsion and twist in patients with non-ischemic dilated cardiomyopathy. Cardiol. J., 2013, 20(3), 276-286.
[251]
Duan, F.; Xie, M.; Wang, X.; Li, Y.; He, L.; Jiang, L.; Fu, Q. Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovasc. Ultrasound, 2012, 10, 8.
[252]
Pirat, B.; Khoury, D.S.; Hartley, C.J.; Tiller, L.; Rao, L.; Schulz, D.G.; Nagueh, S.F.; Zoghbi, W.A. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J. Am. Coll. Cardiol., 2008, 51(6), 651-659.
[253]
D’Hooge, J.; Heimdal, A.; Jamal, F.; Kukulski, T.; Bijnens, B.; Rademakers, F.; Hatle, L.; Suetens, P.; Sutherland, G.R. Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. Eur. J. Echocardiogr., 2000, 1, 154-170.
[254]
Longobardo, L.; Todaro, M.C.; Zito, C.; Piccione, M.C.; Di Bella, G.; Oreto, L.; Khandheria, B.K.; Carerj, S. Role of imaging in assessment of atrial fibrosis in patients with atrial fibrillation: State-of-the-art review. Eur. Heart J. Cardiovasc. Imaging, 2014, 15(1), 1-5.
[255]
Di Salvo, G.; Caso, P.; Lo Piccolo, R.; Fusco, A.; Martiniello, A.R.; Russo, M.G.; D’Onofrio, A.; Severino, S.; Calabró, P.; Pacileo, G.; Mininni, N.; Calabró, R. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recent-onset lone atrial fibrillation: a color Doppler myocardial imaging and transthoracic and transesophageal echocardiographic study. Circulation, 2005, 112(3), 387-395.
[256]
Kuppahally, S.S.; Akoum, N.; Burgon, N.S.; Badger, T.J.; Kholmovski, E.G.; Vijayakumar, S.; Rao, S.N.; Blauer, J.; Fish, E.N.; Dibella, E.V.; Macleod, R.S.; McGann, C.; Litwin, S.E.; Marrouche, N.F. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ Cardiovasc Imaging, 2010, 3(3), 231-239.
[257]
Morris, D.A.; Parwani, A.; Huemer, M.; Wutzler, A.; Bekfani, T.; Attanasio, P.; Friedrich, K.; Kühnle, Y.; Haverkamp, W.; Boldt, L.H. Clinical significance of the assessment of the systolic and diastolic myocardial function of the left atrium in patients with paroxysmal atrial fibrillation and low CHADS(2) index treated with catheter ablation therapy. Am. J. Cardiol., 2013, 111(7), 1002-1011.
[258]
Nazarian, S.; Beinart, R.; Halperin, H.R. Magnetic resonance imaging and implantable devices. Circ Arrhythm Electrophysiol, 2013, 6(2), 419-428.
[259]
Doltra, A.; Amundsen, B.H.; Gebker, R.; Fleck, E.; Kelle, S. Emerging concepts for myocardial late gadolinium enhancement MRI. Curr. Cardiol. Rev., 2013, 9(3), 185-190.
[260]
Amado, L.C.; Gerber, B.L.; Gupta, S.N.; Rettmann, D.W.; Szarf, G.; Schock, R.; Nasir, K.; Kraitchman, D.L.; Lima, J.A. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J. Am. Coll. Cardiol., 2004, 44(12), 2383-2389.
[261]
Mahrholdt, H.; Wagner, A.; Holly, T.A.; Elliott, M.D.; Bonow, R.O.; Kim, R.J.; Judd, R.M. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation, 2002, 106(18), 2322-2327.
[262]
Peters, D.C.; Wylie, J.V.; Hauser, T.H.; Kissinger, K.V.; Botnar, R.M.; Essebag, V.; Josephson, M.E.; Manning, W.J. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology, 2007, 243(3), 690-695.
[263]
Oakes, R.S.; Badger, T.J.; Kholmovski, E.G.; Akoum, N.; Burgon, N.S.; Fish, E.N.; Blauer, J.J.; Rao, S.N.; DiBella, E.V.; Segerson, N.M.; Daccarett, M.; Windfelder, J.; McGann, C.J.; Parker, D.; MacLeod, R.S.; Marrouche, N.F. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation, 2009, 119(13), 1758-1767.
[264]
Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; Deneke, T.; Duytschaever, M.; Neumann, T.; Mansour, M.; Mahnkopf, C.; Herweg, B.; Daoud, E.; Wissner, E.; Bansmann, P.; Brachmann, J. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA, 2014, 311(5), 498-506.
[265]
Mahnkopf, C.; Badger, T.J.; Burgon, N.S.; Daccarett, M.; Haslam, T.S.; Badger, C.T.; McGann, C.J.; Akoum, N.; Kholmovski, E.; Macleod, R.S.; Marrouche, N.F. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced mri: Implications for disease progression and response to catheter ablation. Heart Rhythm, 2010, 7, 1475-1481.
[266]
Vergara, G.R.; Marrouche, N.F. Tailored management of atrial fibrillation using a LGE-MRI based model: From the clinic to the electrophysiology laboratory. J. Cardiovasc. Electrophysiol., 2011, 22(4), 481-487.
[267]
Ling, L.H.; McLellan, A.J.; Taylor, A.J.; Iles, L.M.; Ellims, A.H.; Kumar, S.; Teh, A.; Lee, G.; Wong, M.C.; Azzopardi, S.; Sellenger, M.A.; Morton, J.B.; Kalman, J.M.; Kistler, P.M. Magnetic resonance post-contrast t1 mapping in the human atrium: Validation and impact on clinical outcome after catheter ablation for atrial fibrillation. Heart Rhythm, 2014, 11, 1551-1559.
[268]
Habibi, M.; Chahal, H.; Opdahl, A.; Gjesdal, O.; Helle-Valle, T.M.; Heckbert, S.R.; McClelland, R.; Wu, C.; Shea, S.; Hundley, G.; Bluemke, D.A.; Lima, J.A. Association of CMR-measured LA function with heart failure development: results from the MESA study. JACC Cardiovasc. Imaging, 2014, 7(6), 570-579.
[269]
Habibi, M.; Lima, J.A.; Khurram, I.M.; Zimmerman, S.L.; Zipunnikov, V.; Fukumoto, K.; Spragg, D.; Ashikaga, H.; Rickard, J.; Marine, J.E.; Calkins, H.; Nazarian, S. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: Cardiac magnetic resonance study. Circ Cardiovasc Imaging, 2015, 8(2), e002769.
[270]
Zhou, X.; Thavendiranathan, P.; Chen, Y.; Cheng, L.; Qian, Z.; Liu, S.; Houle, H.; Zhi, G.; Vannan, M.A. Feasibility of automated three-dimensional rotational mechanics by real-time volume transthoracic echocardiography: Preliminary accuracy and reproducibility data compared with cardiovascular magnetic resonance. J. Am. Soc. Echocardiogr., 2016, 29(1), 62-73.
[271]
Wyse, D.G.; Waldo, A.L.; DiMarco, J.P.; Domanski, M.J.; Rosenberg, Y.; Schron, E.B.; Kellen, J.C.; Greene, H.L.; Mickel, M.C.; Dalquist, J.E.; Corley, S.D. A comparison of rate control and rhythm control in patients with atrial fibrillation. N. Engl. J. Med., 2002, 347(23), 1825-1833.
[272]
Christ, T.; Kovács, P.P.; Acsai, K.; Knaut, M.; Eschenhagen, T.; Jost, N.; Varró, A.; Wettwer, E.; Ravens, U. Block of Na(+)/Ca(2+) exchanger by SEA0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation. Eur. J. Pharmacol., 2016, 788, 286-293.
[273]
Guerra, J.M.; Everett, T.H., IV; Lee, K.W.; Wilson, E.; Olgin, J.E. Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation. Circulation, 2006, 114(2), 110-118.
[274]
Laplante, A.F.; Moulin, V.; Auger, F.A.; Landry, J.; Li, H.; Morrow, G.; Tanguay, R.M.; Germain, L. Expression of heat shock proteins in mouse skin during wound healing. J. Histochem. Cytochem., 1998, 46(11), 1291-1301.
[275]
De Maio, A. Heat shock proteins: facts, thoughts, and dreams. Shock, 1999, 11(1), 1-12.
[276]
Brundel, B.J.; Ke, L.; Dijkhuis, A.J.; Qi, X.; Shiroshita-Takeshita, A.; Nattel, S.; Henning, R.H.; Kampinga, H.H. Heat shock proteins as molecular targets for intervention in atrial fibrillation. Cardiovasc. Res., 2008, 78(3), 422-428.
[277]
Armstead, W.M.; Hecker, J.G. Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(3), H1184-H1190.
[278]
Voss, O.H.; Batra, S.; Kolattukudy, S.J.; Gonzalez-Mejia, M.E.; Smith, J.B.; Doseff, A.I. Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activation. J. Biol. Chem., 2007, 282(34), 25088-25099.
[279]
Nègre-Aminou, P.; van Leeuwen, R.E.; van Thiel, G.C.; van den IJssel, P.; de Jong, W.W.; Quinlan, R.A.; Cohen, L.H. Differential effect of simvastatin on activation of Rac(1) vs. activation of the heat shock protein 27-mediated pathway upon oxidative stress, in human smooth muscle cells. Biochem. Pharmacol., 2002, 64(10), 1483-1491.
[280]
Zhang, X.; Chen, S.; Yoo, S.; Chakrabarti, S.; Zhang, T.; Ke, T.; Oberti, C.; Yong, S.L.; Fang, F.; Li, L.; de la Fuente, R.; Wang, L.; Chen, Q.; Wang, Q.K. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell, 2008, 135(6), 1017-1027.
[281]
Sakabe, M.; Shiroshita-Takeshita, A.; Maguy, A.; Brundel, B.J.; Fujiki, A.; Inoue, H.; Nattel, S. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia. Cardiovasc. Res., 2008, 78(1), 63-70.
[282]
Clauss, S.; Sinner, M.F.; Kääb, S.; Wakili, R. The role of micrornas in antiarrhythmic therapy for atrial fibrillation. Arrhythm. Electrophysiol. Rev., 2015, 4(3), 146-155.
[283]
Wahlquist, C.; Jeong, D.; Rojas-Muñoz, A.; Kho, C.; Lee, A.; Mitsuyama, S.; van Mil, A.; Park, W.J.; Sluijter, J.P.; Doevendans, P.A.; Hajjar, R.J.; Mercola, M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 2014, 508(7497), 531-535.
[284]
Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; Hindricks, G.; Manolis, A.S.; Oldgren, J.; Popescu, B.A.; Schotten, U.; Van Putte, B.; Vardas, P.; Agewall, S.; Camm, J.; Baron Esquivias, G.; Budts, W.; Carerj, S.; Casselman, F.; Coca, A.; De Caterina, R.; Deftereos, S.; Dobrev, D.; Ferro, J.M.; Filippatos, G.; Fitzsimons, D.; Gorenek, B.; Guenoun, M.; Hohnloser, S.H.; Kolh, P.; Lip, G.Y.; Manolis, A.; McMurray, J.; Ponikowski, P.; Rosenhek, R.; Ruschitzka, F.; Savelieva, I.; Sharma, S.; Suwalski, P.; Tamargo, J.L.; Taylor, C.J.; Van Gelder, I.C.; Voors, A.A.; Windecker, S.; Zamorano, J.L.; Zeppenfeld, K. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J., 2016, 37(38), 2893-2962.
[285]
Kuck, K.H.; Fürnkranz, A.; Chun, K.R.; Metzner, A.; Ouyang, F.; Schlüter, M.; Elvan, A.; Lim, H.W.; Kueffer, F.J.; Arentz, T.; Albenque, J.P.; Tondo, C.; Kühne, M.; Sticherling, C.; Brugada, J. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur. Heart J., 2016, 37(38), 2858-2865.
[286]
Spitzer, S.G.; Karolyi, L.; Rammler, C.; Scharfe, F.; Weinmann, T.; Zieschank, M.; Langbein, A. Treatment of recurrent nonparoxysmal atrial fibrillation using focal impulse and rotor mapping (firm)-guided rotor ablation: Early recurrence and long-term outcomes. J. Cardiovasc. Electrophysiol., 2017, 28(1), 31-38.
[287]
Qin, M.; Liu, X.; Wu, S.H.; Zhang, X.D. Atrial substrate modification in atrial fibrillation: Targeting gp or cfae? Evidence from meta-analysis of clinical trials. PLoS One, 2016, 11(10), e0164989.
[288]
Kumagai, K.; Minami, K.; Kutsuzawa, D.; Oshima, S. Efficacy of atrial substrate modification based on dominant frequency of paroxysmal atrial fibrillation. J. Arrhythm., 2016, 32(3), 212-217.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 5
Year: 2019
Page: [780 - 802]
Pages: 23
DOI: 10.2174/0929867324666170918122502
Price: $65

Article Metrics

PDF: 61
HTML: 12
EPUB: 1