Advances in Genome Science

Volume: 4

Genes in Health and Disease

Indexed in: EBSCO, Ulrich's Periodicals Directory

Genome science or genomics is essential to advancing knowledge in the fields of biology and medicine. Specifically, researchers learn about the molecular biology behind genetic expression in living ...
[view complete introduction]

US $

*(Excluding Mailing and Handling)

The MADS-box Genes Involved in Orchid Flower Development

Pp. 113-142 (30)

Serena Aceto and Luciano Gaudio


Since the advent of Darwinian genetics, there has been much interest in the evolutionary origin of the Orchidaceae, one of the most species-rich angiosperm families. Orchids have highly diversified and specialized flowers, and some species exhibit an uncoupled rate of morphological and molecular evolution. Recently, these peculiar characteristics have enhanced the study of the orchid MADS-box genes involved in flower development. This large gene family encodes transcription factors that constitute the main regulatory network driving the formation of flower organs. Recent analyses have highlighted the role of the MADS-box genes in orchids and shown that different evolutionary forces act on the coding and non-coding regions of these genes. The most widely accepted theory proposed to explain the evolution of the orchid perianth is the “orchid code”, which posits that the orchid floral organs became diversified through a series of duplications and mutations of the MADS-box genes, followed by functional diversification.


ABCDE model, adaptation, column, consensus sequence, development, evolution, flower, inflorescence, labellum, MADS-box, Orchidaceae, orchid code, ovary, phylogeny, quartet model, regulation, resupination, tepals, transcription, zygomorphy.


Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Napoli, Italy.