Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Investigation of New Inhibitors of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) by Virtual Screening with Antibacterial Assessment

Author(s): Ilham Boulhissa*, Abdelouahab Chikhi, Abderrahmane Bensegueni, Mohammad A. Ghattas, El H. Mokrani, Sara Alrawashdeh and Dana E.E. Obaid

Volume 17, Issue 2, 2021

Published on: 13 February, 2020

Page: [214 - 224] Pages: 11

DOI: 10.2174/1573409916666200213124929

Price: $65

Abstract

Background: Considering the interesting role in the peptidoglycan biosynthesis pathway, the enzyme UDP-N-acetylglucosamine enolpyruvyl transferase is an attractive target to develop new antibacterial agents. It catalyzes the first key step of this pathway and its inhibition leads to bacterial cell death. Fosfomycin is known as the natural inhibitor of MurA.

Objective: The study aimed to introduce new inhibitors of MurA by virtual screening of different chemical compounds libraries, and test the best scored “virtual hits” against three pathogenic bacteria: Escherichia coli, Bacillus subtilis and Staphylococcus aureus.

Methods: A virtual screening of the structural analogues of fosfomycin downloaded from the Pub- Chem database was performed. Moreover, French National Chemical Library and ZINC database were also utilized to identify new structures different from fosfomycin. FlexX was the software used for this study. The antibacterial testing was divided into two methods: disk diffusion and broth dilution.

Results: A set of virtual hits was found to have better energy score than that of fosfomycin, seven of them were tested in vitro. In addition, the disk diffusion method explored four compounds that exhibited antibacterial activity: CID-21680357 (fosfomycin analogue), AB-00005001, ZINC04658565, and ZINC901335. The testing was continued by broth dilution method for both compounds CID-21680357 and ZINC901335 to determine their minimum inhibitory concentrations, and ZINC901335 had the best value with 457μg/ml against Staphylococcus aureus.

Conclusion: Four compounds were found and proven in silico and in vitro to have antibacterial activity, namely CID-21680357, AB-00005001, ZINC04658565, and ZINC901335.

Keywords: MurA, antibacterial agents, fosfomycin, virtual screening, FlexX, in silico.

Graphical Abstract
[1]
Schmid, E.F.; Smith, D.A. Keynote review: is declining innovation in the pharmaceutical industry a myth? Drug Discov. Today, 2005, 10(15), 1031-1039.
[http://dx.doi.org/10.1016/S1359-6446(05)03524-5] [PMID: 16055019]
[2]
Hubbard, R.E. 3D structure and the drug-discovery process. Mol. Biosyst., 2005, 1, 391-406.
[3]
Walters, W.P.; Stahl, M.T.; Murcko, M.A. Virtual screening – an overview. Drug Discov. Today, 1998, 3, 160-178.
[http://dx.doi.org/10.1016/S1359-6446(97)01163-X]
[4]
Plewczynski, D.; Łaźniewski, M.; Augustyniak, R.; Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem., 2011, 32(4), 742-755.
[http://dx.doi.org/10.1002/jcc.21643] [PMID: 20812323]
[5]
Baum, E.Z.; Montenegro, D.A.; Licata, L.; Turchi, I.; Webb, G.C.; Foleno, B.D.; Bush, K. Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob. Agents Chemother., 2001, 45(11), 3182-3188.
[http://dx.doi.org/10.1128/AAC.45.11.3182-3188.2001] [PMID: 11600375]
[6]
Jackson, S.G.; Zhang, F.; Chindemi, P.; Junop, M.S.; Berti, P.J. Evidence of kinetic control of ligand binding and staged product release in MurA (enolpyruvyl UDP-GlcNAc synthase)-catalyzed reactions. Biochemistry, 2009, 48(49), 11715-11723.
[http://dx.doi.org/10.1021/bi901524q] [PMID: 19899805]
[7]
El Zoeiby, A.; Sanschagrin, F.; Levesque, R.C. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol., 2003, 47(1), 1-12.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03289.x] [PMID: 12492849]
[8]
Marquardt, J.L.; Brown, E.D.; Lane, W.S.; Haley, T.M.; Ichikawa, Y.; Wong, C.H.; Walsh, C.T. Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Biochemistry, 1994, 33(35), 10646-10651.
[http://dx.doi.org/10.1021/bi00201a011] [PMID: 8075065]
[9]
Skarzynski, T.; Mistry, A.; Wonacott, A.; Hutchinson, S.E.; Kelly, V.A.; Duncan, K. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure, 1996, 4(12), 1465-1474.
[http://dx.doi.org/10.1016/S0969-2126(96)00153-0] [PMID: 8994972]
[10]
Blaney, J.; Dixon, J. A good ligand is hard to find: Automated docking methods. Perspect. Drug Discov. Des., 1993, 1, 301-319.
[http://dx.doi.org/10.1007/BF02174531]
[11]
Verkhivker, G.M.; Bouzida, D.; Gehlhaar, D.K.; Rejto, P.A.; Arthurs, S.; Colson, A.B.; Freer, S.T.; Larson, V.; Luty, B.A.; Marrone, T.; Rose, P.W. Deciphering common failures in molecular docking of ligand-protein complexes. J. Comput. Aided Mol. Des., 2000, 14(8), 731-751.
[http://dx.doi.org/10.1023/A:1008158231558] [PMID: 11131967]
[12]
Totrov, M.; Abagyan, R. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins, 1997, 29(Suppl. 1), 215-220.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q] [PMID: 9485515]
[13]
BioSolveIT GmbH. An der Ziegelei 7953757 Sankt Augustin, Germany https://www.biosolveit.de/ [Accessed January 19,]; 2015
[14]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[15]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 335-373.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[16]
Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K. Recognizing pitfalls in virtual screening: a critical review. J. Chem. Inf. Model., 2012, 52(4), 867-881.
[http://dx.doi.org/10.1021/ci200528d] [PMID: 22435959]
[17]
Verdonk, M.L.; Berdini, V.; Hartshorn, M.J.; Mooij, W.T.; Murray, C.W.; Taylor, R.D.; Watson, P. Virtual screening using protein-ligand docking: avoiding artificial enrichment. J. Chem. Inf. Comput. Sci., 2004, 44(3), 793-806.
[http://dx.doi.org/10.1021/ci034289q] [PMID: 15154744]
[18]
Tresadern, G.; Agrafiotis, D.K. Conformational sampling with stochastic proximity embedding and self-organizing superimposition: establishing reasonable parameters for their practical use. J. Chem. Inf. Model., 2009, 49(12), 2786-2800.
[http://dx.doi.org/10.1021/ci9001926] [PMID: 19919051]
[19]
Protein Data Bank. https://www.rcsb.org/ [Accessed January 5, 2015]
[20]
PubChem. https://pubchem.ncbi.nlm.nih.gov/ [Accessed Mars 13, 2016]
[21]
French National Chemical Library (CN). http://chimiotheque-nationale.cn.cnrs.fr/ [Accessed Mars 3, 2016]
[22]
ZINC database, https://zinc.docking.org/ [Accessed September 20, 2016]
[23]
PubChem Docs. https://pubchemdocs.ncbi.nlm.nih.gov [Accessed Mars 13, 2016]
[24]
University of Bratislava. 1986. Molinspiration,. https://www.molinspiration.com/cgi-bin/properties [Accessed April 05, 2016]
[25]
Enamine Ltd. 78 Chervonotkatska St.02094 Kyiv, Ukraine, https://www.enaminestore.com/search [Accessed August 03, 2017]
[26]
Manchester Organics, The Health Business & Technical Park, Runcorn, Cheshire, WA7 4QX, United Kingdom., https://www.manchesterorganics.com/ [Accessed September 05, 2017]
[27]
Ambinter c/o Greenpharma 3, titanium driveway 45100 Orleans, FRANCE, http://www.ambinter.com/ [Accessed June 02, 2017]
[28]
Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests;Approved standard-9th ed CLSI document M2-A9 26:1; Clinical Laboratory Standards Institute, Wayne, PA , 2006.
[29]
Clinical Laboratory Standards Institute. Clinical Laboratory Standards Institute Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—9th edition CLSI document M07-A9 32:2; Clinical Laboratory Standards Institute, Wayne, PA, 2012.
[30]
Hioual, K.S.; Chikhi, A.; Bensegueni, A.; Merzoug, A.; Boucherit, H. Mokrani, El H.; Teniou, S.; Merabti, B. Successful challenge: A key step in infectious diseases treatment using computer-aided drug design. International J. of Bio. Sciences and Applications, 2014, 1, 11-14.
[31]
Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins, 2004, 57(2), 225-242.
[http://dx.doi.org/10.1002/prot.20149] [PMID: 15340911]
[32]
Schönbrunn, E.; Eschenburg, S.; Krekel, F.; Luger, K.; Amrhein, N. Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA. Biochemistry, 2000, 39(9), 2164-2173.
[http://dx.doi.org/10.1021/bi991091j] [PMID: 10694381]
[33]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[34]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[35]
Kumar, A.; Schweizer, H.P. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev., 2005, 57(10), 1486-1513.
[http://dx.doi.org/10.1016/j.addr.2005.04.004] [PMID: 15939505]
[36]
Samland, A.K.; Amrhein, N.; Macheroux, P. Lysine 22 in UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae is crucial for enzymatic activity and the formation of covalent adducts with the substrate phosphoenolpyruvate and the antibiotic fosfomycin. Biochemistry, 1999, 38(40), 13162-13169.
[http://dx.doi.org/10.1021/bi991041e] [PMID: 10529188]
[37]
Schonbrunn, E.; Eschenburg, S.; Luger, K.; Kabsch, W.; Amrhein, N. Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6345-6349.
[http://dx.doi.org/10.1073/pnas.120120397] [PMID: 10823915]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy