Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Copper Supported Imidazolylpyridine Modified SPION as an Efficient Catalyst for Eco-friendly, One-pot and Green Synthesis of Novel (3- Cyanothiophen-2-yl)-N-(arylsulfonyl)acetimidamide Derivatives

Author(s): Mohammad Askarzadeh, Mehdi Adib* and Mohammad Mahdavi*

Volume 20, Issue 4, 2023

Published on: 21 October, 2022

Page: [365 - 375] Pages: 11

DOI: 10.2174/1570179419666220624120250

Price: $65

Abstract

Background: In this paper, a novel catalyst is synthesized and characterized by immobilizing copper onto imidazopyridine-modified superparamagnetic iron oxide nanoparticles (SPION).

Methods: The catalyst is characterized by several methods, including TEM, SEM, ICP, DLS, and VSM. The catalytic activity of the catalyst is evaluated in the synthesis of thiosolfunamide. The synthesized catalyst showed very good activity in the mentioned reaction and performance for synthesizing the desired products in high isolated yields.

Results: For the synthesis of the products, sequential transformations enable the facile synthesis of complex target molecules from simple building blocks in a single preparative step.

Conclusion: The reaction can be performed with a high yield using water and ethanol as the reaction green solvent using terminal alkynes and sulfonyl azides as starting materials. The reusability of the catalyst was tested, and the results proved high reusability of the catalyst.

Keywords: Anticancer, heterocycles, histone deacetylase inhibitors, indole, palladium catalyzed synthesis, metastalis.

Graphical Abstract
[1]
Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci., 2020, 55, 6195-6241.
[http://dx.doi.org/10.1007/s10853-020-04415-x]
[2]
Xu, D.; Lv, H.; Liu, B. Encapsulation of metal nanoparticle catalysts within mesoporous zeolites and their enhanced catalytic performances: A review. Front Chem., 2018, 6, 550.
[http://dx.doi.org/10.3389/fchem.2018.00550] [PMID: 30474024]
[3]
Bahadorikhalili, S.; Malek, K.; Mahdavi, M. Efficient one pot synthesis of phenylimidazo[1,2‐a]pyridine Derivatives using multifunctional copper catalyst supported on β‐cyclodextrin functionalized magnetic graphene oxide. Appl. Organomet. Chem., 2020, 34(11), e5913.
[http://dx.doi.org/10.1002/aoc.5913]
[4]
Ghiyasabadi, Z.; Bahadorikhalili, S.; Saeedi, M.; Karimi‐Niyazagheh, M.; Mirfazli, S.S. SBA‐15‐Pr‐SO3H catalyzed one‐pot synthesis of indole derivatives via Fischer indole pathway. J. Heterocycl. Chem., 2020, 57(2), 606-610.
[http://dx.doi.org/10.1002/jhet.3790]
[5]
Asgari, M.S.; Sepehri, S.; Bahadorikhalili, S.; Ranjbar, P.R.; Rahimi, R.; Gholami, A.; Kazemi, A.; Khoshneviszadeh, M.; Larijani, B.; Mahdavi, M. Magnetic silica nanoparticle-supported copper complex as an efficient catalyst for the synthesis of novel triazolopyrazinylacetamides with improved antibacterial activity. Chem. Heterocycl. Compd., 2020, 1-7.
[http://dx.doi.org/10.1007/s10593-020-02685-6]
[6]
Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem., 2016, 18(11), 3184-3209.
[http://dx.doi.org/10.1039/C6GC00864J]
[7]
Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol, 2018, 120(Pt B), 2530-2544.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.025] [PMID: 30201561]
[8]
Khan, I.; Khalil, A.; Khanday, F.; Shemsi, A.M.; Qurashi, A.; Siddiqui, K.S. Synthesis, characterization and applications of magnetic iron oxide nanostructures. Arab. J. Sci. Eng., 2018, 43(1), 43-61.
[http://dx.doi.org/10.1007/s13369-017-2835-1]
[9]
Bahadorikhalili, S.; Ansari, S.; Hamedifar, H.; Mahdavi, M. The use of magnetic starch as a support for an ionic liquid-β-cyclodextrin based catalyst for the synthesis of imidazothiadiazolamine derivatives. Int. J. Biol. Macromol., 2019, 135, 453-461.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.197] [PMID: 31150668]
[10]
Bahadorikhalili, S.; Ansari, S.; Hamedifar, H.; Ma’mani, L.; Babaei, M.; Eqra, R.; Mahdavi, M. Mo(CO)6‐assisted Pd‐supported magnetic graphene oxide‐catalyzed carbonylation‐cyclization as an efficient way for the synthesis of 4 (3H)‐quinazolinones. Appl. Organomet. Chem., 2019, 33(4), e4769.
[http://dx.doi.org/10.1002/aoc.4769]
[11]
Bahadorikhalili, S.; Mahdavi, H. Palladium magnetic nanoparticle‐polyethersulfone composite membrane as an efficient and versatile catalytic membrane reactor. Polym. Adv. Technol., 2018, 29(3), 1138-1149.
[http://dx.doi.org/10.1002/pat.4225]
[12]
Ishani, M.; Dekamin, M.G.; Alirezvani, Z. Superparamagnetic silica core-shell hybrid attached to graphene oxide as a promising recoverable catalyst for expeditious synthesis of TMS-protected cyanohydrins. J. Colloid Interface Sci., 2018, 521, 232-241.
[http://dx.doi.org/10.1016/j.jcis.2018.02.060] [PMID: 29571105]
[13]
Akbari, A.; Dekamin, M.G.; Yaghoubi, A.; Naimi-Jamal, M.R. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci. Rep., 2020, 10(1), 10646.
[http://dx.doi.org/10.1038/s41598-020-67592-4] [PMID: 32606381]
[14]
Jalama, K. Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism. Catal. Rev., 2017, 59(2), 95-164.
[http://dx.doi.org/10.1080/01614940.2017.1316172]
[15]
Singh, J.; Kaur, G.; Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol, 2016, 1, 9.
[16]
Nogi, K.; Yorimitsu, H. Carbon–Carbon Bond Cleavage at Allylic Positions: Retro-allylation and Deallylation. Chem. Rev., 2021, 121(1), 345-64.
[PMID: 32396335]
[17]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[18]
Vasilopoulos, A.; Golden, D.L.; Buss, J.A.; Stahl, S.S.; Copper-Catalyzed, C-H. Copper-Catalyzed C-H Fluorination/Functionalization Sequence Enabling Benzylic C-H Cross Coupling with Diverse Nucleophiles. Org. Lett., 2020, 22(15), 5753-5757.
[http://dx.doi.org/10.1021/acs.orglett.0c02238] [PMID: 32790420]
[19]
Yang, F.; Koeller, J.; Ackermann, L. Photoinduced Copper-Catalyzed C-H Arylation at Room Temperature. Angew. Chem. Int. Ed. Engl., 2016, 55(15), 4759-4762.
[http://dx.doi.org/10.1002/anie.201512027] [PMID: 26961222]
[20]
Bahadorikhalili, S.; Ma’mani, L.; Mahdavi, H.; Shafiee, A. Copper supported β-cyclodextrin functionalized PEGylated mesoporous silica nanoparticle-graphene oxide hybrid: An efficient and recyclable nano-catalyst for straightforward synthesis of 2-arylbenzimidazoles and 1, 2, 3-triazoles. Microporous Mesoporous Mater., 2018, 262, 207-216.
[http://dx.doi.org/10.1016/j.micromeso.2017.11.046]
[21]
Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Copper-catalyzed oxidative carbon–carbon and/or carbon–heteroatom bond formation with O2 or internal oxidants. Acc. Chem. Res., 2018, 51(5), 1092-1105.
[http://dx.doi.org/10.1021/acs.accounts.7b00611] [PMID: 29648789]
[22]
Zhai, Y.; Su, Z.; Jiang, H.; Rong, J.; Qiu, X.; Tao, C. B2pin2-mediated copper-catalyzed oxidation of alkynes into 1,2-diketones using molecular oxygen. Tetrahedron Lett., 2019, 60(12), 843-846.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.023]
[23]
Chen, Y.; Yang, L.; Zhang, X.; Deng, S.; You, L.; Liu, Y. Copper‐catalyzed reduction of azides with hydrosilanes. ChemistrySelect, 2018, 3(1), 96-99.
[http://dx.doi.org/10.1002/slct.201702802]
[24]
Zhao, S.; Mankad, N.P. Synergistic copper-catalyzed reductive aminocarbonylation of alkyl iodides with nitroarenes. Org. Lett., 2019, 21(24), 10106-10110.
[http://dx.doi.org/10.1021/acs.orglett.9b04092] [PMID: 31802670]
[25]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-catalyzed decarboxylative/click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[26]
Sayahi, M.H.; Bahadorikhalili, S.; Saghanezhad, S.J.; Mahdavi, M. Copper (II)-supported polyethylenimine-functionalized magnetic graphene oxide as a catalyst for the green synthesis of 2-arylquinazolin-4(3H)-ones. Res. Chem. Intermed., 2018, 44(9), 5241-5253.
[http://dx.doi.org/10.1007/s11164-018-3420-2]
[27]
Yu, L-Z.; Wei, Y.; Shi, M. Copper-catalyzed cascade cyclization of 1,5-enynes via consecutive trifluoromethylazidation/diazidation and click reaction: Self-assembly of triazole fused isoindolines. Chem. Commun. (Camb.), 2016, 52(89), 13163-13166.
[http://dx.doi.org/10.1039/C6CC07394H] [PMID: 27768143]
[28]
Bahadorikhalili, S.; Ashtari, A.; Ma’mani, L.; Ranjbar, P.R.; Mahdavi, M. Copper‐supported β‐cyclodextrin‐functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one‐pot ‘green’synthesis of 1,2,3‐triazolylquinazolinone derivatives. Appl. Organomet. Chem., 2018, 32(4), e4212.
[http://dx.doi.org/10.1002/aoc.4212]
[29]
Sadat-Ebrahimi, S.E.; Haghayegh-Zavareh, S.M.; Bahadorikhalili, S.; Yahya-Meymandi, A.; Mahdavi, M.; Saeedi, M. Cu (II)-β-cyclodextrin-catalyzed synthesis of spiro [indoline-3,4′-pyrano[3,2-c]chromene]-3′-carbonitrile derivatives. Synth. Commun., 2017, 47(24), 2324-2329.
[http://dx.doi.org/10.1080/00397911.2017.1373822]
[30]
Sayahi, M.H.; Saghanezhad, S.J.; Bahadorikhalili, S.; Mahdavi, M. CuBr‐catalysed one‐pot multicomponent synthesis of 3‐substituted 2‐thioxo‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives. Appl. Organomet. Chem., 2019, 33(1), e4635.
[http://dx.doi.org/10.1002/aoc.4635]
[31]
Wang, Y.; Deng, L.; Deng, Y.; Han, J. Copper-Catalyzed Multicomponent Reaction of DABCO•(SO2)2, Alcohols, and Aryl Diazoniums for the Synthesis of Sulfonic Esters. J. Org. Chem., 2018, 83(8), 4674-4680.
[http://dx.doi.org/10.1021/acs.joc.8b00447] [PMID: 29620365]
[32]
Mardjan, M.I.; Perie, S.; Parrain, J-L.; Commeiras, L. A tunable copper-catalyzed multicomponent reaction towards alkaloid-inspired indole/lactam polycycles. Org. Biomol. Chem., 2017, 15(15), 3304-3309.
[http://dx.doi.org/10.1039/C7OB00532F] [PMID: 28358155]
[33]
Shaheed, N.; Javanshir, S.; Esmkhani, M.; Dekamin, M.G.; Naimi-Jamal, M.R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep., 2021, 11(1), 18553.
[http://dx.doi.org/10.1038/s41598-021-97861-9] [PMID: 34535724]
[34]
Alirezvani, Z.; Dekamin, M.G.; Valiey, E. Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep., 2019, 9(1), 17758.
[http://dx.doi.org/10.1038/s41598-019-53765-3] [PMID: 31780721]
[35]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process., 2016, 4(1), 7.
[36]
Simon, M-O.; Li, C-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[37]
Yoo, E.J.; Chang, S. Copper-catalyzed multicomponent reactions: Securing a catalytic route to ketenimine intermediates and their reactivities. Curr. Org. Chem., 2009, 13(18), 1766-1776.
[http://dx.doi.org/10.2174/138527209789630497]
[38]
Lu, P.; Wang, Y. The thriving chemistry of ketenimines. Chem. Soc. Rev., 2012, 41(17), 5687-5705.
[http://dx.doi.org/10.1039/c2cs35159e] [PMID: 22833018]
[39]
Cui, S-L.; Lin, X-F.; Wang, Y-G. Novel and efficient synthesis of iminocoumarins via copper-catalyzed multicomponent reaction. Org. Lett., 2006, 8(20), 4517-4520.
[http://dx.doi.org/10.1021/ol061685w] [PMID: 16986939]
[40]
Cui, S-L.; Wang, J.; Wang, Y-G. Copper-catalyzed multicomponent reaction: Facile access to functionalized 5-arylidene-2-imino-3-pyrrolines. Org. Lett., 2007, 9(24), 5023-5025.
[http://dx.doi.org/10.1021/ol702241e] [PMID: 17979278]
[41]
Lu, P.; Wang, Y. Strategies for heterocyclic synthesis via cascade reactions based on ketenimines. Synlett, 2010, 2010(02), 165-173.
[http://dx.doi.org/10.1055/s-0029-1218558]
[42]
Bae, I.; Han, H.; Chang, S. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J. Am. Chem. Soc., 2005, 127(7), 2038-2039.
[http://dx.doi.org/10.1021/ja0432968] [PMID: 15713069]
[43]
Kim, J.; Lee, S.Y.; Lee, J.; Do, Y.; Chang, S. Synthetic utility of ammonium salts in a Cu-catalyzed three-component reaction as a facile coupling partner. J. Org. Chem., 2008, 73(23), 9454-9457.
[http://dx.doi.org/10.1021/jo802014g] [PMID: 18956843]
[44]
Khatua, M.; Goswami, B.; Kamal, S.; Samanta, S. Azide-alkyne “click” reaction in water using parts-per-million amine-functionalized azoaromatic Cu(I) complex as catalyst: effect of the amine side arm. Inorg. Chem., 2021, 60(23), 17537-17554.
[http://dx.doi.org/10.1021/acs.inorgchem.1c02115] [PMID: 34806366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy