Sensing, Transport and Other Potential Biomedical Applications of Pseudopeptides

Author(s): Enrico Faggi, Santiago V. Luis, Ignacio Alfonso*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 21 , 2019

  Journal Home
Translate in Chinese

Abstract:

Pseudopeptides are privileged synthetic molecules built from the designed combination of peptide-like and abiotic artificial moieties. Consequently, they are benefited from the advantages of both families of chemical structures: modular synthesis, chemical and functional diversity, tailored three-dimensional structure, usually high stability in biological media and low non-specific toxicity. Accordingly, in the last years, these compounds have been used for different biomedical applications, ranging from bio-sensing, ion transport, the molecular recognition of biologically relevant species, drug delivery or gene transfection. This review highlights a selection of the most remarkable and recent advances in this field.

Keywords: Pseudopeptides, sensing, transport, cation coordination, anion coordination, gene delivery.

[1]
Prins, L.J. Functional Synthetic Receptors; Wiley-VCH Verlag GmbH & Co. KGaA,, 2005.
[2]
Luis, S.V.; Alfonso, I. Bioinspired chemistry based on minimalistic pseudopeptides. Acc. Chem. Res., 2014, 47(1), 112-124.
[http://dx.doi.org/10.1021/ar400085p]
[3]
Alfonso, I. From simplicity to complex systems with bioinspired pseudopeptides. Chem. Commun. , 2016, 52(2), 239-250.
[http://dx.doi.org/10.1039/C5CC07596C]
[4]
Celine, A.; Claudio, S. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr. Med. Chem., 2002, 9(9), 963-978.
[http://dx.doi.org/10.2174/0929867024606731]
[5]
Boron, W.F. Regulation of intracellular pH. Adv. Physiol. Educ., 2004, 28(4), 160-179.
[http://dx.doi.org/10.1152/advan.00045.2004]
[6]
Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol., 2010, 11(1), 50-61.
[http://dx.doi.org/10.1038/nrm2820]
[7]
Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev., 2010, 110(5), 2709-2728.
[http://dx.doi.org/10.1021/cr900249z]
[8]
Bissell, R.A.; de Silva, A.P.; Gunaratne, H.N.; ynch, P.M.; Maguire, G.E.; McCoy, C.P.; Sandanayake, K.S. In Photoinduced Electron Transfer V; Springer, 1993, 223-264.
[9]
Galindo, F.; Burguete, M.I.; Vigara, L.; Luis, S.V.; Kabir, N.; Gavrilovic, J.; Russell, D.A. Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells. Angew. Chem. Int. Ed., 2005, 44(40), 6504-6508.
[http://dx.doi.org/10.1002/anie.200501920]
[10]
Burguete, M.I.; Galindo, F.; Izquierdo, M.A.; O’Connor, J.E.; Herrera, G.; Luis, S.V.; Vigara, L. Synthesis and evaluation of pseudopeptidic fluorescence pH probes for acidic cellular organelles: In vivo monitoring of bacterial phagocytosis by multiparametric flow cytometry. Eur. J. Org. Chem., 2010, (31), 5967-5979.
[http://dx.doi.org/10.1002/ejoc.201000854]
[11]
Izquierdo, M.A.; Wadhavane, P.D.; Vigara, L.; Burguete, M.I.; Galindo, F.; Luis, S.V. The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature. Photochem. Photobiol. Sci., 2017.
[http://dx.doi.org/10.1039/C7PP00167C]
[12]
Faggi, E.; Serra-Vinardell, J.; Pandey, M.D.; Casas, J.; Fabriàs, G.; Luis, S.V.; Alfonso, I. Pseudopeptidic fluorescent on-off pH sensor based on pyrene excimer emission: Imaging of acidic cellular organelles. Sens. Actuators B Chem., 2016, 234, 633-640.
[http://dx.doi.org/10.1016/j.snb.2016.05.037]
[13]
Saura, A.V.; Marín, M.J.; Burguete, M.I.; Russell, D.A.; Galindo, F.; Luis, S.V. The synthesis of new fluorescent bichromophoric compounds as ratiometric pH probes for intracellular measurements. Org. Biomol. Chem., 2015, 13(28), 7736-7749.
[http://dx.doi.org/10.1039/C5OB00704F]
[14]
Chen, L.; Wu, J.; Schmuck, C.; Tian, H. A switchable peptide sensor for real-time lysosomal tracking. Chem. Commun., 2014, 50(49), 6443-6446.
[http://dx.doi.org/10.1039/C4CC00670D]
[15]
Heinrichs, G.; Schellenträger, M.; Kubik, S. An enantioselective fluorescence sensor for glucose based on a cyclic tetrapeptide containing two boronic acid binding sites. Eur. J. Org. Chem., 2006, 2006(18), 4177-4186.
[http://dx.doi.org/10.1002/ejoc.200600245]
[16]
Burguete, M.I.; Galindo, F.; Luis, S.V.; Vigara, L. Ratiometric fluorescence sensing of phenylalanine derivatives by synthetic macrocyclic receptors. J. Photochem. Photobiol. Chem., 2010, 209(1), 61-67.
[http://dx.doi.org/10.1016/j.jphotochem.2009.10.010]
[17]
Butler, S.J.; Jolliffe, K.A. Selective Pyrophosphate Recognition by Cyclic Peptide Receptors in Physiological Saline. Chem. Asian J., 2012, 7(11), 2621-2628.
[http://dx.doi.org/10.1002/asia.201200627]
[18]
Liu, X.; Ngo, H.T.; Ge, Z.; Butler, S.J.; Jolliffe, K.A. Tuning colourimetric indicator displacement assays for naked-eye sensing of pyrophosphate in aqueous media. Chem. Sci. (Camb.), 2013, 4(4), 1680-1686.
[http://dx.doi.org/10.1039/c3sc22233k]
[19]
Liu, X.; Smith, D.G.; Jolliffe, K.A. Are two better than one? Comparing intermolecular and intramolecular indicator displacement assays in pyrophosphate sensors. Chem. Commun. , 2016, 52(54), 8463-8466.
[http://dx.doi.org/10.1039/C6CC03680E]
[20]
Oh, K.J.; Cash, K.J.; Plaxco, K.W. Excimer-based peptide beacons: a convenient experimental approach for monitoring polypeptide−protein and polypeptide−oligonucleotide interactions. J. Am. Chem. Soc., 2006, 128(43), 14018-14019.
[http://dx.doi.org/10.1021/ja0651310]
[21]
Wu, J.; Zou, Y.; Li, C.; Sicking, W.; Piantanida, I.; Yi, T.; Schmuck, C. A Molecular peptide beacon for the ratiometric sensing of nucleic acids. J. Am. Chem. Soc., 2012, 134(4), 1958-1961.
[http://dx.doi.org/10.1021/ja2103845]
[22]
Maity, D.; Jiang, J.; Ehlers, M.; Wu, J.; Schmuck, C. A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids. Chem. Commun. , 2016, 52(36), 6134-6137.
[http://dx.doi.org/10.1039/C6CC02138G]
[23]
Maity, D.; Schmuck, C. Fluorescent peptide beacons for the selective ratiometric detection of heparin. Chemistry, 2016, 22(37), 13156-13161.
[http://dx.doi.org/10.1002/chem.201602240]
[24]
Maity, D.; Li, M.; Ehlers, M.; Schmuck, C. A metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates. Chem. Commun. , 2017, 53(1), 208-211.
[http://dx.doi.org/10.1039/C6CC08386B]
[25]
Alfonso, I.; Quesada, R. Biological activity of synthetic ionophores: ion transporters as prospective drugs? Chem. Sci. (Camb.), 2013, 4(8), 3009-3019.
[http://dx.doi.org/10.1039/c3sc50882j]
[26]
Hurdle, J.G.; O’Neill, A.J.; Chopra, I.; Lee, R.E. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol., 2011, 9(1), 62.
[http://dx.doi.org/10.1038/nrmicro2474]
[27]
Ashcroft, F.M. From molecule to malady. Nature, 2006, 440(7083), 440.
[http://dx.doi.org/10.1038/nature04707]
[28]
Gentilucci, L.; Tolomelli, A.; Squassabia, F. Peptides and peptidomimetics in medicine, surgery and biotechnology. Curr. Med. Chem., 2006, 13(20), 2449-2466.
[http://dx.doi.org/10.2174/092986706777935041]
[29]
Sarabia, F.; Chammaa, S.; Ruiz, A.S.; Ortiz, L.M.; Herrera, F.L. Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr. Med. Chem., 2004, 11(10), 1309-1332.
[http://dx.doi.org/10.2174/0929867043365224]
[30]
Ohnishi, M.; Urry, D. Solution conformation of valinomycin-potassium ion complex. Science, 1970, 168(3935), 1091-1092.
[http://dx.doi.org/10.1126/science.168.3935.1091]
[31]
Duax, W.; Hauptman, H.; Weeks, C.; Norton, D. Valinomycin crystal structure determination by direct methods. Science, 1972, 176(4037), 911-914.
[http://dx.doi.org/10.1126/science.176.4037.911]
[32]
Pinkerton, M.; Steinrauf, L.; Dawkins, P. The molecular structure and some transport properties of valinomycin. Biochem. Biophys. Res. Commun., 1969, 35(4), 512-518.
[http://dx.doi.org/10.1016/0006-291X(69)90376-3]
[33]
Fernandez-Lopez, S.; Hui-Sun, K.; Choi, E.C.; Delgado, M. Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature, 2001, 412(6845), 452.
[http://dx.doi.org/10.1038/35086601]
[34]
Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366(6453), 324.
[http://dx.doi.org/10.1038/366324a0]
[35]
Ghadiri, M.R.; Granja, J.R.; Buehler, L.K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 369(6478), 301-304.
[http://dx.doi.org/10.1038/369301a0]
[36]
Dartois, V.; Sanchez-Quesada, J.; Cabezas, E.; Chi, E.; Dubbelde, C.; Dunn, C.; Granja, J.; Gritzen, C.; Weinberger, D.; Ghadiri, M.R. Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob. Agents Chemother., 2005, 49(8), 3302-3310.
[http://dx.doi.org/10.1128/AAC.49.8.3302-3310.2005]
[37]
Motiei, L.; Rahimipour, S.; Thayer, D.A.; Wong, C-H.; Ghadiri, M.R. Antibacterial cyclic d, l-α-glycopeptides. Chem. Commun. , 2009, (25), 3693-3695.
[http://dx.doi.org/10.1039/b902455g]
[38]
Danial, M.; Tran, C.M-N.; Young, P.G.; Perrier, S.; Jolliffe, K.A. Janus cyclic peptide–polymer nanotubes. Nat. Commun., 2013, 4, 2780.
[http://dx.doi.org/10.1038/ncomms3780]
[39]
Danial, M.; Tran, C.M-N.; Jolliffe, K.A.; Perrier, S. Thermal gating in lipid membranes using thermoresponsive cyclic peptide–polymer conjugates. J. Am. Chem. Soc., 2014, 136(22), 8018-8026.
[http://dx.doi.org/10.1021/ja5024699]
[40]
Clark, T.D.; Buehler, L.K.; Ghadiri, M.R. Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels. J. Am. Chem. Soc., 1998, 120(4), 651-656.
[http://dx.doi.org/10.1021/ja972786f]
[41]
Brea, R.J.; Reiriz, C.; Granja, J.R. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Chem. Soc. Rev., 2010, 39(5), 1448-1456.
[http://dx.doi.org/10.1039/B805753M]
[42]
Montenegro, J.; Ghadiri, M.R.; Granja, J.R. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res., 2013, 46(12), 2955-2965.
[http://dx.doi.org/10.1021/ar400061d]
[43]
Rodríguez-Vázquez, N.; Lionel Ozores, H.; Guerra, A.; González-Freire, E.; Fuertes, A.; Panciera, M.; Priegue, M.J.; Outeiral, J.; Montenegro, J.; García-Fandiño, R. Membrane-targeted self-assembling cyclic peptide nanotubes. Curr. Top. Med. Chem., 2014, 14(23), 2647-2661.
[http://dx.doi.org/10.2174/1568026614666141215143431]
[44]
García-Fandiño, R.; Amorín, M.; Castedo, L.; Granja, J.R. Transmembrane ion transport by self-assembling α, γ-peptide nanotubes. Chem. Sci. (Camb.), 2012, 3(11), 3280-3285.
[http://dx.doi.org/10.1039/c2sc21068a]
[45]
Rodríguez-Vázquez, N.; Amorín, M.; Granja, J.R. Recent advances in controlling the internal and external properties of self-assembling cyclic peptide nanotubes and dimers. Org. Biomol. Chem., 2017, 15(21), 4490-4505.
[http://dx.doi.org/10.1039/C7OB00351J]
[46]
Rodríguez-Vázquez, N.; García-Fandiño, R.; Amorín, M.; Granja, J.R. Self-assembling α, γ-cyclic peptides that generate cavities with tunable properties. Chem. Sci. (Camb.), 2016, 7(1), 183-187.
[http://dx.doi.org/10.1039/C5SC03187G]
[47]
Rodríguez-Vázquez, N.; García-Fandiño, R.; Aldegunde, M.J.; Brea, J.; Loza, M.I.; Amorín, M.; Granja, J.R. cis-Platinum complex encapsulated in self-assembling cyclic peptide dimers. Org. Lett., 2017.
[http://dx.doi.org/10.1021/acs.orglett.7b00871]
[48]
Rodríguez-Vázquez, N.; Amorín, M.; Alfonso, I.; Granja, J.R. Anion recognition and induced self-assembly of an α,γ-cyclic peptide to form spherical clusters. Angew. Chem. Int. Ed., 2016, 55(14), 4504-4508.
[http://dx.doi.org/10.1002/anie.201511857]
[49]
Łowicki, D.; Huczyński, A.; Stefańska, J.; Brzezinski, B. Spectroscopic, semi-empirical and antimicrobial studies of a new amide of monensin A with 4-aminobenzo-15-crown-5 and its complexes with Na+ cation at 1: 1 and 1: 2 ratios. Tetrahedron, 2011, 67(7), 1468-1478.
[http://dx.doi.org/10.1016/j.tet.2010.12.033]
[50]
Boudreault, P-L.; Voyer, N. Synthesis, characterization and cytolytic activity of α-helical amphiphilic peptide nanostructures containing crown ethers. Org. Biomol. Chem., 2007, 5(9), 1459-1465.
[http://dx.doi.org/10.1039/B702076G]
[51]
Otis, F.o.; Racine-Berthiaume, C.; Voyer, N. How far can a sodium ion travel within a lipid bilayer? J. Am. Chem. Soc., 2011, 133(17), 6481-6483.
[http://dx.doi.org/10.1021/ja110336s]
[52]
Biron, E.; Otis, F.; Meillon, J-C.; Robitaille, M.; Lamothe, J.; Van Hove, P.; Cormier, M-E.; Voyer, N. Design, synthesis, and characterization of peptide nanostructures having ion channel activity. Bioorg. Med. Chem., 2004, 12(6), 1279-1290.
[http://dx.doi.org/10.1016/j.bmc.2003.08.037]
[53]
Vandenburg, Y.R.; Smith, B.D.; Biron, E.; Voyer, N. Membrane disruption ability of facially amphiphilic helical peptides. Chem. Commun. , 2002, (16), 1694-1695.
[http://dx.doi.org/10.1039/b204640g]
[54]
Boudreault, P-L.; Arseneault, M.; Otis, F.; Voyer, N. Nanoscale tools to selectively destroy cancer cells. Chem. Commun. , 2008, (18), 2118-2120.
[http://dx.doi.org/10.1039/b800528a]
[55]
Xin, P.; Zhu, P.; Su, P.; Hou, J-L.; Li, Z-T. Hydrogen-bonded helical hydrazide oligomers and polymer that mimic the ion transport of gramicidin A. J. Am. Chem. Soc., 2014, 136(38), 13078-13081.
[http://dx.doi.org/10.1021/ja503376s]
[56]
Zhang, D-W.; Zhao, X.; Hou, J-L.; Li, Z-T. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev., 2012, 112(10), 5271-5316.
[http://dx.doi.org/10.1021/cr300116k]
[57]
Si, W.; Xin, P.; Li, Z-T.; Hou, J-L. Tubular unimolecular transmembrane channels: construction strategy and transport activities. Acc. Chem. Res., 2015, 48(6), 1612-1619.
[http://dx.doi.org/10.1021/acs.accounts.5b00143]
[58]
Chen, L.; Si, W.; Zhang, L.; Tang, G.; Li, Z-T.; Hou, J-L. Chiral selective transmembrane transport of amino acids through artificial channels. J. Am. Chem. Soc., 2013, 135(6), 2152-2155.
[http://dx.doi.org/10.1021/ja312704e]
[59]
Si, W.; Li, Z.T.; Hou, J.L. Voltage‐driven reversible insertion into and leaving from a lipid bilayer: Tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed., 2014, 53(18), 4578-4581.
[http://dx.doi.org/10.1002/anie.201311249]
[60]
Zhang, M.; Zhu, P-P.; Xin, P.; Si, W.; Li, Z-T.; Hou, J-L. Synthetic Channel Specifically Inserts into the Lipid Bilayer of Gram-Positive Bacteria but not that of Mammalian Erythrocytes. Angew. Chem. Int. Ed., 2017, 56(11), 2999-3003.
[http://dx.doi.org/10.1002/anie.201612093]
[61]
Oblatt-Montal, M.; Reddy, G.L.; Iwamoto, T.; Tomich, J.M.; Montal, M. Identification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel. Proc. Natl. Acad. Sci. USA, 1994, 91(4), 1495-1499.
[http://dx.doi.org/10.1073/pnas.91.4.1495]
[62]
Wallace, D.P.; Tomich, J.M.; Eppler, J.W.; Iwamoto, T.; Grantham, J.J.; Sullivan, L.P. A synthetic channel-forming peptide induces Cl− secretion: modulation by Ca 2+-dependent K+ channels. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2000, 1464(1), 69-82.
[http://dx.doi.org/10.1016/S0005-2736(99)00248-5]
[63]
Gao, L.; Broughman, J.R.; Iwamoto, T.; Tomich, J.M.; Venglarik, C.J.; Forman, H.J. Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 281(1), L24-L30.
[http://dx.doi.org/10.1152/ajplung.2001.281.1.L24]
[64]
Wencewicz, T.A.; Möllmann, U.; Long, T.E.; Miller, M.J. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals, 2009, 22(4), 633.
[http://dx.doi.org/10.1007/s10534-009-9218-3]
[65]
Broughman, J.R.; Brandt, R.M.; Hastings, C.; Iwamoto, T.; Tomich, J.M.; Schultz, B.D. Channel-forming peptide modulates transepithelial electrical conductance and solute permeability. Am. J. Physiol. Cell Physiol., 2004, 286(6), C1312-C1323.
[http://dx.doi.org/10.1152/ajpcell.00426.2002]
[66]
Martin, J.; Malreddy, P.; Iwamoto, T.; Freeman, L.C.; Davidson, H.J.; Tomich, J.M.; Schultz, B.D. NC-1059: A channel-forming peptide that modulates drug delivery across in vitro corneal epithelium. Invest. Ophthalmol. Vis. Sci., 2009, 50(7), 3337-3345.
[http://dx.doi.org/10.1167/iovs.08-3053]
[67]
Gokel, G.W.; Barkey, N. Transport of chloride ion through phospholipid bilayers mediated by synthetic ionophores. New J. Chem., 2009, 33(5), 947-963.
[http://dx.doi.org/10.1039/b817245p]
[68]
Gokel, G.W.; Negin, S. Synthetic membrane active amphiphiles. Adv. Drug Deliv. Rev., 2012, 64(9), 784-796.
[http://dx.doi.org/10.1016/j.addr.2012.01.011]
[69]
Pajewski, R.; Garcia-Medina, R.; Brody, S.L.; Leevy, W.M.; Schlesinger, P.H.; Gokel, G.W. A synthetic, chloride-selective channel that alters chloride transport in epithelial cells. Chem. Commun. , 2006, (3), 329-331.
[http://dx.doi.org/10.1039/B513940F]
[70]
Li, X.; Shen, B.; Yao, X-Q.; Yang, D. A small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes. J. Am. Chem. Soc., 2007, 129(23), 7264-7265.
[http://dx.doi.org/10.1021/ja071961h]
[71]
Li, X.; Shen, B.; Yao, X-Q.; Yang, D. Synthetic chloride channel regulates cell membrane potentials and voltage-gated calcium channels. J. Am. Chem. Soc., 2009, 131(38), 13676-13680.
[http://dx.doi.org/10.1021/ja902352g]
[72]
Shen, B.; Li, X.; Wang, F.; Yao, X.; Yang, D. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells. PLoS One, 2012, 7(4)e34694
[http://dx.doi.org/10.1371/journal.pone.0034694]
[73]
Liu, P-Y.; Li, S-T.; Shen, F-F.; Ko, W-H.; Yao, X-Q.; Yang, D. A small synthetic molecule functions as a chloride-bicarbonate dual-transporter and induces chloride secretion in cells. Chem. Commun. , 2016, 52(46), 7380-7383.
[http://dx.doi.org/10.1039/C6CC01964A]
[74]
Martí, I.; Rubio, J.; Bolte, M.; Burguete, M.I.; Vicent, C.; Quesada, R.; Alfonso, I.; Luis, S.V. Tuning chloride binding, encapsulation, and transport by peripheral substitution of pseudopeptidic tripodal small cages. Chemistry, 2012, 18(52), 16728-16741.
[http://dx.doi.org/10.1002/chem.201202182]
[75]
Martí, I.; Bolte, M.; Burguete, M.I.; Vicent, C.; Alfonso, I.; Luis, S.V. Tight and selective caging of chloride ions by a pseudopeptidic host. Chemistry, 2014, 20(24), 7458-7464.
[http://dx.doi.org/10.1002/chem.201303604]
[76]
Martí, I.; Burguete, M.I.; Gale, P.A.; Luis, S.V. Acyclic Pseudopeptidic Hosts as Molecular Receptors and Transporters for Anions. Eur. J. Org. Chem., 2015, 2015(23), 5150-5158.
[http://dx.doi.org/10.1002/ejoc.201500390]
[77]
Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003, 189(1), 147-163.
[http://dx.doi.org/10.1016/S0300-483X(03)00159-8]
[78]
Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet, 2007, 369(9559), 397-408.
[http://dx.doi.org/10.1016/S0140-6736(07)60196-2]
[79]
Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev., 2006, 106(6), 1995-2044.
[http://dx.doi.org/10.1021/cr040410w]
[80]
Nose, Y.; Rees, E.M.; Thiele, D.J. Structure of the Ctr1 copper trans’PORE’ter reveals novel architecture. Trends Biochem. Sci., 2006, 31(11), 604-607.
[http://dx.doi.org/10.1016/j.tibs.2006.09.003]
[81]
Pujol, A.M.; Gateau, C.; Lebrun, C.; Delangle, P. A cysteine-based tripodal chelator with a high affinity and selectivity for copper(I). J. Am. Chem. Soc., 2009, 131(20), 6928-6929.
[http://dx.doi.org/10.1021/ja901700a]
[82]
Pujol, A.M.; Cuillel, M.; Renaudet, O.; Lebrun, C.; Charbonnier, P.; Cassio, D.; Gateau, C.; Dumy, P.; Mintz, E.; Delangle, P. Hepatocyte targeting and intracellular copper chelation by a thiol-containing glycocyclopeptide. J. Am. Chem. Soc., 2011, 133(2), 286-296.
[http://dx.doi.org/10.1021/ja106206z]
[83]
Pujol, A.M.; Cuillel, M.; Jullien, A-S.; Lebrun, C.; Cassio, D.; Mintz, E.; Gateau, C.; Delangle, P. A Sulfur tripod glycoconjugate that releases a high-affinity copper chelator in hepatocytes. Angew. Chem. Int. Ed., 2012, 51(30), 7445-7448.
[http://dx.doi.org/10.1002/anie.201203255]
[84]
Blasco, S.; Burguete, M.I.; Clares, M.P.; García-España, E.; Escorihuela, J.; Luis, S.V. Coordination of Cu2+ ions to C2 symmetric pseudopeptides derived from valine. Inorg. Chem., 2010, 49(17), 7841-7852.
[http://dx.doi.org/10.1021/ic100748g]
[85]
Faggi, E.; Gavara, R.; Bolte, M.; Fajarí, L.; Juliá, L.; Rodríguez, L.; Alfonso, I. Copper(ii) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates. Dalton Trans., 2015, 44(28), 12700-12710.
[http://dx.doi.org/10.1039/C5DT01496D]
[86]
Kubik, S.; Goddard, R.; Kirchner, R.; Nolting, D.; Seidel, J. A Cyclic hexapeptide containing l‐proline and 6‐aminopicolinic acid subunits binds anions in water. Angew. Chem. Int. Ed., 2001, 40(14), 2648-2651.
[http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2648:AID-ANIE2648>3.0.CO;2-#]
[87]
Kubik, S.; Kirchner, R.; Nolting, D.; Seidel, J. A molecular oyster: a neutral anion receptor containing two cyclopeptide subunits with a remarkable sulfate affinity in aqueous solution. J. Am. Chem. Soc., 2002, 124(43), 12752-12760.
[http://dx.doi.org/10.1021/ja026996q]
[88]
Fiehn, T.; Goddard, R.; Seidel, R.W.; Kubik, S. A Cyclopeptide-derived molecular cage for sulfate ions that closes with a click. Chemistry, 2010, 16(24), 7241-7255.
[http://dx.doi.org/10.1002/chem.201000308]
[89]
Schaly, A.; Belda, R.; García-España, E.; Kubik, S. Selective recognition of sulfate anions by a cyclopeptide-derived receptor in aqueous phosphate buffer. Org. Lett., 2013, 15(24), 6238-6241.
[http://dx.doi.org/10.1021/ol4030919]
[90]
Elmes, R.B.P.; Jolliffe, K.A. Anion recognition by cyclic peptides. Chem. Commun. , 2015, 51(24), 4951-4968.
[http://dx.doi.org/10.1039/C4CC10095F]
[91]
Alfonso, I.; Burguete, M.I.; Galindo, F.; Luis, S.V.; Vigara, L. Unraveling the Molecular Recognition of Amino Acid Derivatives by a Pseudopeptidic Macrocycle: ESI-MS, NMR, Fluorescence, and Modeling Studies. J. Org. Chem., 2009, 74(16), 6130-6142.
[http://dx.doi.org/10.1021/jo900983q]
[92]
Alfonso, I.; Bolte, M.; Bru, M.; Burguete, M.I.; Luis, S.V.; Vicent, C. Molecular recognition of N-protected dipeptides by pseudopeptidic macrocycles: A comparative study of the supramolecular complexes by ESI-MS and NMR. Org. Biomol. Chem., 2010, 8(6), 1329-1339.
[http://dx.doi.org/10.1039/b924981h]
[93]
Faggi, E.; Moure, A.; Bolte, M.; Vicent, C.; Luis, S.V.; Alfonso, I. Pseudopeptidic cages as receptors for N-protected dipeptides. J. Org. Chem., 2014, 79(10), 4590-4601.
[http://dx.doi.org/10.1021/jo500629d]
[94]
Faggi, E.; Vicent, C.; Luis, S.V.; Alfonso, I. Stereoselective recognition of the Ac-Glu-Tyr-OH dipeptide by pseudopeptidic cages. Org. Biomol. Chem., 2015, 13(48), 11721-11731.
[http://dx.doi.org/10.1039/C5OB01889G]
[95]
Williams, D.M.; Wang, D.; Cole, P.A. Chemical rescue of a mutant protein-tyrosine kinase. J. Biol. Chem., 2000, 275(49), 38127-38130.
[http://dx.doi.org/10.1074/jbc.C000606200]
[96]
Casaletto, J.B.; McClatchey, A.I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer, 2012, 12(6), 387-400.
[http://dx.doi.org/10.1038/nrc3277]
[97]
Ma, J.; Jiang, T.; Tan, L.; Yu, J-T. TYROBP in Alzheimer’s Disease. Mol. Neurobiol., 2015, 51(2), 820-826.
[http://dx.doi.org/10.1007/s12035-014-8811-9]
[98]
Faggi, E.; Pérez, Y.; Luis, S.V.; Alfonso, I. Supramolecular protection from the enzymatic tyrosine phosphorylation in a polypeptide. Chem. Commun. , 2016, 52(52), 8142-8145.
[http://dx.doi.org/10.1039/C6CC03875A]
[99]
Kalafatovic, D.; Nobis, M.; Javid, N.; Frederix, P.W.J.M.; Anderson, K.I.; Saunders, B.R.; Ulijn, R.V. MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin. Biomater. Sci., 2015, 3(2), 246-249.
[http://dx.doi.org/10.1039/C4BM00297K]
[100]
Kuchelmeister, H.Y.; Gutschmidt, A.; Tillmann, S.; Knauer, S.; Schmuck, C. Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand. Chem. Sci. (Camb.), 2012, 3(4), 996-1002.
[http://dx.doi.org/10.1039/c2sc01002j]
[101]
Li, M.; Schlesiger, S.; Knauer, S.K.; Schmuck, C. A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew. Chem. Int. Ed., 2015, 54(10), 2941-2944.
[http://dx.doi.org/10.1002/anie.201410429]
[102]
Li, M.; Ehlers, M.; Schlesiger, S.; Zellermann, E.; Knauer, S.K.; Schmuck, C. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew. Chem. Int. Ed., 2016, 55(2), 598-601.
[http://dx.doi.org/10.1002/anie.201508714]
[103]
Lei, E.K.; Pereira, M.P.; Kelley, S.O. Tuning the intracellular bacterial targeting of peptidic vectors. Angew. Chem. Int. Ed., 2013, 52(37), 9660-9663.
[http://dx.doi.org/10.1002/anie.201302265]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 21
Year: 2019
Page: [4065 - 4097]
Pages: 33
DOI: 10.2174/0929867325666180301091040
Price: $58

Article Metrics

PDF: 18
HTML: 2
EPUB: 1
PRC: 1