Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Berberis aristata DC Extract Counteracts the High Fat Diet-Induced Reproductive Toxicity in Female Wistar Rats via Modulating Oxidative Stress and Resistance to Leptin and Insulin

Author(s): Faiza Mushtaq, Muhammad Furqan Akhtar*, Ammara Saleem*, Ali Sharif, Bushra Akhtar, Ahmad El Askary, Mohamed M. Abdel-Daim, Zeeshan Javaid, Kashif Sohail and Fareeha Anwar

Volume 22, Issue 14, 2022

Published on: 04 August, 2022

Page: [1390 - 1402] Pages: 13

DOI: 10.2174/1871530322666220429125241

Price: $65

Abstract

Background: The plant Berberis aristata is traditionally used and scientifically validated for treating obesity and hyperlipidemia. It is also traditionally used to treat gynecological abnormalities. Therefore, the present study was designed to evaluate the therapeutic potential of Berberis aristata for obesity-related reproductive changes and chemically characterize it.

Methods: High-fat diet was given to 36 female rats for six weeks to induce obesity and infertility. These obese rats were treated with 10 mg/kg orlistat or the plant extract at 125-500 mg/kg for 45 days.

Results: The GC-MS analysis of the plant extract included fructose, thymic acid and other hydrocarbons. The plant extract revealed a remarkable free radical scavenging activity. The treated animals exhibited a decrease in total cholesterol and triglycerides (p<0.001), insulin and leptin levels (p<0.05), visceral fat, and body weight while increasing the estradiol level at 500 mg/kg dose of the plant extract as compared with untreated animals as demonstrated from the histology of the ovary. Oxidative stress biomarkers such as superoxide dismutase, nitric oxide, malondialdehyde and reduced glutathione were significantly (p<0.01-0.001) ameliorated in treated rats.

Conclusion: B. aristata exhibited substantial potential against obesity-inducedreproductive damage in female rats by reducing oxidative stress and resistance to leptin and insulin.

Keywords: Obesity, oxidative stress, infertility, high fat diet, berberis, GC-MS.

Graphical Abstract
[1]
Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci., 2017, 13(4), 851-863.
[http://dx.doi.org/10.5114/aoms.2016.58928] [PMID: 28721154]
[2]
Chou, S.H.; Mantzoros, C. 20 years of leptin: role of leptin in human reproductive disorders. J. Endocrinol., 2014, 223(1), T49-T62.
[http://dx.doi.org/10.1530/JOE-14-0245] [PMID: 25056118]
[3]
Silvestris, E.; de Pergola, G.; Rosania, R.; Loverro, G. Obesity as disruptor of the female fertility. Reprod. Biol. Endocrinol., 2018, 16(1), 22-31.
[http://dx.doi.org/10.1186/s12958-018-0336-z] [PMID: 29523133]
[4]
Ma, X.; Hayes, E.; Prizant, H.; Srivastava, R.K.; Hammes, S.R.; Sen, A. Leptin-induced CART (cocaine-and amphetamine-regulated transcript) is a novel intraovarian mediator of obesity-related infertility in females. Endocrinology, 2016, 157(3), 1248-1257.
[http://dx.doi.org/10.1210/en.2015-1750] [PMID: 26730935]
[5]
Yanovski, S.Z.; Yanovski, J.A. Toward precision approaches for the prevention and treatment of obesity. JAMA, 2018, 319(3), 223-224.
[http://dx.doi.org/10.1001/jama.2017.20051] [PMID: 29340687]
[6]
Polce, S.A.; Burke, C.; França, L.M.; Kramer, B.; de Andrade Paes, A.M.; Carrillo-Sepulveda, M.A. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients, 2018, 10(5), 531-542.
[http://dx.doi.org/10.3390/nu10050531] [PMID: 29693586]
[7]
Kaygusuzoglu, E.; Caglayan, C.; Kandemir, F.M. Yıldırım, S.; Kucukler, S.; Kılınc, M.A.; Saglam, Y.S. Zingerone ameliorates cisplatin-induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female wistar rats. Biomed. Pharmacother., 2018, 102, 517-530.
[http://dx.doi.org/10.1016/j.biopha.2018.03.119] [PMID: 29587238]
[8]
Akhtar, M.F.; Saleem, A. Alamgeer; Saleem, M. A comprehensive review on ethnomedicinal, pharmacological and phytochemical basis of anticancer medicinal plants of pakistan. Curr. Cancer Drug Targets, 2019, 19(2), 120-151.
[http://dx.doi.org/10.2174/1568009618666180706164536] [PMID: 29984657]
[9]
Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I. Crişan, G.; Buzoianu, A.D. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9, 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[10]
Potdar, D.; Hirwani, R.R.; Dhulap, S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia, 2012, 83(5), 817-830.
[http://dx.doi.org/10.1016/j.fitote.2012.04.012] [PMID: 22808523]
[11]
Mazumder, P.M.; Das, S.; Das, M.K.; Das, M.K. Phyto-pharmacology of Berberis aristata DC: a review. J. Drug Deliv. Ther., 2011, 1(2), 1-9.
[http://dx.doi.org/10.22270/jddt.v1i2.34]
[12]
Anubhuti, P.; Rahul, S.; Kant, K.C. Comparative study on the antimicrobial activity of Berberis aristata from different regions and berberine in vitro. Int. J. Life Sci. Pharma Res., 2011, 1(1), 17-20.
[13]
Shahid, M.; Rahim, T.; Shahzad, A.; Latif, T.; Fatma, T.; Rashid, M.; Raza, A.; Mustafa, S. Ethnobotanical studies on Berberis aristata DC. root extracts. Afr. J. Biotechnol., 2009, 8(4), 1-8.
[14]
Lamichhane, B.; Adhikari, S.; Shrestha, P.; Shrestha, B.G. Study of phytochemical, antioxidant, antimicrobial and anticancer activity of Berberis aristata. J. Trop. Life Sci., 2014, 4(1), 1-7.
[http://dx.doi.org/10.11594/jtls.04.01.01]
[15]
Komal, S.; Ranjan, B.; Neelam, C.; Birendra, S.; Kumar, S.N. Berberis aristata: a review. Int. J. Res. Ayvd. Pharm., 2011, 2, 383-388.
[16]
Tariq, A.; Adnan, M.; Iqbal, A.; Sadia, S.; Fan, Y.; Nazar, A.; Mussarat, S.; Ahmad, M.; Olatunji, O.A.; Begum, S.; Mazari, P.; Ambreen, B.; Khan, S.N.; Ullah, R.; Khan, A.L. Ethnopharmacology and toxicology of Pakistani medicinal plants used to treat gynecological complaints and sexually transmitted infections. S. Afr. J. Bot., 2018, 114, 132-149.
[http://dx.doi.org/10.1016/j.sajb.2017.11.004]
[17]
Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z.K. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): a review. Trop. J. Pharm. Res., 2016, 15(9), 2047-2057.
[http://dx.doi.org/10.4314/tjpr.v15i9.33]
[18]
Guarino, G.; Strollo, F.; Carbone, L.; Della Corte, T.; Letizia, M.; Marino, G.; Gentile, S. Bioimpedance analysis, metabolic effects and safety of the association Berberis aristata/Bilybum marianum: a 52-week double-blind, placebo-controlled study in obese patients with type 2 diabetes. J. Biol. Regul. Homeost. Agents, 2017, 31(2), 495-502.
[PMID: 28685558]
[19]
Joshi, A. R.; Joshi, K. Ethnomedicinal plants used against skin diseases in some villages of kali gandaki, bagmati and tadi likhu watersheds of nepal. Ethnobotanical leaflets, 2007, 2007(1), 27-34.
[20]
Saraf, G.; Mitra, A.; Kumar, D.; Mukherjee, S.; Basu, A. Role of nonconventional remedies in rural India. Int. J. Pharma. Life Sci., 2010, 1(3), 141-159.
[21]
Rafique, M. Cesium-137 activity concentrations in soil and brick samples of Mirpur, Azad Kashmir; Pakistan. Int. J. Radiation Res., 2014, 12(1), 39-48.
[22]
Saleem, M.; Ali, H.A.; Akhtar, M.F.; Saleem, U.; Saleem, A.; Irshad, I. Chemical characterisation and hepatoprotective potential of Cosmos sulphureus Cav. and Cosmos bipinnatus Cav. Nat. Prod. Res., 2019, 33(6), 897-900.
[http://dx.doi.org/10.1080/14786419.2017.1413557] [PMID: 29224374]
[23]
Ahmed, S.; Ssaeed-Ul-Hassan, S.; Islam, M.; Qureshi, F.; Waheed, I.; Munawar, I.; Ishtiaq, S.; Rasool, S.; Akhtar, M.F.; Chishti, S.A.; Shabbir, M. Sohaib Peerzada; Raza, M.; Amir, K.; Sharif, A. Antioxidant activity of Pistacia khinjuk supported by phytochemical investigation. Acta Pol. Pharm., 2017, 74(1), 173-178.
[PMID: 29474773]
[24]
Saleem, A.; Saleem, M.; Akhtar, M.F. Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: an ethnomedicinal plant of moringaceae family. S. Afr. J. Bot., 2020, 128, 246-256.
[http://dx.doi.org/10.1016/j.sajb.2019.11.023]
[25]
Zulfqar, F.; Akhtar, M. F.; Saleem, A.; Akhtar, B.; Sharif, A.; Saleem, U. Chemical characterization, antioxidant evaluation, and antidiabetic potential of Pinus gerardiana (Pine nuts) extracts. J Food Biochemist, 2020, e13199.
[26]
Fatima, S.; Akhtar, M.F.; Ashraf, K.M.; Sharif, A.; Saleem, A.; Akhtar, B.; Peerzada, S.; Shabbir, M.; Ali, S.; Ashraf, W. Antioxidant and alpha amylase inhibitory activities of Fumaria officinalis and its antidiabetic potential against alloxan induced diabetes. Cell. Mol. Biol., 2019, 65(2), 50-57.
[http://dx.doi.org/10.14715/cmb/2019.65.2.8] [PMID: 30860471]
[27]
Balasubramanian, P.; Jagannathan, L.; Mahaley, R.E.; Subramanian, M.; Gilbreath, E.T.; Mohankumar, P.S.; Mohankumar, S.M. High fat diet affects reproductive functions in female diet-induced obese and dietary resistant rats. J. Neuroendocrinol., 2012, 24(5), 748-755.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02276.x] [PMID: 22192683]
[28]
Retnasamy, G.; Adikay, S. Effect of hiptage Madablota gaertn: on high fat diet-induced obese rats. Jordan J. Biol. Sci., 2014, 147(1571), 1-6.
[http://dx.doi.org/10.12816/0008224]
[29]
Abdel-Baky, E.; Abdel-Rahman, O. Assessing the effects of orlistat as an anti-obesity drug in high fat diet induced obesity in male rats. Bull. Pharm. Sci., 2020, 44(1), 131-138.
[http://dx.doi.org/10.21608/bfsa.2021.174138]
[30]
Gupta, J.K.; Mishra, P.; Rani, A.; Mazumder, P.M.; Iranian, J. Pharmacol. Therapeutics, 2010, 9(1), 21-24.
[31]
Upwar, N.; Patel, R.; Waseem, N.; Mahobia, N.K. Blood glucose lowering potential of stem bark of Berberis aristata dc in alloxan-induced diabetic rats. Int. J. Pharma Sci., 2011, 3(1), 222-224.
[32]
Razzaq, F.A.; Khan, R.A.; Feroz, Z.; Afroz, S. Effect of Berberis aristata on lipid profile and coagulation parameters. Afr. J. Pharm. Pharmacol., 2011, 5(7), 943-947.
[33]
Rahman, H.A.; Sahib, N.G.; Saari, N.; Abas, F.; Ismail, A.; Mumtaz, M.W.; Hamid, A.A. Anti-obesity effect of ethanolic extract from Cosmos caudatus Kunth leaf in lean rats fed a high fat diet. BMC Complement. Altern. Med., 2017, 17(1), 122.
[http://dx.doi.org/10.1186/s12906-017-1640-4] [PMID: 28228098]
[34]
Saleem, A.; Saleem, M.; Akhtar, M.F.; Shahzad, M.; Jahan, S. Polystichum braunii extracts inhibit Complete Freund’s adjuvant-induced arthritis via upregulation of I-κB, IL-4, and IL-10, downregulation of COX-2, PGE2, IL-1β, IL-6, NF-κB, and TNF-α and subsiding oxidative stress. Inflammopharmacol., 2020, 28(6), 1633-1648.
[http://dx.doi.org/10.1007/s10787-020-00688-5] [PMID: 32162074]
[35]
Akhtar, M.F.; Ashraf, M.; Javeed, A.; Anjum, A.A.; Sharif, A.; Saleem, M.; Mustafa, G.; Ashraf, M.; Saleem, A.; Akhtar, B. Association of textile industry effluent with mutagenicity and its toxic health implications upon acute and sub-chronic exposure. Environ. Monit. Assess., 2018, 190(3), 179.
[http://dx.doi.org/10.1007/s10661-018-6569-7] [PMID: 29492685]
[36]
Merghem, M.; Dahamna, S.; Khennouf, S. Antioxidant evaluation and polyphenol contents of hydro ethanolic extract’s fractions from Ephedra nebrodensis. J. Drug Deliv. Ther., 2019, 10, 1-9.
[37]
Sharif, A.; Ashraf, M.; Anjum, A.A.; Javeed, A.; Altaf, I.; Akhtar, M.F.; Abbas, M.; Akhtar, B.; Saleem, A. Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity. Environ. Sci. Pollut. Res. Int., 2016, 23(3), 2813-2820.
[http://dx.doi.org/10.1007/s11356-015-5478-3] [PMID: 26452655]
[38]
Akhtar, M.F.; Ashraf, M.; Anjum, A.A.; Javeed, A.; Sharif, A.; Saleem, A.; Akhtar, B. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats. Environ. Toxicol. Pharmacol., 2016, 41, 180-186.
[http://dx.doi.org/10.1016/j.etap.2015.11.022] [PMID: 26710178]
[39]
Hegazy, M.G.A.; Emam, M.A.; Khattab, H.I.; Helal, N.M. Biological activity of Echinops spinosus on inhibition of paracetamol-induced renal inflammation. Biochem. Cell Biol., 2019, 97(2), 176-186.
[http://dx.doi.org/10.1139/bcb-2018-0212] [PMID: 30933551]
[40]
Bistgani, Z.E.; Hashemi, M.; DaCosta, M.; Craker, L.; Maggi, F.; Morshedloo, M.R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind. Crops Prod., 2019, 135, 311-320.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.055]
[41]
Bhatt, L.R.; Wagle, B.; Adhikari, M.; Bhusal, S.; Giri, A.; Bhattarai, S. Antioxidant activity, total phenolic and flavonoid content of BerBeris aristata dc. and Berberis thomsoniana ck schneid. from sagarmatha national park, nepal. Pharmacogn. J., 2018, 10(6), 1-8.
[42]
Dar, O.; Lawrence, R.; Dar, S. HPLC, antioxidant and antibabacterial activities of methanolic extract of Berberis aristata stem. Int. J. Sci. Res., 2014, 3(11), 1137-1141.
[43]
Huang, C.; Zhang, Y.; Gong, Z.; Sheng, X.; Li, Z.; Zhang, W.; Qin, Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem. Biophys. Res. Commun., 2006, 348(2), 571-578.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.095] [PMID: 16890192]
[44]
Zhang, Z.; Zhang, H.; Li, B.; Meng, X.; Wang, J.; Zhang, Y.; Yao, S.; Ma, Q.; Jin, L.; Yang, J.; Wang, W.; Ning, G. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun., 2014, 5(1), 5493.
[http://dx.doi.org/10.1038/ncomms6493] [PMID: 25423280]
[45]
Firouzi, S.; Malekahmadi, M.; Ghayour-Mobarhan, M.; Ferns, G.; Rahimi, H.R. Barberry in the treatment of obesity and metabolic syndrome: possible mechanisms of action. Diabetes Metab. Syndr. Obes., 2018, 11, 699-705.
[http://dx.doi.org/10.2147/DMSO.S181572] [PMID: 30519065]
[46]
Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y-J. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem., 2012, 135(1), 68-73.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.074]
[47]
Sagae, S.C.; Menezes, E.F.; Bonfleur, M.L.; Vanzela, E.C.; Zacharias, P.; Lubaczeuski, C.; Franci, C.R.; Sanvitto, G.L. Early onset of obesity induces reproductive deficits in female rats. Physiol. Behav., 2012, 105(5), 1104-1111.
[http://dx.doi.org/10.1016/j.physbeh.2011.12.002] [PMID: 22178647]
[48]
Kumari, S.; Deori, M.; Elancheran, R.; Kotoky, J.; Devi, R. In vitro and in vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.) extract. Front. Pharmacol., 2016, 7, 400.
[http://dx.doi.org/10.3389/fphar.2016.00400] [PMID: 27840607]
[49]
Saleem, A.; Saleem, M.; Akhtar, M.F.; Shahzad, M.; Jahan, S. Moringa rivae leaf extracts attenuate Complete Freund’s adjuvant-induced arthritis in Wistar rats via modulation of inflammatory and oxidative stress biomarkers. Inflammopharmacol., 2020, 28(1), 139-151.
[http://dx.doi.org/10.1007/s10787-019-00596-3] [PMID: 31037575]
[50]
Yao, X.; Dong, X.; Zhang, H-S.; Wang, Y.; Liu, X-S. Preventive effect of aster tataricus on oxidative stress and biomarker of renal function in rat fed with high fat diet and sucrose diet. Biomed. Res. (Aligarh), 2017, 28(4), 1-9.
[51]
Singh, J.; Kakkar, P. Antihyperglycemic and antioxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J. Ethnopharmacol., 2009, 123(1), 22-26.
[http://dx.doi.org/10.1016/j.jep.2009.02.038] [PMID: 19429334]
[52]
Sohrabi, M.; Roushandeh, A.M.; Alizadeh, Z.; Vahidinia, A.; Vahabian, M.; Hosseini, M. Effect of a high fat diet on ovary morphology, in vitro development,in vitro fertilisation rate and oocyte quality in mice. Singapore Med. J., 2015, 56(10), 573-579.
[http://dx.doi.org/10.11622/smedj.2015085] [PMID: 26512150]
[53]
Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul. Pharmacol., 2013, 58(1-2), 3-20.
[http://dx.doi.org/10.1016/j.vph.2012.09.002] [PMID: 22982056]
[54]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906.
[55]
Liu, X.; Zhangjie, Yu.; Huang, X.; Gao, Y.; Wang, X.; Gu, J.; Xue, S. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am. J. Transl. Res., 2016, 8(12), 1-12.
[http://dx.doi.org/10.1016/j.phymed.2019.152906] [PMID: 31064680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy