Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using Stem Cell Therapy

Author(s): Lamiaa A. Ahmed* and Khaled F. Al-Massri

Volume 16, Issue 1, 2023

Published on: 20 May, 2022

Article ID: e220222201344 Pages: 17

DOI: 10.2174/1874467215666220222105004

Price: $65

Abstract

Dysbiosis has been linked to various diseases ranging from cardiovascular, neurologic, gastrointestinal, respiratory, and metabolic illnesses to cancer. Restoring of gut microbiota balance represents an outstanding clinical target for the management of various multidrug-resistant diseases. Preservation of gut microbial diversity and composition could also improve stem cell therapy which now has diverse clinical applications in the field of regenerative medicine.

Gut microbiota modulation and stem cell therapy may be considered a highly promising field that could add up towards the improvement of different diseases, increasing the outcome and efficacy of each other through mutual interplay or interaction between both therapies. Importantly, more investigations are required to reveal the cross‐talk between microbiota modulation and stem cell therapy to pave the way for the development of new therapies with enhanced therapeutic outcomes.

This review provides an overview of dysbiosis in various diseases and their management. It also discusses microbiota modulation via antibiotics, probiotics, prebiotics, and fecal microbiota transplant to introduce the concept of dysbiosis correction for the management of various diseases. Furthermore, we demonstrate the beneficial interactions between microbiota modulation and stem cell therapy as a way for the development of new therapies in addition to limitations and future challenges regarding the applications of these therapies.

Keywords: Dysbiosis, fecal microbiota transplant, probiotics, prebiotics, stem cell therapy, gastrointestinal treat (GIF).

Graphical Abstract
[1]
Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3), 337-340.
[http://dx.doi.org/10.1016/j.cell.2016.01.013] [PMID: 26824647]
[2]
Martínez. I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; Haub, M.D.; Walter, J. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J., 2013, 7(2), 269-280.
[http://dx.doi.org/10.1038/ismej.2012.104] [PMID: 23038174]
[3]
Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q-J.; Zhang, W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients, 2020, 12(2), 381.
[http://dx.doi.org/10.3390/nu12020381] [PMID: 32023943]
[4]
Flint, H.J. The impact of nutrition on the human microbiome. Nutr. Rev., 2012, 70(Suppl. 1), S10-S13.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00499.x] [PMID: 22861801]
[5]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[6]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[7]
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[8]
Zhang, M.; Sun, K.; Wu, Y.; Yang, Y.; Tso, P.; Wu, Z. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol., 2017, 8, 942.
[http://dx.doi.org/10.3389/fimmu.2017.00942] [PMID: 28855901]
[9]
Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients, 2018, 10(8), 988.
[http://dx.doi.org/10.3390/nu10080988] [PMID: 30060606]
[10]
Cancello, R.; Turroni, S.; Rampelli, S.; Cattaldo, S.; Candela, M.; Cattani, L.; Mai, S.; Vietti, R.; Scacchi, M.; Brigidi, P.; Invitti, C. Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women. Nutrients, 2019, 11(12), 3011.
[http://dx.doi.org/10.3390/nu11123011] [PMID: 31835452]
[11]
O’Callaghan, A.A.; Corr, S.C. Establishing boundaries: The relationship that exists between intestinal epithelial cells and gut-dwelling bacteria. Microorganisms, 2019, 7(12), 663.
[http://dx.doi.org/10.3390/microorganisms7120663] [PMID: 31818022]
[12]
Gagnière, J.; Raisch, J.; Veziant, J.; Barnich, N.; Bonnet, R.; Buc, E.; Bringer, M-A.; Pezet, D.; Bonnet, M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol., 2016, 22(2), 501-518.
[http://dx.doi.org/10.3748/wjg.v22.i2.501] [PMID: 26811603]
[13]
Kowalska-Duplaga, K.; Gosiewski, T.; Kapusta, P.; Sroka-Oleksiak, A. Wędrychowicz, A.; Pieczarkowski, S.; Ludwig-Słomczyńska, A.H.; Wołkow, P.P.; Fyderek, K. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn’s disease. Sci. Rep., 2019, 9(1), 18880.
[http://dx.doi.org/10.1038/s41598-019-55290-9] [PMID: 31827191]
[14]
Alhinai, E.A.; Walton, G.E.; Commane, D.M. The role of the gut microbiota in colorectal cancer causation. Int. J. Mol. Sci., 2019, 20(21), 5295.
[http://dx.doi.org/10.3390/ijms20215295] [PMID: 31653078]
[15]
Bäckhed, F.; Fraser, C.M.; Ringel, Y.; Sanders, M.E.; Sartor, R.B.; Sherman, P.M.; Versalovic, J.; Young, V.; Finlay, B.B. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe, 2012, 12(5), 611-622.
[http://dx.doi.org/10.1016/j.chom.2012.10.012] [PMID: 23159051]
[16]
Jones, R.M. Focus: Microbiome: The influence of the gut microbiota on host physiology: In pursuit of mechanisms. Yale J. Biol. Med., 2016, 89(3), 285-297.
[PMID: 27698613]
[17]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[18]
Battaglioli, E.J.; Hale, V.L.; Chen, J.; Jeraldo, P.; Ruiz-Mojica, C.; Schmidt, B.A.; Rekdal, V.M.; Till, L.M.; Huq, L.; Smits, S.A.; Moor, W.J.; Jones-Hall, Y.; Smyrk, T.; Khanna, S.; Pardi, D.S.; Grover, M.; Patel, R.; Chia, N.; Nelson, H.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci. Transl. Med., 2018, 10(464), 10.
[http://dx.doi.org/10.1126/scitranslmed.aam7019] [PMID: 30355801]
[19]
Principi, N.; Cozzali, R.; Farinelli, E.; Brusaferro, A.; Esposito, S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J. Infect., 2018, 76(2), 111-120.
[http://dx.doi.org/10.1016/j.jinf.2017.12.013] [PMID: 29291933]
[20]
Biliński, J.; Grzesiowski, P.; Muszyński, J.; Wróblewska, M.; Mądry, K.; Robak, K.; Dzieciątkowski, T.; Wiktor-Jedrzejczak, W.; Basak, G.W. Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: Preliminary report performed in an immunocompromised host. Arch. Immunol. Ther. Exp. (Warsz.), 2016, 64(3), 255-258.
[http://dx.doi.org/10.1007/s00005-016-0387-9] [PMID: 26960790]
[21]
Amabebe, E.; Robert, F.O.; Agbalalah, T.; Orubu, E.S.F. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br. J. Nutr., 2020, 123(10), 1127-1137.
[http://dx.doi.org/10.1017/S0007114520000380] [PMID: 32008579]
[22]
Auguet, T.; Bertran, L.; Binetti, J. Intestinal dysbiosis and non-alcoholic fatty liver disease. Human Microbiome; IntechOpen, 2020.
[23]
Marietta, E.; Mangalam, A.K.; Taneja, V.; Murray, J.A. Intestinal dysbiosis in, and enteral bacterial therapies for, systemic autoimmune diseases. Front. Immunol., 2020, 11, 573079.
[http://dx.doi.org/10.3389/fimmu.2020.573079] [PMID: 33193357]
[24]
Skolnick, S.D.; Greig, N.H. Microbes and monoamines: Potential neuropsychiatric consequences of dysbiosis. Trends Neurosci., 2019, 42(3), 151-163.
[http://dx.doi.org/10.1016/j.tins.2018.12.005] [PMID: 30795845]
[25]
Li, X.; Watanabe, K.; Kimura, I. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front. Immunol., 2017, 8, 1882.
[http://dx.doi.org/10.3389/fimmu.2017.01882] [PMID: 29326727]
[26]
Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int., 2019, 2019, 9628536.
[http://dx.doi.org/10.1155/2019/9628536]
[27]
Kang, J.; Zhang, L.; Luo, X.; Ma, X.; Wang, G.; Yang, Y.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Systematic exposition of mesenchymal stem cell for inflammatory bowel disease and Its associated colorectal cancer. BioMed Res. Int., 2018, 2018, 9652817.
[http://dx.doi.org/10.1155/2018/9652817] [PMID: 30687760]
[28]
Ahmed, L.A.; Al-Massri, K.F. Directions for enhancement of the therapeutic efficacy of mesenchymal stem cells in different neurodegenerative and cardiovascular diseases: Current status and future perspectives. Curr. Stem Cell Res. Ther., 2021, 16(7), 858-876.
[http://dx.doi.org/10.2174/1574888X16666210303151237] [PMID: 33655876]
[29]
Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science, 2012, 336(6086), 1262-1267.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[30]
Ocansey, D.K.W.; Wang, L.; Wang, J.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Mesenchymal stem cell-gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clin. Transl. Med., 2019, 8(1), 31.
[http://dx.doi.org/10.1186/s40169-019-0251-8] [PMID: 31872304]
[31]
Kol, A.; Foutouhi, S.; Walker, N.J.; Kong, N.T.; Weimer, B.C.; Borjesson, D.L. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells Dev., 2014, 23(16), 1831-1843.
[http://dx.doi.org/10.1089/scd.2014.0128] [PMID: 24803072]
[32]
Tang, W.H.; Kitai, T.; Hazen, S.L. Gut microbiota in cardiovascular health and disease. Circ. Res., 2017, 120(7), 1183-1196.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309715] [PMID: 28360349]
[33]
Drosos, I.; Tavridou, A.; Kolios, G. New aspects on the metabolic role of intestinal microbiota in the development of atherosclerosis. Metabolism, 2015, 64(4), 476-481.
[http://dx.doi.org/10.1016/j.metabol.2015.01.007] [PMID: 25676802]
[34]
Kahleova, H.; Levin, S.; Barnard, N.D. Vegetarian dietary patterns and cardiovascular disease. Prog. Cardiovasc. Dis., 2018, 61(1), 54-61.
[http://dx.doi.org/10.1016/j.pcad.2018.05.002] [PMID: 29800598]
[35]
Jie, Z.; Xia, H.; Zhong, S-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; Zhang, D.; Su, Z.; Fang, Z.; Lan, Z.; Li, J.; Xiao, L.; Li, J.; Li, R.; Li, X.; Li, F.; Ren, H.; Huang, Y.; Peng, Y.; Li, G.; Wen, B.; Dong, B.; Chen, J.Y.; Geng, Q.S.; Zhang, Z.W.; Yang, H.; Wang, J.; Wang, J.; Zhang, X.; Madsen, L.; Brix, S.; Ning, G.; Xu, X.; Liu, X.; Hou, Y.; Jia, H.; He, K.; Kristiansen, K. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun., 2017, 8(1), 845.
[http://dx.doi.org/10.1038/s41467-017-00900-1] [PMID: 29018189]
[36]
Karlsson, F.H. Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 2012, 3, 1245.
[http://dx.doi.org/10.1038/ncomms2266] [PMID: 23212374]
[37]
Li, J.; Lin, S.; Vanhoutte, P.M.; Woo, C.W.; Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation, 2016, 133(24), 2434-2446.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019645] [PMID: 27143680]
[38]
Kasahara, K.; Tanoue, T.; Yamashita, T.; Yodoi, K.; Matsumoto, T.; Emoto, T.; Mizoguchi, T.; Hayashi, T.; Kitano, N.; Sasaki, N.; Atarashi, K.; Honda, K.; Hirata, K.I. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J. Lipid Res., 2017, 58(3), 519-528.
[http://dx.doi.org/10.1194/jlr.M072165] [PMID: 28130274]
[39]
Townsend, M.K.; Aschard, H.; De Vivo, I.; Michels, K.B.; Kraft, P. Genomics, telomere length, epigenetics, and metabolomics in the nurses’ health studies. Am. J. Public Health, 2016, 106(9), 1663-1668.
[http://dx.doi.org/10.2105/AJPH.2016.303344] [PMID: 27459442]
[40]
Jonsson, A.L. Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol., 2017, 14(2), 79-87.
[http://dx.doi.org/10.1038/nrcardio.2016.183] [PMID: 27905479]
[41]
Yamashiro, K.; Tanaka, R.; Urabe, T.; Ueno, Y.; Yamashiro, Y.; Nomoto, K.; Takahashi, T.; Tsuji, H.; Asahara, T.; Hattori, N. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One, 2017, 12(2), e0171521.
[http://dx.doi.org/10.1371/journal.pone.0171521] [PMID: 28166278]
[42]
Honour, J. The possible involvement of intestinal bacteria in steroidal hypertension. Endocrinology, 1982, 110(1), 285-287.
[http://dx.doi.org/10.1210/endo-110-1-285] [PMID: 7053989]
[43]
Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; Sahay, B.; Pepine, C.J.; Raizada, M.K.; Mohamadzadeh, M. Gut dysbiosis is linked to hypertension. Hypertension, 2015, 65(6), 1331-1340.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05315] [PMID: 25870193]
[44]
Ma, J.; Li, H. The role of gut microbiota in atherosclerosis and hypertension. Front. Pharmacol., 2018, 9, 1082.
[http://dx.doi.org/10.3389/fphar.2018.01082] [PMID: 30319417]
[45]
Mayerhofer, C.C.K.; Kummen, M.; Holm, K.; Broch, K.; Awoyemi, A.; Vestad, B.; Storm-Larsen, C.; Seljeflot, I.; Ueland, T.; Bohov, P.; Berge, R.K.; Svardal, A.; Gullestad, L.; Yndestad, A.; Aukrust, P.; Hov, J.R. Trøseid, M. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail., 2020, 7(2), 456-466.
[http://dx.doi.org/10.1002/ehf2.12596] [PMID: 31978943]
[46]
Zuo, K.; Li, J.; Li, K.; Hu, C.; Gao, Y.; Chen, M.; Hu, R.; Liu, Y.; Chi, H.; Wang, H.; Qin, Y.; Liu, X.; Li, S.; Cai, J.; Zhong, J.; Yang, X. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience, 2019, 8(6), giz058.
[http://dx.doi.org/10.1093/gigascience/giz058] [PMID: 31149718]
[47]
Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol., 2020, 13(3), 637-656.
[http://dx.doi.org/10.1111/1751-7915.13524] [PMID: 31984651]
[48]
Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol., 2019, 16(3), 137-154.
[http://dx.doi.org/10.1038/s41569-018-0108-7] [PMID: 30410105]
[49]
Tang, W.H.W. Bäckhed, F.; Landmesser, U.; Hazen, S.L. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J. Am. Coll. Cardiol., 2019, 73(16), 2089-2105.
[http://dx.doi.org/10.1016/j.jacc.2019.03.024] [PMID: 31023434]
[50]
Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin., 2017, 46(1), 77-89.
[http://dx.doi.org/10.1016/j.gtc.2016.09.007] [PMID: 28164854]
[51]
Galland, L. The gut microbiome and the brain. J. Med. Food, 2014, 17(12), 1261-1272.
[http://dx.doi.org/10.1089/jmf.2014.7000] [PMID: 25402818]
[52]
Alam, R.; Abdolmaleky, H.M.; Zhou, J.R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2017, 174(6), 651-660.
[http://dx.doi.org/10.1002/ajmg.b.32567] [PMID: 28691768]
[53]
Johnson, K.V-A.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol., 2018, 16(10), 647-655.
[http://dx.doi.org/10.1038/s41579-018-0014-3] [PMID: 29691482]
[54]
Saunders, P.R.; Santos, J.; Hanssen, N.P.; Yates, D.; Groot, J.A.; Perdue, M.H. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig. Dis. Sci., 2002, 47(1), 208-215.
[http://dx.doi.org/10.1023/A:1013204612762] [PMID: 11852879]
[55]
Cox, L.M.; Weiner, H.L. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics, 2018, 15(1), 135-145.
[http://dx.doi.org/10.1007/s13311-017-0598-8] [PMID: 29340928]
[56]
Nagpal, R.; Mainali, R.; Ahmadi, S.; Wang, S.; Singh, R.; Kavanagh, K.; Kitzman, D.W.; Kushugulova, A.; Marotta, F.; Yadav, H. Gut microbiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging, 2018, 4(4), 267-285.
[http://dx.doi.org/10.3233/NHA-170030] [PMID: 29951588]
[57]
Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The Gut microbiota and Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(1), 1-15.
[http://dx.doi.org/10.3233/JAD-161141] [PMID: 28372330]
[58]
Barichella, M.; Severgnini, M.; Cilia, R.; Cassani, E.; Bolliri, C.; Caronni, S.; Ferri, V.; Cancello, R.; Ceccarani, C.; Faierman, S.; Pinelli, G.; De Bellis, G.; Zecca, L.; Cereda, E.; Consolandi, C.; Pezzoli, G. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord., 2019, 34(3), 396-405.
[http://dx.doi.org/10.1002/mds.27581] [PMID: 30576008]
[59]
Kong, G.; Cao, K.L.; Judd, L.M.; Li, S.; Renoir, T.; Hannan, A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis., 2020, 135, 104268.
[http://dx.doi.org/10.1016/j.nbd.2018.09.001] [PMID: 30194046]
[60]
Kirby, T.O.; Ochoa-Repáraz, J. The gut microbiome in multiple sclerosis: A potential therapeutic avenue. Med. Sci. (Basel), 2018, 6(3), 69.
[http://dx.doi.org/10.3390/medsci6030069] [PMID: 30149548]
[61]
Quigley, E.M.M. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep., 2017, 17(12), 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[62]
Braakman, H.M.H.; van Ingen, J. Can epilepsy be treated by antibiotics? J. Neurol., 2018, 265(8), 1934-1936.
[http://dx.doi.org/10.1007/s00415-018-8943-3] [PMID: 29931545]
[63]
Kobayashi, Y.; Sugahara, H.; Shimada, K.; Mitsuyama, E.; Kuhara, T.; Yasuoka, A.; Kondo, T.; Abe, K.; Xiao, J.Z. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13510.
[http://dx.doi.org/10.1038/s41598-017-13368-2] [PMID: 29044140]
[64]
Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; Weinshenker, B.G.; Rodriguez, M.; Kantarci, O.H.; Nelson, H.; Murray, J.A.; Mangalam, A.K. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep., 2016, 6, 28484.
[http://dx.doi.org/10.1038/srep28484] [PMID: 27346372]
[65]
Lin, A.; Zheng, W.; He, Y.; Tang, W.; Wei, X.; He, R.; Huang, W.; Su, Y.; Huang, Y.; Zhou, H.; Xie, H. Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat. Disord., 2018, 53, 82-88.
[http://dx.doi.org/10.1016/j.parkreldis.2018.05.007] [PMID: 29776865]
[66]
Lin, C-H.; Chen, C-C.; Chiang, H-L.; Liou, J-M.; Chang, C-M.; Lu, T-P.; Chuang, E.Y.; Tai, Y-C.; Cheng, C.; Lin, H-Y.; Wu, M.S. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflammation, 2019, 16(1), 129.
[http://dx.doi.org/10.1186/s12974-019-1528-y] [PMID: 31248424]
[67]
Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; Kinnunen, E.; Murros, K.; Auvinen, P. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord., 2015, 30(3), 350-358.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[68]
Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: Acetate CoA-transferase gene. Environ. Microbiol., 2010, 12(2), 304-314.
[http://dx.doi.org/10.1111/j.1462-2920.2009.02066.x] [PMID: 19807780]
[69]
Engels, C.; Ruscheweyh, H-J.; Beerenwinkel, N.; Lacroix, C.; Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol., 2016, 7, 713.
[http://dx.doi.org/10.3389/fmicb.2016.00713] [PMID: 27242734]
[70]
Gerhardt, S.; Mohajeri, M.H. Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients, 2018, 10(6), 708.
[http://dx.doi.org/10.3390/nu10060708] [PMID: 29857583]
[71]
Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett., 2016, 625, 56-63.
[http://dx.doi.org/10.1016/j.neulet.2016.02.009] [PMID: 26868600]
[72]
Radulescu, C.I.; Garcia-Miralles, M.; Sidik, H.; Bardile, C.F.; Yusof, N.A.B.M.; Lee, H.U.; Ho, E.X.P.; Chu, C.W.; Layton, E.; Low, D.; De Sessions, P.F.; Pettersson, S.; Ginhoux, F.; Pouladi, M.A. Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiol. Dis., 2019, 127, 65-75.
[http://dx.doi.org/10.1016/j.nbd.2019.02.011] [PMID: 30802499]
[73]
Ferrante, R.J.; Andreassen, O.A.; Jenkins, B.G.; Dedeoglu, A.; Kuemmerle, S.; Kubilus, J.K.; Kaddurah-Daouk, R.; Hersch, S.M.; Beal, M.F. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci., 2000, 20(12), 4389-4397.
[http://dx.doi.org/10.1523/JNEUROSCI.20-12-04389.2000] [PMID: 10844007]
[74]
van der Burg, J.M.; Winqvist, A.; Aziz, N.A.; Maat-Schieman, M.L.; Roos, R.A.; Bates, G.P.; Brundin, P. Bjِörkqvist, M.; Wierup, N. Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol. Dis., 2011, 44(1), 1-8.
[http://dx.doi.org/10.1016/j.nbd.2011.05.006] [PMID: 21624468]
[75]
McCourt, A.C.; O’Donovan, K.L.; Ekblad, E.; Sand, E.; Craufurd, D.; Rosser, A.; Sanders, D.; Stoy, N.; Rickards, H.; Wierup, N.; Bates, G.P. Bjِörkqvist, M.; Quarrell, O. Characterization of gastric mucosa biopsies reveals alterations in Huntington’s disease. PLoS Curr., 2015, 7, 7.
[http://dx.doi.org/10.1371/currents.hd.858b4cc7f235df068387e9c20c436a79] [PMID: 26581667]
[76]
Verwaest, K.A.; Vu, T.N.; Laukens, K.; Clemens, L.E.; Nguyen, H.P.; Van Gasse, B.; Martins, J.C.; Van Der Linden, A.; Dommisse, R. (1)H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochim. Biophys. Acta, 2011, 1812(11), 1371-1379.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.001] [PMID: 21867751]
[77]
Li, B-Y.; Xu, X-Y.; Gan, R-Y.; Sun, Q-C.; Meng, J-M.; Shang, A.; Mao, Q-Q.; Li, H-B. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products. Foods, 2019, 8(10), 440.
[http://dx.doi.org/10.3390/foods8100440] [PMID: 31557941]
[78]
de Goffau, M.C.; Fuentes, S.; van den Bogert, B.; Honkanen, H.; de Vos, W.M.; Welling, G.W. Hyöty, H.; Harmsen, H.J. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014, 57(8), 1569-1577.
[http://dx.doi.org/10.1007/s00125-014-3274-0] [PMID: 24930037]
[79]
Salamon, D.; Sroka-Oleksiak, A.; Kapusta, P.; Szopa, M. Mrozińska, S.; Ludwig-Słomczyńska, A.H.; Wołkow, P.P.; Bulanda, M.; Klupa, T.; Małecki, M.T.; Gosiewski, T. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next generation sequencing of the 16S rRNA gene fragment. Pol. Arch. Intern. Med., 2018, 128(6), 336-343.
[http://dx.doi.org/10.20452/pamw.4246] [PMID: 29657308]
[80]
Huang, Y.; Li, S-C.; Hu, J.; Ruan, H-B.; Guo, H-M.; Zhang, H-H.; Wang, X.; Pei, Y-F.; Pan, Y.; Fang, C. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res. Clin. Pract., 2018, 141, 256-263.
[http://dx.doi.org/10.1016/j.diabres.2018.04.032] [PMID: 29733871]
[81]
Murri, M.; Leiva, I.; Gomez-Zumaquero, J.M.; Tinahones, F.J.; Cardona, F.; Soriguer, F. Queipo-Ortuño, M.I. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med., 2013, 11, 46.
[http://dx.doi.org/10.1186/1741-7015-11-46] [PMID: 23433344]
[82]
Soyucen, E.; Gulcan, A.; Aktuglu-Zeybek, A.C.; Onal, H.; Kiykim, E.; Aydin, A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr. Int., 2014, 56(3), 336-343.
[http://dx.doi.org/10.1111/ped.12243] [PMID: 24475780]
[83]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A. Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2), e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[84]
Navab-Moghadam, F.; Sedighi, M.; Khamseh, M.E.; Alaei-Shahmiri, F.; Talebi, M.; Razavi, S.; Amirmozafari, N. The association of type II diabetes with gut microbiota composition. Microb. Pathog., 2017, 110, 630-636.
[http://dx.doi.org/10.1016/j.micpath.2017.07.034] [PMID: 28739439]
[85]
Inoue, R.; Ohue-Kitano, R.; Tsukahara, T.; Tanaka, M.; Masuda, S.; Inoue, T.; Yamakage, H.; Kusakabe, T.; Hasegawa, K.; Shimatsu, A.; Satoh-Asahara, N. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. J. Clin. Biochem. Nutr., 2017, 61(3), 217-221.
[http://dx.doi.org/10.3164/jcbn.17-44] [PMID: 29203964]
[86]
Suceveanu, A.I.; Pantea Stoian, A.; Parepa, R.; Voinea, C.; Hainarosie, R.; Manuc, D.; Nitipir, C.; Mazilu, L.; Suceveanu, A.P. Gut microbiota patterns in obese and type 2 diabetes (T2D) patients from Romanian Black Sea Coast Region. Rev. Chim., 2018, 69, 2260-2267.
[http://dx.doi.org/10.37358/RC.18.8.6512]
[87]
Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a coincidence? Curr. Diab. Rep., 2018, 18(10), 98.
[http://dx.doi.org/10.1007/s11892-018-1057-6] [PMID: 30215149]
[88]
Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol., 2019, 15(5), 261-273.
[http://dx.doi.org/10.1038/s41574-019-0156-z] [PMID: 30670819]
[89]
Beaugerie, L.; Rahier, J-F.; Kirchgesner, J. Predicting, preventing, and managing treatment-related complications in patients with inflammatory bowel diseases. Gastroenterol. Hepatol., 2020, 18, 1324-1335.
[http://dx.doi.org/10.1016/j.cgh.2020.02.009]
[90]
Tamboli, C.P.; Neut, C.; Desreumaux, P.; Colombel, J.F. Dysbiosis as a prerequisite for IBD. Gut, 2004, 53(7), 1057-1057.
[PMID: 15194668]
[91]
Sartor, R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology, 2008, 134(2), 577-594.
[http://dx.doi.org/10.1053/j.gastro.2007.11.059] [PMID: 18242222]
[92]
Frank, D.N.; Robertson, C.E.; Hamm, C.M.; Kpadeh, Z.; Zhang, T.; Chen, H.; Zhu, W.; Sartor, R.B.; Boedeker, E.C.; Harpaz, N.; Pace, N.R.; Li, E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis., 2011, 17(1), 179-184.
[http://dx.doi.org/10.1002/ibd.21339] [PMID: 20839241]
[93]
Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; Bousvaros, A.; Korzenik, J.; Sands, B.E.; Xavier, R.J.; Huttenhower, C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol., 2012, 13(9), R79.
[http://dx.doi.org/10.1186/gb-2012-13-9-r79] [PMID: 23013615]
[94]
Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and gut microbiota: A review. Nutrients, 2020, 12(4), 944.
[http://dx.doi.org/10.3390/nu12040944] [PMID: 32235316]
[95]
Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in Inflammatory Bowel Disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 2019, 8(3), 126.
[http://dx.doi.org/10.3390/pathogens8030126] [PMID: 31412603]
[96]
Ji, Y.; Yin, Y.; Sun, L.; Zhang, W. The molecular and mechanistic insights based on gut–liver axis: Nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement. Int. J. Mol. Sci., 2020, 21(9), 3066.
[http://dx.doi.org/10.3390/ijms21093066] [PMID: 32357561]
[97]
Arrieta, M.C.; Bistritz, L.; Meddings, J.B. Alterations in intestinal permeability. Gut, 2006, 55(10), 1512-1520.
[http://dx.doi.org/10.1136/gut.2005.085373] [PMID: 16966705]
[98]
Valenti, L.; Fracanzani, A.L.; Fargion, S. The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: Two triggers for one disease? Semin. Immunopathol., 2009, 31(3), 359-369.
[http://dx.doi.org/10.1007/s00281-009-0152-9] [PMID: 19440711]
[99]
Sipka, S.; Bruckner, G. The immunomodulatory role of bile acids. Int. Arch. Allergy Immunol., 2014, 165(1), 1-8.
[http://dx.doi.org/10.1159/000366100] [PMID: 25277277]
[100]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[101]
Fei, N.; Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J., 2013, 7(4), 880-884.
[http://dx.doi.org/10.1038/ismej.2012.153] [PMID: 23235292]
[102]
Cani, P.D.; Delzenne, N.M. The gut microbiome as therapeutic target. Pharmacol. Ther., 2011, 130(2), 202-212.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.012] [PMID: 21295072]
[103]
Jia, W.; Li, H.; Zhao, L.; Nicholson, J.K. Gut microbiota: A potential new territory for drug targeting. Nat. Rev. Drug Discov., 2008, 7(2), 123-129.
[http://dx.doi.org/10.1038/nrd2505] [PMID: 18239669]
[104]
Porras, D.; Nistal, E. Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[105]
Zhou, D.; Pan, Q.; Shen, F.; Cao, H.X.; Ding, W.J.; Chen, Y.W.; Fan, J.G. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep., 2017, 7(1), 1529.
[http://dx.doi.org/10.1038/s41598-017-01751-y] [PMID: 28484247]
[106]
Yeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol., 2020, 5(4), 335-337.
[http://dx.doi.org/10.1016/S2468-1253(20)30048-0] [PMID: 32087098]
[107]
He, L-H.; Ren, L-F.; Li, J-F.; Wu, Y-N.; Li, X.; Zhang, L. Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front. Microbiol., 2020, 11, 1388.
[http://dx.doi.org/10.3389/fmicb.2020.01388] [PMID: 32582138]
[108]
Ferreira, C. viana, S.D.; Reis, F. Gut microbiota dysbiosis–immune hyperresponse–inflammation triad in coronavirus disease 2019 (Covid-19): Impact of pharmacological and nutraceutical approaches. Microorganisms, 2020, 8(10), 1514.
[http://dx.doi.org/10.3390/microorganisms8101514] [PMID: 33019592]
[109]
Dhar, D.; Mohanty, A. Gut microbiota and Covid-19- possible link and implications. Virus Res., 2020, 285, 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[110]
Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; Lu, H.; Zheng, B.; Zhang, J.; Yan, R.; Zhang, H.; Jiang, H.; Xu, Q.; Guo, J.; Gong, Y.; Tang, L.; Li, L. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis., 2020, 71(10), 2669-2678.
[http://dx.doi.org/10.1093/cid/ciaa709] [PMID: 32497191]
[111]
de Oliveira, G.L.V.; Oliveira, C.N.S.; Pinzan, C.F.; de Salis, L.V.V.; Cardoso, C.R.B. Microbiota modulation of the gut-lung axis in COVID-19. Front. Immunol., 2021, 12, 635471.
[http://dx.doi.org/10.3389/fimmu.2021.635471] [PMID: 33717181]
[112]
Zuo, T.; Zhang, F.; Lui, G.C.; Yeoh, Y.K.; Li, A.Y.; Zhan, H.; Wan, Y.; Chung, A.C.; Cheung, C.P.; Chen, N. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159, 944-955.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048]
[113]
Zuo, T.; Liu, Q.; Zhang, F.; Lui, G.C-Y.; Tso, E.Y.; Yeoh, Y.K.; Chen, Z.; Boon, S.S.; Chan, F.K.; Chan, P.K.; Ng, S.C. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 2021, 70(2), 276-284.
[PMID: 32690600]
[114]
Baud, D.; Dimopoulou Agri, V.; Gibson, G.R.; Reid, G.; Giannoni, E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. Public Health, 2020, 8, 186.
[http://dx.doi.org/10.3389/fpubh.2020.00186] [PMID: 32574290]
[115]
Chai, W.; Burwinkel, M.; Wang, Z.; Palissa, C.; Esch, B.; Twardziok, S.; Rieger, J.; Wrede, P.; Schmidt, M.F. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol., 2013, 158(4), 799-807.
[http://dx.doi.org/10.1007/s00705-012-1543-0] [PMID: 23188495]
[116]
Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. 2019 Novel coronavirus infection and gastrointestinal tract. J. Dig. Dis., 2020, 21(3), 125-126.
[http://dx.doi.org/10.1111/1751-2980.12851] [PMID: 32096611]
[117]
Muthukrishnan, P.T.; Faillace, R. Compassionate use of others’ immunity-understanding gut microbiome in Covid-19. Crit. Care, 2020, 24, 1-2.
[http://dx.doi.org/10.1186/s13054-020-03043-w]
[118]
Walton, G.E.; Gibson, G.R.; Hunter, K.A. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br. J. Nutr., 2020, 126(2), 219-227.
[PMID: 33032673]
[119]
Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut, 2020, 69(8), 1510-1519.
[http://dx.doi.org/10.1136/gutjnl-2019-320204] [PMID: 32409589]
[120]
Tuteja, S.; Ferguson, J.F. Gut microbiome and response to cardiovascular drugs. Circ. Genom. Precis. Med., 2019, 12(9), 421-429.
[http://dx.doi.org/10.1161/CIRCGEN.119.002314] [PMID: 31462078]
[121]
Maron, D.J.; Fazio, S.; Linton, M.F. Current perspectives on statins. Circulation, 2000, 101(2), 207-213.
[http://dx.doi.org/10.1161/01.CIR.101.2.207] [PMID: 10637210]
[122]
Young, S.G.; Fong, L.G. Lowering plasma cholesterol by raising LDL receptors--revisited. N. Engl. J. Med., 2012, 366(12), 1154-1155.
[http://dx.doi.org/10.1056/NEJMe1202168] [PMID: 22435375]
[123]
Lee, S.E.; Han, K.; Kang, Y.M.; Kim, S-O.; Cho, Y.K.; Ko, K.S.; Park, J-Y.; Lee, K-U.; Koh, E.H. Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009-2013). PLoS One, 2018, 13(3), e0194490.
[http://dx.doi.org/10.1371/journal.pone.0194490] [PMID: 29566051]
[124]
Vieira-Silva, S.; Falony, G.; Belda, E.; Nielsen, T.; Aron-Wisnewsky, J.; Chakaroun, R.; Forslund, S.K.; Assmann, K.; Valles-Colomer, M.; Nguyen, T.T.D.; Proost, S.; Prifti, E.; Tremaroli, V.; Pons, N.; Le Chatelier, E.; Andreelli, F.; Bastard, J.P.; Coelho, L.P.; Galleron, N.; Hansen, T.H.; Hulot, J.S.; Lewinter, C.; Pedersen, H.K.; Quinquis, B.; Rouault, C.; Roume, H.; Salem, J.E. Søndertoft, N.B.; Touch, S.; Dumas, M.E.; Ehrlich, S.D.; Galan, P.; Gøtze, J.P.; Hansen, T.; Holst, J.J.; Køber, L.; Letunic, I.; Nielsen, J.; Oppert, J.M.; Stumvoll, M.; Vestergaard, H.; Zucker, J.D.; Bork, P.; Pedersen, O.; Bäckhed, F.; Clément, K.; Raes, J. MetaCardis Consortium. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581(7808), 310-315.
[http://dx.doi.org/10.1038/s41586-020-2269-x] [PMID: 32433607]
[125]
Peters, U.; Falk, L.C.; Kalman, S.M. Digoxin metabolism in patients. Arch. Intern. Med., 1978, 138(7), 1074-1076.
[http://dx.doi.org/10.1001/archinte.1978.03630320018009] [PMID: 666466]
[126]
Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; Kurilshikov, A.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020, 11(1), 362.
[http://dx.doi.org/10.1038/s41467-019-14177-z] [PMID: 31953381]
[127]
Liu, J.; Lahousse, L.; Nivard, M.G.; Bot, M.; Chen, L.; van Klinken, J.B.; Thesing, C.S.; Beekman, M.; van den Akker, E.B.; Slieker, R.C.; Waterham, E.; van der Kallen, C.J.H.; de Boer, I.; Li-Gao, R.; Vojinovic, D.; Amin, N.; Radjabzadeh, D.; Kraaij, R.; Alferink, L.J.M.; Murad, S.D.; Uitterlinden, A.G.; Willemsen, G.; Pool, R.; Milaneschi, Y.; van Heemst, D.; Suchiman, H.E.D.; Rutters, F.; Elders, P.J.M.; Beulens, J.W.J.; van der Heijden, A.A.W.A.; van Greevenbroek, M.M.J.; Arts, I.C.W.; Onderwater, G.L.J.; van den Maagdenberg, A.M.J.M.; Mook-Kanamori, D.O.; Hankemeier, T.; Terwindt, G.M.; Stehouwer, C.D.A.; Geleijnse, J.M.; ’t Hart, L.M.; Slagboom, P.E.; van Dijk, K.W.; Zhernakova, A.; Fu, J.; Penninx, B.W.J.H.; Boomsma, D.I.; Demirkan, A.; Stricker, B.H.C.; van Duijn, C.M. Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug-metabolite atlas. Nat. Med., 2020, 26(1), 110-117.
[http://dx.doi.org/10.1038/s41591-019-0722-x] [PMID: 31932804]
[128]
Clooney, A.G.; Bernstein, C.N.; Leslie, W.D.; Vagianos, K.; Sargent, M.; Laserna-Mendieta, E.J.; Claesson, M.J.; Targownik, L.E. A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors. Aliment. Pharmacol. Ther., 2016, 43(9), 974-984.
[http://dx.doi.org/10.1111/apt.13568] [PMID: 26923470]
[129]
Yoo, D-H.; Kim, I.S.; Van Le, T.K.; Jung, I-H.; Yoo, H.H.; Kim, D-H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos., 2014, 42(9), 1508-1513.
[http://dx.doi.org/10.1124/dmd.114.058354] [PMID: 24947972]
[130]
Yoo, H.H.; Kim, I.S.; Yoo, D-H.; Kim, D-H. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. J. Hypertens., 2016, 34(1), 156-162.
[http://dx.doi.org/10.1097/HJH.0000000000000773] [PMID: 26630218]
[131]
Holbrook, A.M.; Pereira, J.A.; Labiris, R.; McDonald, H.; Douketis, J.D.; Crowther, M.; Wells, P.S. Systematic overview of warfarin and its drug and food interactions. Arch. Intern. Med., 2005, 165(10), 1095-1106.
[http://dx.doi.org/10.1001/archinte.165.10.1095] [PMID: 15911722]
[132]
Shearer, M.J.; Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost., 2008, 100(4), 530-547.
[PMID: 18841274]
[133]
Peng, A.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res., 2018, 147, 102-107.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.09.013] [PMID: 30291996]
[134]
Lourenςo, T.G.B.; Spencer, S.J.; Alm, E.J.; Colombo, A.P.V. Defining the gut microbiota in individuals with periodontal diseases: An exploratory study. J. Oral Microbiol., 2018, 10(1), 1487741.
[http://dx.doi.org/10.1080/20002297.2018.1487741] [PMID: 29988721]
[135]
Montandon, S.A.; Jornayvaz, F.R. Effects of antidiabetic drugs on gut microbiota composition. Genes (Basel), 2017, 8(10), 250.
[http://dx.doi.org/10.3390/genes8100250] [PMID: 28973971]
[136]
Zhang, X.; Fang, Z.; Zhang, C.; Xia, H.; Jie, Z.; Han, X.; Chen, Y.; Ji, L. Effects of acarbose on the gut microbiota of prediabetic patients: A randomized, double-blind, controlled crossover trial. Diabetes Ther., 2017, 8(2), 293-307.
[http://dx.doi.org/10.1007/s13300-017-0226-y] [PMID: 28130771]
[137]
Su, B.; Liu, H.; Li, J.; Sunli, Y.; Liu, B.; Liu, D.; Zhang, P.; Meng, X. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J. Diabetes, 2015, 7(5), 729-739.
[http://dx.doi.org/10.1111/1753-0407.12232] [PMID: 25327485]
[138]
Gu, Y.; Wang, X.; Li, J.; Zhang, Y.; Zhong, H.; Liu, R.; Zhang, D.; Feng, Q.; Xie, X.; Hong, J.; Ren, H.; Liu, W.; Ma, J.; Su, Q.; Zhang, H.; Yang, J.; Wang, X.; Zhao, X.; Gu, W.; Bi, Y.; Peng, Y.; Xu, X.; Xia, H.; Li, F.; Xu, X.; Yang, H.; Xu, G.; Madsen, L.; Kristiansen, K.; Ning, G.; Wang, W. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun., 2017, 8(1), 1785.
[http://dx.doi.org/10.1038/s41467-017-01682-2] [PMID: 29176714]
[139]
Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; Arumugam, M.; Kristiansen, K.; Voigt, A.Y.; Vestergaard, H.; Hercog, R.; Costea, P.I.; Kultima, J.R.; Li, J. Jørgensen, T.; Levenez, F.; Dore, J.; Nielsen, H.B.; Brunak, S.; Raes, J.; Hansen, T.; Wang, J.; Ehrlich, S.D.; Bork, P.; Pedersen, O. MetaHIT consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528(7581), 262-266.
[http://dx.doi.org/10.1038/nature15766] [PMID: 26633628]
[140]
Caesar, R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can. J. Diabetes, 2019, 43(3), 224-231.
[http://dx.doi.org/10.1016/j.jcjd.2019.01.007] [PMID: 30929665]
[141]
Montrose, D.C.; Zhou, X.K.; McNally, E.M.; Sue, E.; Yantiss, R.K.; Gross, S.S.; Leve, N.D.; Karoly, E.D.; Suen, C.S.; Ling, L.; Benezra, R.; Pamer, E.G.; Dannenberg, A.J. Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev. Res. (Phila.), 2016, 9(9), 721-731.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0095] [PMID: 27432344]
[142]
Hernandez-Sanabria, E.; Heiremans, E.; Calatayud Arroyo, M.; Props, R.; Leclercq, L.; Snoeys, J.; Van de Wiele, T. Short-term supplementation of celecoxib-shifted butyrate production on a simulated model of the gut microbial ecosystem and ameliorated in vitro inflammation. NPJ Biofilms Microbiomes, 2020, 6(1), 9.
[http://dx.doi.org/10.1038/s41522-020-0119-0] [PMID: 32075981]
[143]
Balmant, B.D.; Torrinhas, R.S.; Rocha, I.M.; Fonseca, D.C.; Formiga, F.F.C. Bonfá, E.S.D.O.; Borba, E.F.; Waitzberg, D.L. SARS-CoV-2 infection, gut dysbiosis, and heterogeneous clinical results of hydroxychloroquine on COVID-19 therapy-Is there a link? Nutrition, 2021, 85, 111115.
[http://dx.doi.org/10.1016/j.nut.2020.111115] [PMID: 33545540]
[144]
Kamareddine, L.; Najjar, H.; Sohail, M.U.; Abdulkader, H.; Al-Asmakh, M. The microbiota and gut-related disorders: Insights from animal models. Cells, 2020, 9(11), 2401.
[http://dx.doi.org/10.3390/cells9112401] [PMID: 33147801]
[145]
Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol., 2011, 9(4), 233-243.
[http://dx.doi.org/10.1038/nrmicro2536] [PMID: 21358670]
[146]
Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med., 2016, 22(6), 458-478.
[http://dx.doi.org/10.1016/j.molmed.2016.04.003] [PMID: 27178527]
[147]
Zhang, S.; Chen, D-C. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J. (Engl.), 2019, 132(10), 1135-1138.
[http://dx.doi.org/10.1097/CM9.0000000000000245] [PMID: 30973451]
[148]
Heinken, A.; Thiele, I. Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl. Environ. Microbiol., 2015, 81(12), 4049-4061.
[http://dx.doi.org/10.1128/AEM.00101-15] [PMID: 25841013]
[149]
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr., 2018, 57(1), 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[150]
Ribeiro, C.F.A.; Silveira, G.G.O.S.; Cândido, E.S.; Cardoso, M.H. Espínola Carvalho, C.M.; Franco, O.L. Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health. ACS Infect. Dis., 2020, 6(10), 2544-2559.
[http://dx.doi.org/10.1021/acsinfecdis.0c00036] [PMID: 32786282]
[151]
Karakan, T.; Ozkul, C.; Küpeli Akkol, E.; Bilici, S. Sobarzo-Sánchez, E.; Capasso, R. Gut-brain-microbiota axis: Antibiotics and functional gastrointestinal disorders. Nutrients, 2021, 13(2), 389.
[http://dx.doi.org/10.3390/nu13020389] [PMID: 33513791]
[152]
Yulug, B.; Hanoglu, L.; Ozansoy, M. Isık, D.; Kilic, U.; Kilic, E.; Schabitz, W.R. Therapeutic role of rifampicin in Alzheimer’s disease. Psychiatry Clin. Neurosci., 2018, 72(3), 152-159.
[http://dx.doi.org/10.1111/pcn.12637] [PMID: 29315976]
[153]
Budni, J.; Garcez, L.M.; Medeiros, J.d.; Cassaro, E.; Bellettini-Santos, T.; Mina, F.; Quevedo, J. The anti-inflammatory role of minocycline in Alzheimer s disease. Curr. Alzheimer Res., 2016, 13, 1319-1329.
[http://dx.doi.org/10.2174/1567205013666160819124206] [PMID: 27539598]
[154]
Wang, C.; Yu, J-T.; Miao, D.; Wu, Z-C.; Tan, M-S.; Tan, L. Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol. Neurobiol., 2014, 49(1), 120-135.
[http://dx.doi.org/10.1007/s12035-013-8505-8] [PMID: 23853042]
[155]
Koutzoumis, D.N.; Vergara, M.; Pino, J.; Buddendorff, J.; Khoshbouei, H.; Mandel, R.J.; Torres, G.E. Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson’s disease. Exp. Neurol., 2020, 325, 113159.
[http://dx.doi.org/10.1016/j.expneurol.2019.113159] [PMID: 31843492]
[156]
Ahmed, L.A.; Salem, M.B.; Seif El-Din, S.H.; El-Lakkany, N.M.; Ahmed, H.O.; Nasr, S.M.; Hammam, O.A.; Botros, S.S.; Saleh, S. Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: Role of LPS/TLR4 and autophagy pathways. Eur. J. Pharmacol., 2020, 887, 173461.
[http://dx.doi.org/10.1016/j.ejphar.2020.173461] [PMID: 32758573]
[157]
Dinleyici, E.C.; Eren, M.; Ozen, M.; Yargic, Z.A.; Vandenplas, Y. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin. Biol. Ther., 2012, 12(4), 395-410.
[http://dx.doi.org/10.1517/14712598.2012.664129] [PMID: 22335323]
[158]
Ng, S.C.; Hart, A.L.; Kamm, M.A.; Stagg, A.J.; Knight, S.C. Mechanisms of action of probiotics: recent advances. Inflamm. Bowel Dis., 2009, 15(2), 300-310.
[http://dx.doi.org/10.1002/ibd.20602] [PMID: 18626975]
[159]
Hickson, M. Examining the evidence for the use of probiotics in clinical practice. Nurs. Stand., 2013, 27(29), 35-41.
[http://dx.doi.org/10.7748/ns2013.03.27.29.35.e6363] [PMID: 23634499]
[160]
Zhang, X-F.; Guan, X-X.; Tang, Y-J.; Sun, J-F.; Wang, X-K.; Wang, W-D.; Fan, J-M. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: A systematic review and meta-analysis. Eur. J. Nutr., 2021, 60(5), 2855-2875.
[http://dx.doi.org/10.1007/s00394-021-02503-5]
[161]
Abraham, D.; Feher, J.; Scuderi, G.L.; Szabo, D.; Dobolyi, A.; Cservenak, M.; Juhasz, J.; Ligeti, B.; Pongor, S.; Gomez-Cabrera, M.C.; Vina, J.; Higuchi, M.; Suzuki, K.; Boldogh, I.; Radak, Z. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol., 2019, 115, 122-131.
[http://dx.doi.org/10.1016/j.exger.2018.12.005] [PMID: 30529024]
[162]
Seif El-Din, S.H.; Salem, M.B.; El-Lakkany, N.M.; Hammam, O.A.; Nasr, S.M.; Okasha, H.; Ahmed, L.A.; Saleh, S.; Botros, S.S. Early intervention with probiotics and metformin alleviates liver injury in NAFLD rats via targeting gut microbiota dysbiosis and p-AKT/mTOR/LC-3II pathways. Hum. Exp. Toxicol., 2021, 40(9), 1496-1509.
[http://dx.doi.org/10.1177/0960327121999445] [PMID: 33678036]
[163]
Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes, 2015, 6(5), 707-717.
[http://dx.doi.org/10.3920/BM2014.0177] [PMID: 25869281]
[164]
Bron, P.A.; van Baarlen, P.; Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol., 2011, 10(1), 66-78.
[http://dx.doi.org/10.1038/nrmicro2690] [PMID: 22101918]
[165]
van Baarlen, P.; Troost, F.; van der Meer, C.; Hooiveld, G.; Boekschoten, M.; Brummer, R.J.; Kleerebezem, M. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4562-4569.
[http://dx.doi.org/10.1073/pnas.1000079107] [PMID: 20823239]
[166]
O’Mahony, L.; McCarthy, J.; Kelly, P.; Hurley, G.; Luo, F.; Chen, K.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.; Quigley, E.M. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology, 2005, 128(3), 541-551.
[http://dx.doi.org/10.1053/j.gastro.2004.11.050] [PMID: 15765388]
[167]
Shanahan, F.; Dinan, T.G.; Ross, P.; Hill, C. Probiotics in transition. Clin. Gastroenterol. Hepatol., 2012, 10(11), 1220-1224.
[http://dx.doi.org/10.1016/j.cgh.2012.09.020] [PMID: 23010563]
[168]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[169]
Roberfroid, M. Prebiotics: the concept revisited. J. Nutr., 2007, 137(3)(Suppl. 2), 830S-837S.
[http://dx.doi.org/10.1093/jn/137.3.830S] [PMID: 17311983]
[170]
Langlands, S.J.; Hopkins, M.J.; Coleman, N.; Cummings, J.H. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut, 2004, 53(11), 1610-1616.
[http://dx.doi.org/10.1136/gut.2003.037580] [PMID: 15479681]
[171]
Duncan, S.H.; Scott, K.P.; Ramsay, A.G.; Harmsen, H.J.; Welling, G.W.; Stewart, C.S.; Flint, H.J. Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl. Environ. Microbiol., 2003, 69(2), 1136-1142.
[http://dx.doi.org/10.1128/AEM.69.2.1136-1142.2003] [PMID: 12571040]
[172]
Moludi, J.; Khedmatgozar, H.; Nachvak, S.M.; Abdollahzad, H.; Moradinazar, M.; Sadeghpour Tabaei, A. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial. Nutr. Neurosci., 2021.
[http://dx.doi.org/10.1080/1028415X.2021.1889451] [PMID: 33641656]
[173]
Javadi, L.; Khoshbaten, M.; Safaiyan, A.; Ghavami, M.; Abbasi, M.M.; Gargari, B.P. Pro- and prebiotic effects on oxidative stress and inflammatory markers in non-alcoholic fatty liver disease. Asia Pac. J. Clin. Nutr., 2018, 27(5), 1031-1039.
[PMID: 30272851]
[174]
Behrouz, V.; Aryaeian, N.; Zahedi, M.J.; Jazayeri, S. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial. J. Food Sci., 2020, 85(10), 3611-3617.
[http://dx.doi.org/10.1111/1750-3841.15367] [PMID: 32885440]
[175]
Zheng, J.; Li, H.; Zhang, X.; Jiang, M.; Luo, C.; Lu, Z.; Xu, Z.; Shi, J. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J. Agric. Food Chem., 2018, 66(23), 5821-5831.
[http://dx.doi.org/10.1021/acs.jafc.8b00829] [PMID: 29701959]
[176]
Fernández-Fernández. F.J. COVID-19, hypertension and angiotensin receptor-blocking drugs. J. Hhypertens., 2020, 38(6), 1191.
[http://dx.doi.org/10.1097/HJH.0000000000002468]
[177]
Olaimat, A.N.; Aolymat, I.; Al-Holy, M.; Ayyash, M.; Ghoush, M.A.; Al-Nabulsi, A.A.; Osaili, T.; Apostolopoulos, V.; Liu, S-Q.; Shah, N.P. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci. Food, 2020, 4, 1-7.
[http://dx.doi.org/10.1038/s41538-020-00078-9]
[178]
Kelly, C.R.; Kahn, S.; Kashyap, P.; Laine, L.; Rubin, D.; Atreja, A.; Moore, T.; Wu, G. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology, 2015, 149(1), 223-237.
[http://dx.doi.org/10.1053/j.gastro.2015.05.008] [PMID: 25982290]
[179]
Mattila, E. Uusitalo-Seppälä R.; Wuorela, M.; Lehtola, L.; Nurmi, H.; Ristikankare, M.; Moilanen, V.; Salminen, K.; Seppälä M.; Mattila, P.S.; Anttila, V.J.; Arkkila, P. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology, 2012, 142(3), 490-496.
[http://dx.doi.org/10.1053/j.gastro.2011.11.037] [PMID: 22155369]
[180]
van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.; Tijssen, J.G.; Speelman, P.; Dijkgraaf, M.G.; Keller, J.J. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med., 2013, 368(5), 407-415.
[http://dx.doi.org/10.1056/NEJMoa1205037] [PMID: 23323867]
[181]
Hu, X-F.; Zhang, W-Y.; Wen, Q.; Chen, W-J.; Wang, Z-M.; Chen, J.; Zhu, F.; Liu, K.; Cheng, L-X.; Yang, J.; Shu, Y.W. Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol. Res., 2019, 139, 412-421.
[http://dx.doi.org/10.1016/j.phrs.2018.11.042] [PMID: 30508676]
[182]
Sun, J.; Xu, J.; Ling, Y.; Wang, F.; Gong, T.; Yang, C.; Ye, S.; Ye, K.; Wei, D.; Song, Z.; Chen, D.; Liu, J. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry, 2019, 9(1), 189.
[http://dx.doi.org/10.1038/s41398-019-0525-3] [PMID: 31383855]
[183]
Sun, M-F.; Zhu, Y-L.; Zhou, Z-L.; Jia, X-B.; Xu, Y-D.; Yang, Q.; Cui, C.; Shen, Y-Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun., 2018, 70, 48-60.
[http://dx.doi.org/10.1016/j.bbi.2018.02.005] [PMID: 29471030]
[184]
Li, K.; Wei, S.; Hu, L.; Yin, X.; Mai, Y.; Jiang, C.; Peng, X.; Cao, X.; Huang, Z.; Zhou, H. Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediators Inflamm., 2020, 2020, 2058272.
[http://dx.doi.org/10.1155/2020/2058272]
[185]
Ferrere, G.; Wrzosek, L.; Cailleux, F.; Turpin, W.; Puchois, V.; Spatz, M.; Ciocan, D.; Rainteau, D.; Humbert, L.; Hugot, C.; Gaudin, F.; Noordine, M.L.; Robert, V.; Berrebi, D.; Thomas, M.; Naveau, S.; Perlemuter, G.; Cassard, A.M. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol., 2017, 66(4), 806-815.
[http://dx.doi.org/10.1016/j.jhep.2016.11.008] [PMID: 27890791]
[186]
Wang, H.; Lu, Y.; Yan, Y.; Tian, S.; Zheng, D.; Leng, D.; Wang, C.; Jiao, J.; Wang, Z.; Bai, Y. Promising treatment for type 2 diabetes: Fecal microbiota transplantation reverses insulin resistance and impaired islets. Front. Cell. Infect. Microbiol., 2020, 9, 455.
[http://dx.doi.org/10.3389/fcimb.2019.00455] [PMID: 32010641]
[187]
Tannock, G.W.; Munro, K.; Harmsen, H.J.; Welling, G.W.; Smart, J.; Gopal, P.K. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol., 2000, 66(6), 2578-2588.
[http://dx.doi.org/10.1128/AEM.66.6.2578-2588.2000] [PMID: 10831441]
[188]
Grehan, M.J.; Borody, T.J.; Leis, S.M.; Campbell, J.; Mitchell, H.; Wettstein, A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J. Clin. Gastroenterol., 2010, 44(8), 551-561.
[http://dx.doi.org/10.1097/MCG.0b013e3181e5d06b] [PMID: 20716985]
[189]
Markovic, B.S.; Kanjevac, T.; Harrell, C.R.; Gazdic, M.; Fellabaum, C.; Arsenijevic, N.; Volarevic, V. Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Rev. Rep., 2018, 14(2), 153-165.
[http://dx.doi.org/10.1007/s12015-017-9789-2] [PMID: 29177796]
[190]
Kunsmann, L.; Rüter, C.; Bauwens, A.; Greune, L.; Glüder, M.; Kemper, B.; Fruth, A.; Wai, S.N.; He, X.; Lloubes, R.; Schmidt, M.A.; Dobrindt, U.; Mellmann, A.; Karch, H.; Bielaszewska, M. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep., 2015, 5, 13252.
[http://dx.doi.org/10.1038/srep13252] [PMID: 26283502]
[191]
Kaiko, G.E.; Ryu, S.H.; Koues, O.I.; Collins, P.L.; Solnica-Krezel, L.; Pearce, E.J.; Pearce, E.L.; Oltz, E.M.; Stappenbeck, T.S. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell, 2016, 165(7), 1708-1720.
[http://dx.doi.org/10.1016/j.cell.2016.05.018] [PMID: 27264604]
[192]
Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet., 2015, 6, 148.
[http://dx.doi.org/10.3389/fgene.2015.00148] [PMID: 25941533]
[193]
Clevers, H.C.; Bevins, C.L. Paneth cells: Maestros of the small intestinal crypts. Annu. Rev. Physiol., 2013, 75, 289-311.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183744] [PMID: 23398152]
[194]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[195]
Shanahan, M.T.; Carroll, I.M.; Gulati, A.S. Critical design aspects involved in the study of Paneth cells and the intestinal microbiota. Gut Microbes, 2014, 5(2), 208-214.
[http://dx.doi.org/10.4161/gmic.27466] [PMID: 24637592]
[196]
Ouellette, A.J.; Selsted, M.E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J., 1996, 10(11), 1280-1289.
[http://dx.doi.org/10.1096/fasebj.10.11.8836041] [PMID: 8836041]
[197]
Patel, P.H.; Maldera, J.A.; Edgar, B.A. Stimulating cROSstalk between commensal bacteria and intestinal stem cells. EMBO J., 2013, 32(23), 3009-3010.
[http://dx.doi.org/10.1038/emboj.2013.244] [PMID: 24193404]
[198]
Jones, R.M.; Luo, L.; Ardita, C.S.; Richardson, A.N.; Kwon, Y.M.; Mercante, J.W.; Alam, A.; Gates, C.L.; Wu, H.; Swanson, P.A.; Lambeth, J.D.; Denning, P.W.; Neish, A.S. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J., 2013, 32(23), 3017-3028.
[http://dx.doi.org/10.1038/emboj.2013.224] [PMID: 24141879]
[199]
Kumar, A.; Wu, H.; Collier-Hyams, L.S.; Hansen, J.M.; Li, T.; Yamoah, K.; Pan, Z.Q.; Jones, D.P.; Neish, A.S. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J., 2007, 26(21), 4457-4466.
[http://dx.doi.org/10.1038/sj.emboj.7601867] [PMID: 17914462]
[200]
Tan, Y.; Wei, Z.; Chen, J.; An, J.; Li, M.; Zhou, L.; Men, Y.; Zhao, S. Save your gut save your age: The role of the microbiome in stem cell ageing. J. Cell. Mol. Med., 2019, 23(8), 4866-4875.
[http://dx.doi.org/10.1111/jcmm.14373] [PMID: 31207055]
[201]
Xiao, E.; He, L.; Wu, Q.; Li, J.; He, Y.; Zhao, L.; Chen, S.; An, J.; Liu, Y.; Chen, C.; Zhang, Y. Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Res. Ther., 2017, 8(1), 213.
[http://dx.doi.org/10.1186/s13287-017-0670-7] [PMID: 28962644]
[202]
Xing, J.; Ying, Y.; Mao, C.; Liu, Y.; Wang, T.; Zhao, Q.; Zhang, X.; Yan, F.; Zhang, H. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat. Commun., 2018, 9(1), 2020.
[http://dx.doi.org/10.1038/s41467-018-04453-9] [PMID: 29789585]
[203]
Nagashima, K.; Sawa, S.; Nitta, T.; Tsutsumi, M.; Okamura, T.; Penninger, J.M.; Nakashima, T.; Takayanagi, H. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat. Immunol., 2017, 18(6), 675-682.
[http://dx.doi.org/10.1038/ni.3732] [PMID: 28436956]
[204]
Dong, X.; Feng, X.; Liu, J.; Xu, Y.; Pan, Q.; Ling, Z.; Yu, J.; Yang, J.; Li, L.; Cao, H. Characteristics of intestinal microecology during mesenchymal stem cell-based therapy for mouse acute liver injury. Stem Cells Int., 2019, 2019, 2403793.
[http://dx.doi.org/10.1155/2019/2403793]
[205]
Lv, W.; Graves, D.T.; He, L.; Shi, Y.; Deng, X.; Zhao, Y.; Dong, X.; Ren, Y.; Liu, X.; Xiao, E.; Zhang, Y. Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus. Theranostics, 2020, 10(14), 6500-6516.
[http://dx.doi.org/10.7150/thno.44113] [PMID: 32483466]
[206]
Liotta, F.; Angeli, R.; Cosmi, L. Filì, L.; Manuelli, C.; Frosali, F.; Mazzinghi, B.; Maggi, L.; Pasini, A.; Lisi, V.; Santarlasci, V.; Consoloni, L.; Angelotti, M.L.; Romagnani, P.; Parronchi, P.; Krampera, M.; Maggi, E.; Romagnani, S.; Annunziato, F. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells, 2008, 26(1), 279-289.
[http://dx.doi.org/10.1634/stemcells.2007-0454] [PMID: 17962701]
[207]
Shirjang, S.; Mansoori, B.; Solali, S.; Hagh, M.F.; Shamsasenjan, K. Toll-like receptors as a key regulator of mesenchymal stem cell function: An up-to-date review. Cell. Immunol., 2017, 315, 1-10.
[http://dx.doi.org/10.1016/j.cellimm.2016.12.005] [PMID: 28284487]
[208]
Yiu, J.H.; Dorweiler, B.; Woo, C.W. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J. Mol. Med. (Berl.), 2017, 95(1), 13-20.
[http://dx.doi.org/10.1007/s00109-016-1474-4] [PMID: 27639584]
[209]
Kinnebrew, M.A.; Ubeda, C.; Zenewicz, L.A.; Smith, N.; Flavell, R.A.; Pamer, E.G. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis., 2010, 201(4), 534-543.
[http://dx.doi.org/10.1086/650203] [PMID: 20064069]
[210]
Kamada, N. Núñez, G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology, 2014, 146(6), 1477-1488.
[http://dx.doi.org/10.1053/j.gastro.2014.01.060] [PMID: 24503128]
[211]
Iwamura, C.; Bouladoux, N.; Belkaid, Y.; Sher, A.; Jankovic, D. Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood, 2017, 129(2), 171-176.
[http://dx.doi.org/10.1182/blood-2016-06-723742] [PMID: 27799160]
[212]
Yang, Z.; Xia, Q.; Lu, D.; Yue, H.; Zhang, J.; Li, Y.; Zhang, B.; Li, X.; Cao, M. Human mesenchymal stem cells treatment improved hepatic lesions and reversed gut microbiome disorder in non-alcoholic steatohepatitis. Aging (Albany NY), 2020, 12(21), 21660-21673.
[http://dx.doi.org/10.18632/aging.103962] [PMID: 33168782]
[213]
Soontararak, S.; Chow, L.; Johnson, V.; Coy, J.; Wheat, W.; Regan, D.; Dow, S. Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose‐derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl. Med., 2018, 7(6), 456-467.
[http://dx.doi.org/10.1002/sctm.17-0305] [PMID: 29635868]
[214]
Sun, J.; Ding, X.; Liu, S.; Duan, X.; Liang, H.; Sun, T. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res. Ther., 2020, 11(1), 384.
[http://dx.doi.org/10.1186/s13287-020-01902-5] [PMID: 32894198]
[215]
Zhu, S.; Li, H.; Lv, C.; Liang, J.; Liu, L.; Zhang, X.; Xu, K.; Zeng, L. Combination of mesenchymal stem cell and endothelial progenitor cell infusion accelerates injured intestinal repair by regulating gut microbiota after hematopoietic cell transplantation. Transplant. Cell. Ther., 2021, 27, 152.
[216]
Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis., 2016, 34(3), 260-268.
[http://dx.doi.org/10.1159/000443360] [PMID: 27028893]
[217]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[218]
Micoli, F.; Costantino, P.; Adamo, R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol. Rev., 2018, 42(3), 388-423.
[http://dx.doi.org/10.1093/femsre/fuy011] [PMID: 29547971]
[219]
DiGiandomenico, A.; Sellman, B.R. Antibacterial monoclonal antibodies: the next generation? Curr. Opin. Microbiol., 2015, 27, 78-85.
[http://dx.doi.org/10.1016/j.mib.2015.07.014] [PMID: 26302478]
[220]
Suez, J.; Zmora, N.; Zilberman-Schapira, G.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Zur, M.; Regev-Lehavi, D.; Brik, R.B-Z.; Federici, S. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell, 2018, 174, 1406-1423.
[http://dx.doi.org/10.1016/j.cell.2018.08.047]
[221]
Yao, J.; Carter, R.A.; Vuagniaux, G.; Barbier, M.; Rosch, J.W.; Rock, C.O. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother., 2016, 60(7), 4264-4273.
[http://dx.doi.org/10.1128/AAC.00535-16] [PMID: 27161626]
[222]
Mills, S.; Ross, R.P.; Hill, C. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol. Rev., 2017, 41(Suppl. 1), S129-S153.
[http://dx.doi.org/10.1093/femsre/fux022] [PMID: 28830091]
[223]
Niu, G.; Li, Z.; Huang, P.; Tan, H. Engineering nucleoside antibiotics toward the development of novel antimicrobial agents. J. Antibiot. (Tokyo), 2019, 72(12), 906-912.
[http://dx.doi.org/10.1038/s41429-019-0230-8] [PMID: 31501499]
[224]
Williams, C.M. Effects of inulin on lipid parameters in humans. J. Nutr., 1999, 129(7)(Suppl.), 1471S-1473S.
[http://dx.doi.org/10.1093/jn/129.7.1471S] [PMID: 10395623]
[225]
Yoo, J.Y.; Kim, S.S. Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients, 2016, 8(3), 173.
[http://dx.doi.org/10.3390/nu8030173] [PMID: 26999199]
[226]
Wang, Y.; Chen, X.; Cao, W.; Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol., 2014, 15(11), 1009-1016.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[227]
von Bahr, L.; Batsis, I.; Moll, G. Hägg, M.; Szakos, A.; Sundberg, B.; Uzunel, M.; Ringden, O.; Le Blanc, K. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 2012, 30(7), 1575-1578.
[http://dx.doi.org/10.1002/stem.1118] [PMID: 22553154]
[228]
Ocansey, D. K. W.; Qiu, W.; Wang, J.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. The achievements and challenges of mesenchymal stem cell-based therapy in inflammatory bowel disease and its associated colorectal cancer. Stem Cells Int., 2020, 2020, 7819824.
[http://dx.doi.org/10.1155/2020/7819824]
[229]
Ahadi, N.; Mahmoodzadeh Hosseini, H.; Halabian, R.; Fahimi, H. Evaluation of Lactobacillus rhamnosus antioxidant effects on survival of human mesenchymal stem cells. J. Appl. Biotechnol. Rep., 2020, 7, 104-110.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy