Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Research Article

The Protective Role of Etoricoxib Against Diethylnitrosamine/2-acetylaminofluorene- Induced Hepatocarcinogenesis in Wistar Rats: The Impact of NF-κB/COX-2/PGE2 Signaling

Author(s): Gaber Ali, Hany Omar*, Fatema Hersi, Amira Abo-Youssef, Osama Ahmed and Wafaa Mohamed

Volume 15, Issue 1, 2022

Published on: 11 August, 2021

Article ID: e080721194609 Pages: 11

DOI: 10.2174/1874467214666210708103752

Price: $65

Abstract

Background: Liver cancer ranks as the 7th and 5th leading cause of cancer morbidity worldwide in men and women, respectively. Hepatocellular Carcinoma (HCC) is the most common type of liver cancer and is associated with an increasing global burden of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH).

Objective: The present study aimed to investigate the possible chemopreventive effect of etoricoxib on diethylnitrosamine (DENA) and 2-acetylaminofluorene (2AAF)-induced HCC in male Wistar rats.

Methods: HCC was induced by DENA (150 mg/kg/week; i.p) for 2 weeks, then 2AAF (20 mg/kg; p.o) every other day for three successive weeks. Etoricoxib (0.6 mg/kg, p.o.) was given to DENA/ 2AAF-administered rats for 20 weeks.

Results: Etoricoxib significantly suppressed alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19.9) as liver tumor biomarkers. It also decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin levels while increased serum albumin levels. Besides, it alleviated DENA/2AAF-induced histopathological abrasions and inflammatory cell infiltration. Furthermore, etoricoxib showed a potent antioxidant effect, supported by a significant lipid peroxide reduction and elevation in superoxide dismutase activity and GSH content. In addition, Etoricoxib significantly down-regulated the protein expression of interleukin 1 beta (IL-1β), tumor necrosis factor α (TNFα), nuclear Factor-kappa B (NF-κB), phosphorylated nuclear Factor-kappa B (p-NF-κB), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2).

Conclusion: In conclusion, the current results proved that etoricoxib possesses an anticarcinogenic effect via its antioxidant, anti-inflammatory, and modulation of NF-κB/COX-2/PGE2 signaling.

Keywords: Apoptosis, DENA, etoricoxib, hepatocellular carcinoma, inflammation, nonalcoholic fatty liver disease.

Graphical Abstract
[1]
Wong, M.C.; Jiang, J.Y.; Goggins, W.B.; Liang, M.; Fang, Y.; Fung, F.D.; Leung, C.; Wang, H.H.; Wong, G.L.; Wong, V.W.; Chan, H.L. International incidence and mortality trends of liver cancer: a global profile. Sci. Rep., 2017, 7, 45846.
[http://dx.doi.org/10.1038/srep45846] [PMID: 28361988]
[2]
Abdel-Hamid, N.M.; Shehata, D.E.; Abdel-Ghany, A.A.; Ragaa, A.; Wahid, A. Serum serotonin as unexpected potential marker for staging of experimental hepatocellular carcinoma. Biomed. Pharmacother., 2016, 83, 407-411.
[http://dx.doi.org/10.1016/j.biopha.2016.07.005] [PMID: 27424322]
[3]
Yang, J.D.; Roberts, L.R. Hepatocellular carcinoma: A global view. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 448-458.
[http://dx.doi.org/10.1038/nrgastro.2010.100] [PMID: 20628345]
[4]
Omar, H.A.; Tolba, M.F.; Hung, J.H.; Al-Tel, T.H. OSU-2S/sorafenib synergistic antitumor combination against hepatocellular carcinoma: the role of PKCδ/p53. Front. Pharmacol., 2016, 7, 463.
[http://dx.doi.org/10.3389/fphar.2016.00463] [PMID: 27965580]
[5]
Delhaye, M.; Louis, H.; Degraef, C.; Le Moine, O.; Devière, J.; Gulbis, B.; Jacobovitz, D.; Adler, M.; Galand, P. Relationship between hepatocyte proliferative activity and liver functional reserve in human cirrhosis. Hepatology, 1996, 23(5), 1003-1011.
[http://dx.doi.org/10.1002/hep.510230510] [PMID: 8621125]
[6]
Aravalli, R.N.; Steer, C.J.; Cressman, E.N. Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008, 48(6), 2047-2063.
[http://dx.doi.org/10.1002/hep.22580] [PMID: 19003900]
[7]
Arzumanyan, A.; Reis, H.M.; Feitelson, M.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer, 2013, 13(2), 123-135.
[http://dx.doi.org/10.1038/nrc3449] [PMID: 23344543]
[8]
Cohen, S.; Murphy, M.L.M.; Prather, A.A. Ten surprising facts about stressful life events and disease risk. Annu. Rev. Psychol., 2019, 70, 577-597.
[http://dx.doi.org/10.1146/annurev-psych-010418-102857] [PMID: 29949726]
[9]
Arboatti, A; Lambertucci, F; Sedlmeier, M; Pisani, G; Monti, J; Álvarez, MdL; Frances, D.E.A.; Ronco, M.T.; Carnovale, C.E. Diethylnitrosamine increases proliferation in early stages of hepatic carcinogenesis in insulin-treated type 1 diabetic mice. BioMed. Res. Int., 2018, 2018, 9472939.
[10]
Dar, K.; Ali, S.; Ejaz, M.; Nasreen, S.; Ashraf, N.; Gillani, S.; Shafi, N.; Safeer, S.; Khan, M.A.; Andleeb, S.; Mughal, T.A. In vivo induction of hepatocellular carcinoma by diethylnitrosoamine and pharmacological intervention in Balb C mice using Bergenia ciliata extracts. Braz. J. Bio., 2019, 79(4), 629-638.
[11]
Ding, Y.F.; Wu, Z.H.; Wei, Y.J.; Shu, L.; Peng, Y.R. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. J. Cancer Res. Clin. Oncol., 2017, 143(5), 821-834.
[http://dx.doi.org/10.1007/s00432-017-2364-z] [PMID: 28238064]
[12]
Youssef, M.I.; Maghraby, H.; Youssef andMohammed, EA.; El Sayed, M. Expression of Ki 67 in hepatocellular carcinoma induced by diethylnitrosamine in mice and its correlation with histopathological alterations. J. Appl. Pharm. Sci., 2012, 2(3), 52.
[13]
Al-Rejaie, S.S.; Aleisa, A.M.; Al-Yahya, A.A.; Bakheet, S.A.; Alsheikh, A.; Fatani, A.G.; Al-Shabanah, O.A.; Sayed-Ahmed, M.M. Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats. World J. Gastroenterol., 2009, 15(11), 1373-1380.
[http://dx.doi.org/10.3748/wjg.15.1373] [PMID: 19294768]
[14]
Verna, L.; Whysner, J.; Williams, G.M. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther., 1996, 71(1-2), 57-81.
[http://dx.doi.org/10.1016/0163-7258(96)00062-9] [PMID: 8910949]
[15]
Williams, J.L.; Nath, N.; Chen, J.; Hundley, T.R.; Gao, J.; Kopelovich, L.; Kashfi, K.; Rigas, B. Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and β-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention. Cancer Res., 2003, 63(22), 7613-7618.
[PMID: 14633677]
[16]
Chandel, N.S.; Trzyna, W.C.; McClintock, D.S.; Schumacker, P.T. Role of oxidants in NF-κ B activation and TNF-α gene transcription induced by hypoxia and endotoxin. J. Immunol., 2000, 165(2), 1013-1021.
[http://dx.doi.org/10.4049/jimmunol.165.2.1013] [PMID: 10878378]
[17]
Bisteau, X.; Caldez, M.J.; Kaldis, P. The complex relationship between liver cancer and the cell cycle: a story of multiple regulations. Cancers, 2014, 6(1), 79-111.
[http://dx.doi.org/10.3390/cancers6010079] [PMID: 24419005]
[18]
Setia, S.; Sanyal, S.N. Downregulation of NF-κB and PCNA in the regulatory pathways of apoptosis by cyclooxygenase-2 inhibitors in experimental lung cancer. Mol. Cell. Biochem., 2012, 369(1-2), 75-86.
[http://dx.doi.org/10.1007/s11010-012-1370-3] [PMID: 22752388]
[19]
Kadry, M.O.; Abdel-Megeed, R.M.; El-Meliegy, E.; Abdel-Hamid, A.Z. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α signaling pathways play an ambitious role in chitosan nanoparticles cancer therapy. Toxicol. Rep., 2018, 5, 723-727.
[http://dx.doi.org/10.1016/j.toxrep.2018.06.002] [PMID: 30013938]
[20]
Chung, V.Q.; Moschella, S.L.; Zembowicz, A.; Liu, V. Clinical and pathologic findings of paraneoplastic dermatoses. J. Am. Acad. Dermatol., 2006, 54(5), 745-762.
[http://dx.doi.org/10.1016/j.jaad.2004.06.051] [PMID: 16635655]
[21]
Anbarasu, C.; Rajkapoor, B.; Bhat, K.S.; Giridharan, J.; Amuthan, A.A.; Satish, K. Protective effect of Pisonia aculeata on thioacetamide induced hepatotoxicity in rats. Asian Pac. J. Trop. Biomed., 2012, 2(7), 511-515.
[http://dx.doi.org/10.1016/S2221-1691(12)60087-2] [PMID: 23569961]
[22]
Ahsan, M.R.; Islam, K.M.; Bulbul, I.J.; Musaddik, M.A.; Haque, E. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur. J. Sci. Res., 2009, 37(2), 302-310.
[23]
Bodakhe, S.H.; Ram, A. Hepatoprotective properties of Bauhinia variegata bark extract. Yakugaku Zasshi, 2007, 127(9), 1503-1507.
[http://dx.doi.org/10.1248/yakushi.127.1503] [PMID: 17827931]
[24]
Russmann, S.; Kullak-Ublick, G.A.; Grattagliano, I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem., 2009, 16(23), 3041-3053.
[http://dx.doi.org/10.2174/092986709788803097] [PMID: 19689281]
[25]
Zhang, J.; Lou, W. A key mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network linked to diagnosis and prognosis of hepatocellular carcinoma. Front. Oncol., 2020, 10, 340.
[http://dx.doi.org/10.3389/fonc.2020.00340] [PMID: 32257949]
[26]
Bruix, J.; Sherman, M. Management of hepatocellular carcinoma: an update. Hepatology, 2011, 53(3), 1020-1022.
[http://dx.doi.org/10.1002/hep.24199] [PMID: 21374666]
[27]
Arnott, C.H.; Scott, K.A.; Moore, R.J.; Hewer, A.; Phillips, D.H.; Parker, P.; Balkwill, F.R.; Owens, D.M. Tumour necrosis factor-α mediates tumour promotion via a PKC α- and AP-1-dependent pathway. Oncogene, 2002, 21(31), 4728-4738.
[http://dx.doi.org/10.1038/sj.onc.1205588] [PMID: 12101411]
[28]
Subramaniam, S.; Khan, H.B.H.; Elumalai, N.; Lakshmi, S.Y.S. Hepatoprotective effect of ethanolic extract of whole plant of Andrographis paniculata against CCl 4-induced hepatotoxicity in rats. Comp. Clin. Pathol., 2015, 24(5), 1245-1251.
[http://dx.doi.org/10.1007/s00580-015-2067-2]
[29]
Abou Seif, H.S. Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni. Suef Univ. J. Basic Appl. Sci., 2016, 5(2), 134-146.
[http://dx.doi.org/10.1016/j.bjbas.2016.03.004]
[30]
He, W.; Zhang, M.; Zhao, M.; Davis, L.S.; Blackwell, T.S.; Yull, F.; Breyer, M.D.; Hao, C.M. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells. Pflugers Arch., 2014, 466(2), 357-367.
[http://dx.doi.org/10.1007/s00424-013-1328-7] [PMID: 23900806]
[31]
He, W.; Wang, Y.; Zhang, M-Z.; You, L.; Davis, L.S.; Fan, H.; Yang, H.C.; Fogo, A.B.; Zent, R.; Harris, R.C.; Breyer, M.D.; Hao, C.M. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest., 2010, 120(4), 1056-1068.
[http://dx.doi.org/10.1172/JCI41563] [PMID: 20335659]
[32]
Vuolteenaho, K.; Moilanen, T.; Moilanen, E. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin. Pharmacol. Toxicol., 2008, 102(1), 10-14.
[PMID: 17973900]
[33]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[34]
Nadda, N.; Vaish, V.; Setia, S.; Sanyal, S.N. Angiostatic role of the selective cyclooxygenase-2 inhibitor etoricoxib (MK0663) in experimental lung cancer. Biomed. Pharmacother., 2012, 66(6), 474-483.
[http://dx.doi.org/10.1016/j.biopha.2012.04.002] [PMID: 22681911]
[35]
Zimmermann, K.C.; Sarbia, M.; Weber, A-A.; Borchard, F.; Gabbert, H.E.; Schrör, K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res., 1999, 59(1), 198-204.
[PMID: 9892207]
[36]
Ahmed, O.M.; Ahmed, A.A.; Fahim, H.I.; Zaky, M.Y. Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis. Drug Chem. Toxicol., 2019, 1-12.
[http://dx.doi.org/10.1080/01480545.2019.1683187] [PMID: 31665932]
[37]
Buege, J.A.; Aust, S.D. [30] Microsomal lipid peroxidation. In: Abelson, J.; Simon, M.; Verdine, G.; Pyle, A; Eds. Methods in enzymology; Amsterdam: Elsevier, 1978, 52, pp. 302-310.
[38]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[39]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[40]
Kadasa, N.M.; Abdallah, H.; Afifi, M.; Gowayed, S. Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats. Asian Pac. J. Cancer Prev., 2015, 16(1), 103-108.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.103] [PMID: 25640336]
[41]
Omar, H.A.; Arafa, el SA.; Maghrabi, IA.; Weng, JR. Sensitization of hepatocellular carcinoma cells to Apo2L/TRAIL by a novel Akt/NF-kappaB signalling inhibitor. Basic Clin. Pharmacol. Toxicol., 2014, 114(6), 464-471.
[http://dx.doi.org/10.1111/bcpt.12190] [PMID: 24401154]
[42]
Association, K.L.C. 2018 korean liver cancer association–national cancer center korea practice guidelines for the management of hepatocellular carcinoma. Korean J. Radiol., 2019, 20(7), 1042-1113.
[http://dx.doi.org/10.3348/kjr.2019.0140] [PMID: 31270974]
[43]
Xie, B.; Wang, D.H.; Spechler, S.J. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig. Dis. Sci., 2012, 57(5), 1122-1129.
[http://dx.doi.org/10.1007/s10620-012-2136-1] [PMID: 22451120]
[44]
Kunak, C.S.; Kukula, O.; Mutlu, E.; Genç, F.; Peker, G.G.; Kuyrukluyıldız, U.; Binici, O.; Altuner, D.; Alp, H.H. The effect of etoricoxib on hepatic ischemia-reperfusion injury in rats. Oxid. Med. Cell. Longev., 2015, 2015, 598162.
[http://dx.doi.org/10.1155/2015/598162] [PMID: 26236425]
[45]
Ghosh, D.; Choudhury, S.T.; Ghosh, S.; Mandal, A.K.; Sarkar, S.; Ghosh, A.; Saha, K.D.; Das, N. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem. Biol. Interact., 2012, 195(3), 206-214.
[http://dx.doi.org/10.1016/j.cbi.2011.12.004] [PMID: 22197969]
[46]
Gayathri, R.; Priya, D.K.; Gunassekaran, G.R.; Sakthisekaran, D. Ursolic acid attenuates oxidative stress-mediated hepatocellular carcinoma induction by diethylnitrosamine in male Wistar rats. Asian Pac. J. Cancer Prev., 2009, 10(5), 933-938.
[PMID: 20104993]
[47]
Wu, L.; Tang, Z-Y.; Li, Y. Experimental models of hepatocellular carcinoma: developments and evolution. J. Cancer Res. Clin. Oncol., 2009, 135(8), 969-981.
[http://dx.doi.org/10.1007/s00432-009-0591-7] [PMID: 19399516]
[48]
Zhang, C-L.; Zeng, T.; Zhao, X-L.; Yu, L-H.; Zhu, Z-P.; Xie, K-Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats. Int. J. Biol. Sci., 2012, 8(3), 363-374.
[http://dx.doi.org/10.7150/ijbs.3796] [PMID: 22393308]
[49]
Mittal, N.; Kanwar, S.S.; Sanyal, S.N. Effect of nonsteroidal anti-inflammatory drugs and the procarcinogen 1,2-dimethylhydrazine on the antioxidant defense system. Int. J. Toxicol., 2008, 27(2), 169-174.
[http://dx.doi.org/10.1080/10915810801977880] [PMID: 18404540]
[50]
Ahmed, O. Relationships between oxidative stress, cancer development and therapeutic interventions. Journal of Cancer Science and Research., 2016, 1(1), e104.
[51]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[52]
Jin, C.W.; Ghimeray, A.K.; Wang, L.; Xu, M.L.; Piao, J.P.; Cho, D.H. Far infrared assisted kenaf leaf tea preparation and its effect on phenolic compounds, antioxidant and ACE inhibitory activity. J. Med. Plants Res., 2013, 7, 1121-1128.
[53]
Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 239-267.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121851] [PMID: 14744246]
[54]
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[55]
Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; Jonker, D.; Ruo, L.; Cho, M.; Kaubisch, A.; Wege, H.; Merle, P.; Ebert, O.; Habersetzer, F.; Blanc, J.F.; Rosmorduc, O.; Lencioni, R.; Patt, R.; Leen, A.M.; Foerster, F.; Homerin, M.; Stojkowitz, N.; Lusky, M.; Limacher, J.M.; Hennequi, M.; Gaspar, N.; McFadden, B.; De Silva, N.; Shen, D.; Pelusio, A.; Kirn, D.H.; Breitbach, C.J.; Burke, J.M. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). OncoImmunology, 2019, 8(8), 1615817.
[http://dx.doi.org/10.1080/2162402X.2019.1615817] [PMID: 31413923]
[56]
Inflammation and liver cancer: Molecular mechanisms and therapeutic targets.Semin. Liver Dis; Yang, Y.M.; Kim, S.Y.; Seki, E. Eds.; Thieme Medical Publishers, 2019, 39, pp. (1)26-42.
[57]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[58]
Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z-W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004, 118(3), 285-296.
[http://dx.doi.org/10.1016/j.cell.2004.07.013] [PMID: 15294155]
[59]
Ghosh, S; Karin, M Missing pieces in the NF-κB puzzle. cell, 2002, 109(2), S81-S96.
[60]
Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[κ]B activity. Annu. Rev. Immunol., 2000, 18(1), 621-663.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.621] [PMID: 10837071]
[61]
Luo, J-L.; Kamata, H.; Karin, M. IKK/NF-kappaB signaling: balancing life and death--a new approach to cancer therapy. J. Clin. Invest., 2005, 115(10), 2625-2632.
[http://dx.doi.org/10.1172/JCI26322] [PMID: 16200195]
[62]
Hao, C-M.; Yull, F.; Blackwell, T.; Kömhoff, M.; Davis, L.S.; Breyer, M.D. Dehydration activates an NF-kappaB-driven, COX2-dependent survival mechanism in renal medullary interstitial cells. J. Clin. Invest., 2000, 106(8), 973-982.
[http://dx.doi.org/10.1172/JCI9956] [PMID: 11032857]
[63]
Rius, J.; Guma, M.; Schachtrup, C.; Akassoglou, K.; Zinkernagel, A.S.; Nizet, V.; Johnson, R.S.; Haddad, G.G.; Karin, M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature, 2008, 453(7196), 807-811.
[http://dx.doi.org/10.1038/nature06905] [PMID: 18432192]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy