Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Review on Chitosan in Drug Delivery for Treatment of Neurological and Psychiatric Disorders

Author(s): Mehran Shayganfard*

Volume 23, Issue 4, 2022

Published on: 22 June, 2021

Page: [538 - 551] Pages: 14

DOI: 10.2174/1389201022666210622111028

Price: $65

Abstract

Abstract: Neurological diseases are known as global health problems with a growing number of patients annually. Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease as well as spinal cord injury, hypoxic ischemia injury, epilepsy, depression and etc., are some examples of neurological diseases. One of the main problems in the treatment of these diseases is the delivery of drugs across the blood-brain barrier (BBB). These days, researchers have tended to find non-invasive and non-toxic strategies for solving this problem. As a non-toxic, safe, and potential agent, chitosan has attracted attention for use in drug delivery systems. Recently, numerous studies have been designed to develop drug delivery systems by using chitosan to treat various neurological diseases. In this paper, the latest developments of chitosan and its derivatives utilization in the drug delivery systems for the treatment of different neurological and psychiatric diseases were reviewed.

Keywords: Chitosan, neurological disease, blood-brain barrier, depression, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, hypoxic ischemia injury, epilepsy.

Graphical Abstract
[1]
Haider, B. von Oertzen, J Neurological disorders. Best prac. & res. Clin. Obs. & Gynaec., 2013, 27, 867-875.
[http://dx.doi.org/10.1016/j.bpobgyn.2013.07.007]
[2]
Zhao, X.; Chen, R.; Liu, M.; Feng, J.; Chen, J.; Hu, K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm. Sin. B, 2017, 7(5), 541-553.
[http://dx.doi.org/10.1016/j.apsb.2017.07.002] [PMID: 28924548]
[3]
Gao, H. Perspectives on dual targeting delivery systems for brain tumors. J. Neuroimmune Pharmacol., 2017, 12(1), 6-16.
[http://dx.doi.org/10.1007/s11481-016-9687-4] [PMID: 27270720]
[4]
Fang, F.; Zou, D.; Wang, W.; Yin, Y.; Yin, T.; Hao, S.; Wang, B.; Wang, G.; Wang, Y. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater. Sci. Eng. C, 2017, 76, 1316-1327.
[http://dx.doi.org/10.1016/j.msec.2017.02.056] [PMID: 28482500]
[5]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[6]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 21.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[7]
Prabaharan, M. Review paper: Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl., 2008, 23(1), 5-36.
[http://dx.doi.org/10.1177/0885328208091562] [PMID: 18593819]
[8]
Hanafy, A.S.; Farid, R.M.; Helmy, M.W.; ElGamal, S.S. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv., 2016, 23(8), 3111-3122.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[9]
Patel, D.; Naik, S.; Misra, A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J. Pharm. Sci., 2012, 101(2), 690-706.
[http://dx.doi.org/10.1002/jps.22780] [PMID: 22006260]
[10]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[11]
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm., 2015, 12(8), 2755-2766.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[12]
Aiedeh, K.; Taha, M.O. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch. Pharm. (Weinheim), 1999, 332(3), 103-107.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19993)332:3<103:AID-ARDP103>3.0.CO;2-U] [PMID: 10228455]
[13]
Sieval, A.; Thanou, M.; Kotze, A.; Verhoef, J.; Brussee, J.; Junginger, H. Preparation and NMR characterization of highly substitutedN-trimethyl chitosan chloride. Carbohydr. Polym., 1998, 36, 157-165.
[http://dx.doi.org/10.1016/S0144-8617(98)00009-5]
[14]
Bernkop-Schnürch, A.; Hornof, M.; Zoidl, T. Thiolated polymers-thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm., 2003, 260(2), 229-237.
[http://dx.doi.org/10.1016/S0378-5173(03)00271-0] [PMID: 12842342]
[15]
Hornof, M.D.; Kast, C.E.; Bernkop-Schnürch, A. in vitro evaluation of the viscoelastic properties of chitosan-thioglycolic acid conjugates. Eur. J. Pharm. Biopharm., 2003, 55(2), 185-190.
[http://dx.doi.org/10.1016/S0939-6411(02)00162-5] [PMID: 12637095]
[16]
Roldo, M.; Hornof, M.; Caliceti, P.; Bernkop-Schnürch, A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 2004, 57(1), 115-121.
[http://dx.doi.org/10.1016/S0939-6411(03)00157-7] [PMID: 14729087]
[17]
Ubaidulla, U.; Khar, R.K.; Ahmad, F.J.; Sultana, Y.; Panda, A.K. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. J. Pharm. Sci., 2007, 96(11), 3010-3023.
[http://dx.doi.org/10.1002/jps.20969] [PMID: 17588259]
[18]
Ubaidulla, U.; Sultana, Y.; Ahmed, F.J.; Khar, R.K.; Panda, A.K. Chitosan phthalate microspheres for oral delivery of insulin: Preparation, characterization, and in vitro evaluation. Drug Deliv., 2007, 14(1), 19-23.
[http://dx.doi.org/10.1080/10717540600559478] [PMID: 17107927]
[19]
Rekha, M.R.; Sharma, C.P. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J. Control. Release, 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.011] [PMID: 19331862]
[20]
Tomita, M.; Hayashi, M.; Horie, T.; Ishizawa, T.; Awazu, S. Enhancement of colonic drug absorption by the transcellular permeation route. Pharm. Res., 1988, 5(12), 786-789.
[http://dx.doi.org/10.1023/A:1015992819290] [PMID: 3247289]
[21]
Le Tien, C.; Lacroix, M.; Ispas-Szabo, P.; Mateescu, M.A. N-acylated chitosan: Hydrophobic matrices for controlled drug release. J. Control. Release, 2003, 93(1), 1-13.
[http://dx.doi.org/10.1016/S0168-3659(03)00327-4] [PMID: 14602417]
[22]
Thanou, M.; Nihot, M.T.; Jansen, M.; Verhoef, J.C.; Junginger, H.E. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci., 2001, 90(1), 38-46.
[http://dx.doi.org/10.1002/1520-6017(200101)90:1<38:AID-JPS5>3.0.CO;2-3] [PMID: 11064377]
[23]
Jayakumar, R.; Prabaharan, M.; Reis, R.; Mano, J. Graft copolymerized chitosan—present status and applications. Carbohydr. Polym., 2005, 62, 142-158.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.017]
[24]
Qian, L.; Zheng, J.; Wang, K.; Tang, Y.; Zhang, X.; Zhang, H.; Huang, F.; Pei, Y.; Jiang, Y. Cationic core-shell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials, 2013, 34(35), 8968-8978.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.097] [PMID: 23953782]
[25]
Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers (Basel), 2018, 10(4), 10.
[http://dx.doi.org/10.3390/polym10040462] [PMID: 30966497]
[26]
Bugnicourt, L.; Ladavière, C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog. Polym. Sci., 2016, 60, 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.06.002]
[27]
Vunain, E.; Mishra, A.; Mamba, B. Fundamentals of chitosan for biomedical applications chitosan based biomaterials.Elsevier, 2017, 1, 3-30.
[28]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[29]
Kim, S-K. Chitin and chitosan derivatives: Advances in drug discovery and developments; CRC press, 2013.
[http://dx.doi.org/10.1201/b15636]
[30]
Gu, J.; Al-Bayati, K.; Ho, E.A. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv. Transl. Res., 2017, 7(4), 497-506.
[http://dx.doi.org/10.1007/s13346-017-0368-5] [PMID: 28315051]
[31]
Wu, J.; Jiang, W.; Shen, Y.; Jiang, W.; Tian, R. Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH-sensitive controlled release of doxorubicin. Mater. Sci. Eng. C, 2017, 70(Pt 1), 132-140.
[http://dx.doi.org/10.1016/j.msec.2016.08.054] [PMID: 27770872]
[32]
Liang, J.; Yan, H.; Puligundla, P.; Gao, X.; Zhou, Y.; Wan, X. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocoll., 2017, 69, 286-292.
[http://dx.doi.org/10.1016/j.foodhyd.2017.01.041]
[33]
Rastogi, H.; Jana, S. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(1), 33-43.
[http://dx.doi.org/10.1007/s13318-014-0234-5] [PMID: 25351179]
[34]
Jing, Z.W.; Ma, Z.W.; Li, C.; Jia, Y.Y.; Luo, M.; Ma, X.X.; Zhou, S.Y.; Zhang, B.L. Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery. Bioorg. Med. Chem. Lett., 2017, 27(4), 1003-1006.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.072] [PMID: 28087273]
[35]
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[36]
Bui, V.K.H.; Park, D.; Lee, Y.C. Chitosan combined with zno, tio2 and ag nanoparticles for antimicrobial wound healing applications: A mini review of the research trends. Polymers (Basel), 2017, 9(1), 21.
[http://dx.doi.org/10.3390/polym9010021] [PMID: 30970696]
[37]
Sivashankari, P.R.; Prabaharan, M. Prospects of chitosan-based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol.,, 2016, 93(Pt B), 1382-1389.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.043] [PMID: 26899174]
[38]
Hilbush, B.S.; Morrison, J.H.; Young, W.G.; Sutcliffe, J.G.; Bloom, F.E. New prospects and strategies for drug target discovery in neurodegenerative disorders. NeuroRx, 2005, 2(4), 627-637.
[http://dx.doi.org/10.1602/neurorx.2.4.627] [PMID: 16489370]
[39]
Winblad, B.; Ljunggren, G.; Karlsson, G.; Wimo, A. What are the costs to society and to individuals regarding diagnostic procedures and care of patients with dementia? Acta Neurol. Scand. Suppl., 1996, 168, 101-104.
[http://dx.doi.org/10.1111/j.1600-0404.1996.tb00382.x] [PMID: 8997429]
[40]
Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991, 349(6311), 704-706.
[http://dx.doi.org/10.1038/349704a0] [PMID: 1671712]
[41]
Levy-Lahad, E.; Wasco, W.; Poorkaj, P.; Romano, D.M.; Oshima, J.; Pettingell, W.H.; Yu, C.E.; Jondro, P.D.; Schmidt, S.D.; Wang, K. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 1995, 269(5226), 973-977.
[http://dx.doi.org/10.1126/science.7638622] [PMID: 7638622]
[42]
Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; Larson, E.; Levy-Lahad, E.; Viitanen, M.; Peskind, E.; Poorkaj, P.; Schellenberg, G.; Tanzi, R.; Wasco, W.; Lannfelt, L.; Selkoe, D.; Younkin, S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med., 1996, 2(8), 864-870.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[43]
Citron, M. Strategies for disease modification in Alzheimer’s disease. Nat. Rev. Neurosci., 2004, 5(9), 677-685.
[http://dx.doi.org/10.1038/nrn1495] [PMID: 15322526]
[44]
Hardy, J.; Gwinn-Hardy, K. Genetic classification of primary neurodegenerative disease. Science, 1998, 282(5391), 1075-1079.
[http://dx.doi.org/10.1126/science.282.5391.1075] [PMID: 9804538]
[45]
Rai, S.N.; Singh, P.; Varshney, R.; Chaturvedi, V.K.; Vamanu, E.; Singh, M.P.; Singh, B.K. Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen. Res., 2021, 16(9), 1730-1739.
[http://dx.doi.org/10.4103/1673-5374.306066] [PMID: 33510062]
[46]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[47]
Jaruszewski, K.M.; Ramakrishnan, S.; Poduslo, J.F.; Kandimalla, K.K. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine (Lond.), 2012, 8(2), 250-260.
[http://dx.doi.org/10.1016/j.nano.2011.06.008] [PMID: 21704598]
[48]
Yang, R.; Zheng, Y.; Wang, Q.; Zhao, L. Curcumin-loaded chitosan-bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res. Lett., 2018, 13(1), 330.
[http://dx.doi.org/10.1186/s11671-018-2759-z] [PMID: 30350003]
[49]
Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104, 3544-3556.
[http://dx.doi.org/10.1002/jps.2455]
[50]
Khodagholi, F.; Eftekharzadeh, B.; Maghsoudi, N.; Rezaei, P.F. Chitosan prevents oxidative stress-induced amyloid beta formation and cytotoxicity in NT2 neurons: Involvement of transcription factors Nrf2 and NF-kappaB. Mol. Cell. Biochem., 2010, 337(1-2), 39-51.
[http://dx.doi.org/10.1007/s11010-009-0284-1] [PMID: 19844776]
[51]
Kim, M.S.; Sung, M.J.; Seo, S.B.; Yoo, S.J.; Lim, W.K.; Kim, H.M. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta peptide and interleukin-1beta. Neurosci. Lett., 2002, 321(1-2), 105-109.
[http://dx.doi.org/10.1016/S0304-3940(02)00066-6] [PMID: 11872267]
[52]
Dai, X.; Hou, W.; Sun, Y.; Gao, Z.; Zhu, S.; Jiang, Z. Chitosan oligosaccharides inhibit/disaggregate fibrils and attenuate amyloid β-mediated neurotoxicity. Int. J. Mol. Sci., 2015, 16(5), 10526-10536.
[http://dx.doi.org/10.3390/ijms160510526] [PMID: 26006224]
[53]
Dai, X.; Chang, P.; Zhu, Q.; Liu, W.; Sun, Y.; Zhu, S.; Jiang, Z. Chitosan oligosaccharides protect rat primary hippocampal neurons from oligomeric β-amyloid 1-42-induced neurotoxicity. Neurosci. Lett., 2013, 554, 64-69.
[http://dx.doi.org/10.1016/j.neulet.2013.08.046] [PMID: 23999027]
[54]
Mahl, C.R.A.; Taketa, T.B. Copper ion uptake by chitosan in the presence of amyloid-β and histidine. Appl. Biochem. Biotechnol., 2020, 190(3), 949-965.
[55]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[56]
Ren, Y.; Zhao, X.; Liang, X.; Ma, P.X.; Guo, B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1079-1087.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.130] [PMID: 28746885]
[57]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[58]
Manigandan, V.; Nataraj, J.; Karthik, R.; Manivasagam, T.; Saravanan, R.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J. Low molecular weight sulfated chitosan: Neuroprotective effect on rotenone-induced in vitro parkinson’s disease. Neurotox. Res., 2019, 35(3), 505-515.
[http://dx.doi.org/10.1007/s12640-018-9978-z] [PMID: 30426393]
[59]
Rukmangathen, R.; Yallamalli, I.M.; Yalavarthi, P.R. Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of parkinson’s disease. Curr. Drug Discov. Technol., 2019, 16(4), 417-425.
[http://dx.doi.org/10.2174/1570163815666180418144019] [PMID: 29669501]
[60]
Bhattamisra, S.K.; Shak, A.T.; Xi, L.W.; Safian, N.H.; Choudhury, H.; Lim, W.M.; Shahzad, N.; Alhakamy, N.A.; Anwer, M.K.; Radhakrishnan, A.K.; Md, S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm., 2020, 579 ,119148
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[61]
Gartziandia, O.; Herrán, E.; Ruiz-Ortega, J.A.; Miguelez, C.; Igartua, M.; Lafuente, J.V.; Pedraz, J.L.; Ugedo, L.; Hernández, R.M. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with gdnf improves behavioral and histological recovery in a partial lesion model of parkinson’s disease. J. Biomed. Nanotechnol., 2016, 12(12), 2220-2230.
[http://dx.doi.org/10.1166/jbn.2016.2313] [PMID: 29372975]
[62]
Hu, X.; Zhou, X.; Li, Y.; Jin, Q.; Tang, W.; Chen, Q.; Aili, D.; Qian, H. Application of stem cells and chitosan in the repair of spinal cord injury. Int. J. Dev. Neurosci., 2019, 76, 80-85.
[http://dx.doi.org/10.1016/j.ijdevneu.2019.07.005] [PMID: 31302172]
[63]
Hao, P.; Duan, H.; Hao, F.; Chen, L.; Sun, M.; Fan, K.S.; Sun, Y.E.; Williams, D.; Yang, Z.; Li, X. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials, 2017, 140, 88-102.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.014] [PMID: 28641124]
[64]
Oudega, M.; Hao, P.; Shang, J.; Haggerty, A.E.; Wang, Z.; Sun, J.; Liebl, D.J.; Shi, Y.; Cheng, L.; Duan, H.; Sun, Y.E.; Li, X.; Lemmon, V.P. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp. Neurol., 2019, 312, 51-62.
[http://dx.doi.org/10.1016/j.expneurol.2018.11.003] [PMID: 30471251]
[65]
Yang, Z.; Duan, H.; Mo, L.; Qiao, H.; Li, X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials, 2010, 31(18), 4846-4854.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.015] [PMID: 20346501]
[66]
Chedly, J.; Soares, S.; Montembault, A.; von Boxberg, Y.; Veron-Ravaille, M.; Mouffle, C.; Benassy, M.N.; Taxi, J.; David, L.; Nothias, F. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials, 2017, 138, 91-107.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.024] [PMID: 28554011]
[67]
Yao, Z.A.; Chen, F.J.; Cui, H.L.; Lin, T.; Guo, N.; Wu, H.G. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats. Neural Regen. Res., 2018, 13(3), 502-509.
[http://dx.doi.org/10.4103/1673-5374.228756] [PMID: 29623937]
[68]
Boido, M.; Ghibaudi, M.; Gentile, P.; Favaro, E.; Fusaro, R.; Tonda-Turo, C. Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci. Rep., 2019, 9(1), 6402.
[http://dx.doi.org/10.1038/s41598-019-42848-w] [PMID: 31024032]
[69]
Ji, W.C.; Li, M.; Jiang, W.T.; Ma, X.; Li, J. Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury. Neurol. Res., 2020, 42(5), 361-371.
[http://dx.doi.org/10.1080/01616412.2020.1735819] [PMID: 32149594]
[70]
Kwiecien, J.M.; Zhang, L.; Yaron, J.R.; Schutz, L.N.; Kwiecien-Delaney, C.J.; Awo, E.A.; Burgin, M.; Dabrowski, W.; Lucas, A.R. Local serpin treatment via chitosan-collagen hydrogel after spinal cord injury reduces tissue damage and improves neurologic function. J. Clin. Med., 2020, 9(4), 1221.
[http://dx.doi.org/10.3390/jcm9041221] [PMID: 32340262]
[71]
Wang, D.; Wang, K.; Liu, Z.; Wang, Z.; Wu, H. Valproic acid-labeled chitosan nanoparticles promote recovery of neuronal injury after spinal cord injury. Aging (Albany NY), 2020, 12(10), 8953-8967.
[http://dx.doi.org/10.18632/aging.103125] [PMID: 32463791]
[72]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.M.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[73]
Khoshnam, S.E.; Winlow, W.; Farzaneh, M.; Farbood, Y.; Moghaddam, H.F. Pathogenic mechanisms following ischemic stroke. Neurol. Sci., 2017, 38(7), 1167-1186.
[http://dx.doi.org/10.1007/s10072-017-2938-1] [PMID: 28417216]
[74]
Xiao, X.Y.; Zhu, Y.X.; Bu, J.Y.; Li, G.W.; Zhou, J.H.; Zhou, S.P. Evaluation of neuroprotective effect of thymoquinone nanoform-ulation in the rodent cerebral ischemia-reperfusion. Model Bio-med. Res. Int., 2016, 2016 ,2571060
[http://dx.doi.org/10.3233/JAD-180875] [PMID: 30584147]
[75]
Ding, Y.; Qiao, Y.; Wang, M.; Zhang, H.; Li, L.; Zhang, Y.; Ge, J.; Song, Y.; Li, Y.; Wen, A. Enhanced neuroprotection of acetyl-11-keto-β-boswellic acid (akba)-loaded o-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol. Neurobiol., 2016, 53(6), 3842-3853.
[http://dx.doi.org/10.1007/s12035-015-9333-9] [PMID: 26162321]
[76]
Liu, S; Ho, PC Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. 2017, 69, 1495-1501.
[77]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int. J. Biol. Macromol., 2016, 91, 640-655.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.001] [PMID: 27264648]
[78]
Xiao, X.Y.; Zhu, Y.X.; Bu, J.Y.; Li, G.W.; Zhou, J.H.; Zhou, S.P. Evaluation of neuroprotective effect of thymoquinone nanoformulation in the rodent cerebral ischemia-reperfusion model 2016, 2016.2571060.
[79]
Safonova, O.A.; Popova, T.N.; Slivkin, A.I.; Dankovtseva, A.S. Effect of succinic acid derivatives and chitosan on the oxidation status of tissues in rats with cerebral ischemia/reperfusion model. Eksp. Klin. Farmakol., 2014, 77(1), 7-9.
[PMID: 24649594]
[80]
Moghaddam, A.H.; Mokhtari Sangdehi, S.R.; Ranjbar, M.; Hasantabar, V. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur. J. Pharmacol., 2020, 877 ,173066
[http://dx.doi.org/10.1016/j.ejphar.2020.173066] [PMID: 32171791]
[81]
Manford, M. Recent advances in epilepsy. J. Neurol., 2017, 264(8), 1811-1824.
[http://dx.doi.org/10.1007/s00415-017-8394-2] [PMID: 28120042]
[82]
Anissian, D.; Ghasemi-Kasman, M.; Khalili-Fomeshi, M.; Akbari, A.; Hashemian, M.; Kazemi, S.; Moghadamnia, A.A. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy.Int.J. Biol. Macromol., 2018, 107(Pt A), 973-983.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.073] [PMID: 28939512]
[83]
Hashemian, M.; Anissian, D.; Ghasemi-Kasman, M.; Akbari, A.; Khalili-Fomeshi, M.; Ghasemi, S.; Ahmadi, F.; Moghadamnia, A.A.; Ebrahimpour, A. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 462-471.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.025] [PMID: 28778407]
[84]
Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci., 2018, 13(1), 72-81.
[http://dx.doi.org/10.1016/j.ajps.2017.09.001] [PMID: 32104380]
[85]
Ahmad, N.; Ahmad, R.; Alrasheed, R.A.; Almatar, H.M.A.; Al-Ramadan, A.S.; Amir, M.; Sarafroz, M. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics, 2020, 12(3), 12.
[http://dx.doi.org/10.3390/pharmaceutics12030203] [PMID: 32120778]
[86]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[87]
Tong, G.F.; Qin, N.; Sun, L.W. Development and evaluation of desvenlafaxine loaded plga-chitosan nanoparticles for brain delivery. Saudi Pharm. J., 2017, 25(6), 844-851.
[http://dx.doi.org/10.1016/j.jsps.2016.12.003] [PMID: 28951668]
[88]
Haque, S.; Md, S.; Fazil, M.; Kumar, M.; Sahni, J.K.; Ali, J.; Baboota, S. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr. Polym., 2012, 89(1), 72-79.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.051] [PMID: 24750606]
[89]
Singh, D.; Rashid, M.; Hallan, S.S.; Mehra, N.K.; Prakash, A.; Mishra, N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 865-877.
[PMID: 26042481]
[90]
Margret, A.A.; Dhayabaran, V.V.; Kumar, A.G. Nanoparticulated polymeric composites enfolding lithium carbonate as brain drug in persuading depression: An in vivo study. Prog. Biomater., 2017, 6(4), 165-173.
[http://dx.doi.org/10.1007/s40204-017-0076-8] [PMID: 29116617]
[91]
Fahmy, H.M.; Khadrawy, Y.A.; Abd-El Daim, T.M.; Elfeky, A.S.; Abd Rabo, A.A.; Mustafa, A.B.; Mostafa, I.T. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol. Behav., 2020, 222 ,112934
[http://dx.doi.org/10.1016/j.physbeh.2020.112934] [PMID: 32353367]
[92]
Navarrete, A.; van Schaik, C.P.; Isler, K. Energetics and the evolution of human brain size. Nature, 2011, 480(7375), 91-93.
[http://dx.doi.org/10.1038/nature10629] [PMID: 22080949]
[93]
Lin, J.S. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med. Rev., 2000, 4(5), 471-503.
[http://dx.doi.org/10.1053/smrv.2000.0116] [PMID: 17210278]
[94]
Rai, S.N.; Mishra, D.; Singh, P.; Vamanu, E.; Singh, M.P. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed. Pharmacother., 2021, 137 ,111377
[http://dx.doi.org/10.1016/j.biopha.2021.111377] [PMID: 33601145]
[95]
Sehgal, S.A.; Khattak, N.A.; Mir, A. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA), a candidate schizophrenia gene. Theor. Biol. Med. Model., 2013, 10, 3.
[http://dx.doi.org/10.1186/1742-4682-10-3] [PMID: 23286827]
[96]
Sehgal, S.A. Pharmacoinformatics, adaptive evolution, and elucidation of six novel compounds for schizophrenia treatment by targeting daoa (g72) isoforms. BioMed Res. Int., 2017, 2017 ,5925714
[http://dx.doi.org/10.1155/2017/5925714] [PMID: 28197415]
[97]
Tahir, R.A.; Sehgal, S.A.; Khattak, N.A.; Khan Khattak, J.Z.; Mir, A. Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): An insight from structure modeling to virtual screening for designing drug against head and neck cancer. Theor. Biol. Med. Model., 2013, 10, 38.
[http://dx.doi.org/10.1186/1742-4682-10-38] [PMID: 23724937]
[98]
Sehgal, S.A.; Hassan, M.; Rashid, S. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18. Drug Des. Devel. Ther., 2014, 8, 571-581.
[http://dx.doi.org/10.2147/DDDT.S63096] [PMID: 24899801]
[99]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]
[100]
Leuzinger, W.; Baker, A.L.; Acetylcholinesterase, I. Large-scale purification, homogeneity, and amino Acid analysis. Proc. Natl. Acad. Sci. USA, 1967, 57(2), 446-451.
[http://dx.doi.org/10.1073/pnas.57.2.446] [PMID: 16591490]
[101]
Yuan, Z.; Bailey, T.L.; Teasdale, R.D. Prediction of protein B-factor profiles. Proteins, 2005, 58(4), 905-912.
[http://dx.doi.org/10.1002/prot.20375] [PMID: 15645415]
[102]
Wallner, B.; Elofsson, A. All are not equal: A benchmark of different homology modeling programs. Protein Sci., 2005, 14(5), 1315-1327.
[http://dx.doi.org/10.1110/ps.041253405] [PMID: 15840834]
[103]
Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Sali, A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 291-325.
[http://dx.doi.org/10.1146/annurev.biophys.29.1.291] [PMID: 10940251]
[104]
Snow, C.D.; Sorin, E.J.; Rhee, Y.M.; Pande, V.S. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 43-69.
[http://dx.doi.org/10.1146/annurev.biophys.34.040204.144447] [PMID: 15869383]
[105]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[106]
Zavodszky, M.I.; Rohatgi, A.; Van Voorst, J.R.; Yan, H.; Kuhn, L.A. Scoring ligand similarity in structure-based virtual screening. J. Mol. Recognit., 2009, 22(4), 280-292.
[http://dx.doi.org/10.1002/jmr.942] [PMID: 19235177]
[107]
Sehgal, S.A.; Hammad, M.A.; Tahir, R.A.; Akram, H.N.; Ahmad, F. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design. Curr. Neuropharmacol., 2018, 16(6), 649-663.
[http://dx.doi.org/10.2174/1570159X16666180315142137] [PMID: 29542412]
[108]
Fratiglioni, L.; Wang, H.X. Smoking and parkinson’s and alzheimer’s disease: Review of the epidemiological studies. Behav. Brain Res., 2000, 113(1-2), 117-120.
[http://dx.doi.org/10.1016/S0166-4328(00)00206-0] [PMID: 10942038]
[109]
Brinton, R.D. Requirements of a brain selective estrogen: Advances and remaining challenges for developing a neuroserm. J. Alzheimers Dis., 2004, 6(6)(Suppl.), S27-S35.
[PMID: 15665410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy