STING Activation and its Application in Immuno-Oncology

Author(s): Yiqian Lian*, Kevin J. Duffy, Jingsong Yang.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 24 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Recent regulatory approval of several immune checkpoint inhibitors has ushered in a new era of cancer immunotherapies with the promise of achieving a durable response. This represents a paradigm shift in cancer treatment from directly targeting tumor cells to harnessing the power of a patient’s own immune system to destroy them. The cGAS-STING pathway is the major cytosolic dsDNA sensing pathway that plays a pivotal role in the innate antitumor immune response. With a fundamentally different mode of action (MOA) than immune checkpoint modulators, STING activation can potentially enhance tumor immunogenicity and improve patient responses as a single agent or by synergizing with existing anti-cancer drugs. Therefore, there has been intense interest from the pharmaceutical industry and academic institutions in the search for potent STING agonists as immunotherapies in oncology. In this article, we review briefly the cGAS-STING pathway and STING agonists that are in the clinical and preclinical studies, summarize recently disclosed patent applications and published journal articles in the field and cover both cyclic dinucleotide (CDN) analogs and non-nucleic acid derived STING agonists.

Keywords: Agonist, Antitumor, CDN, cGAMP, cGAS, Cytokine, Immune response, Interferon, Intratumoral, STING.

[1]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[2]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[3]
Yan, X.; Zhang, S.; Deng, Y.; Wang, P.; Hou, Q.; Xu, H. Prognostic factors for checkpoint inhibitor based immunotherapy: an update with new evidences. Front. Pharmacol., 2018, 9, 1050.
[http://dx.doi.org/10.3389/fphar.2018.01050] [PMID: 30294272]
[4]
Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer, 2018, 17(1), 129.
[http://dx.doi.org/10.1186/s12943-018-0864-3] [PMID: 30139382]
[5]
Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; Piha-Paul, S.A.; Yearley, J.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest., 2017, 127(8), 2930-2940.
[http://dx.doi.org/10.1172/JCI91190] [PMID: 28650338]
[6]
Barber, G.N. STING: Infection, inflammation and cancer. Nat. Rev. Immunol., 2015, 15(12), 760-770.
[http://dx.doi.org/10.1038/nri3921] [PMID: 26603901]
[7]
Cai, X.; Chiu, Y.H.; Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell, 2014, 54(2), 289-296.
[http://dx.doi.org/10.1016/j.molcel.2014.03.040] [PMID: 24766893]
[8]
Junt, T.; Barchet, W. Translating nucleic acid-sensing pathways into therapies. Nat. Rev. Immunol., 2015, 15(9), 529-544.
[http://dx.doi.org/10.1038/nri3875] [PMID: 26292638]
[9]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[10]
Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265), 788-792.
[http://dx.doi.org/10.1038/nature08476] [PMID: 19776740]
[11]
Liu, Y.; Jesus, A.A.; Marrero, B.; Yang, D.; Ramsey, S.E.; Sanchez, G.A.M.; Tenbrock, K.; Wittkowski, H.; Jones, O.Y.; Kuehn, H.S.; Lee, C.R.; DiMattia, M.A.; Cowen, E.W.; Gonzalez, B.; Palmer, I.; DiGiovanna, J.J.; Biancotto, A.; Kim, H.; Tsai, W.L.; Trier, A.M.; Huang, Y.; Stone, D.L.; Hill, S.; Kim, H.J.; St Hilaire, C.; Gurprasad, S.; Plass, N.; Chapelle, D.; Horkayne-Szakaly, I.; Foell, D.; Barysenka, A.; Candotti, F.; Holland, S.M.; Hughes, J.D.; Mehmet, H.; Issekutz, A.C.; Raffeld, M.; McElwee, J.; Fontana, J.R.; Minniti, C.P.; Moir, S.; Kastner, D.L.; Gadina, M.; Steven, A.C.; Wingfield, P.T.; Brooks, S.R.; Rosenzweig, S.D.; Fleisher, T.A.; Deng, Z.; Boehm, M.; Paller, A.S.; Goldbach-Mansky, R. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med., 2014, 371(6), 507-518.
[http://dx.doi.org/10.1056/NEJMoa1312625] [PMID: 25029335]
[12]
Marrero, B.; Calvo, K.R.; Liu, Y.; Biancotto, A.; Huang, Y. Goldbach- Mansky, R Autoinflammatory diseases, particularly SAVI and candle, are driven by chronically active type I interferons. Arthritis Rheumatol., 2018, 70(suppl 10)
[13]
Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; Corry, P.C.; Cowan, F.M.; Frints, S.G.; Klepper, J.; Livingston, J.H.; Lynch, S.A.; Massey, R.F.; Meritet, J.F.; Michaud, J.L.; Ponsot, G.; Voit, T.; Lebon, P.; Bonthron, D.T.; Jackson, A.P.; Barnes, D.E.; Lindahl, T. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet., 2006, 38(8), 917-920.
[http://dx.doi.org/10.1038/ng1845] [PMID: 16845398]
[14]
Suschak, J.J.; Wang, S.; Fitzgerald, K.A.; Lu, S. A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines. J. Immunol., 2016, 196(1), 310-316.
[http://dx.doi.org/10.4049/jimmunol.1501836] [PMID: 26590319]
[15]
Gao, P.; Ascano, M.; Zillinger, T.; Wang, W.; Dai, P.; Serganov, A.A.; Gaffney, B.L.; Shuman, S.; Jones, R.A.; Deng, L.; Hartmann, G.; Barchet, W.; Tuschl, T.; Patel, D.J. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell, 2013, 154(4), 748-762.
[http://dx.doi.org/10.1016/j.cell.2013.07.023] [PMID: 23910378]
[16]
Ouyang, S.; Song, X.; Wang, Y.; Ru, H.; Shaw, N.; Jiang, Y.; Niu, F.; Zhu, Y.; Qiu, W.; Parvatiyar, K.; Li, Y.; Zhang, R.; Cheng, G.; Liu, Z.J. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity, 2012, 36(6), 1073-1086.
[http://dx.doi.org/10.1016/j.immuni.2012.03.019] [PMID: 22579474]
[17]
Kato, K.; Omura, H.; Ishitani, R.; Nureki, O. Cyclic GMP-AMP as an endogenous second messenger in innate immune signaling by cytosolic DNA. Annu. Rev. Biochem., 2017, 86(1), 541-566.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044813] [PMID: 28399655]
[18]
Zhang, X.; Shi, H.; Wu, J.; Zhang, X.; Sun, L.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell, 2013, 51(2), 226-235.
[http://dx.doi.org/10.1016/j.molcel.2013.05.022] [PMID: 23747010]
[19]
Zhao, B.; Du, F.; Xu, P.; Shu, C.; Sankaran, B.; Bell, S.L.; Liu, M.; Lei, Y.; Gao, X.; Fu, X.; Zhu, F.; Liu, Y.; Laganowsky, A.; Zheng, X.; Ji, J.Y.; West, A.P.; Watson, R.O.; Li, P. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature, 2019, 569(7758), 718-722.
[http://dx.doi.org/10.1038/s41586-019-1228-x] [PMID: 31118511]
[20]
Shang, G.; Zhang, C.; Chen, Z.J.; Bai, X.C.; Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature, 2019, 567(7748), 389-393.
[http://dx.doi.org/10.1038/s41586-019-0998-5] [PMID: 30842659]
[21]
Zhang, C.; Shang, G.; Gui, X.; Zhang, X.; Bai, X.C.; Chen, Z.J. Structural basis of STING binding with and phosphorylation by TBK1. Nature, 2019, 567(7748), 394-398.
[http://dx.doi.org/10.1038/s41586-019-1000-2] [PMID: 30842653]
[22]
Ergun, S.L.; Fernandez, D.; Weiss, T.M.; Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell, 2019, 178(2), 290-301.e10.
[http://dx.doi.org/10.1016/j.cell.2019.05.036] [PMID: 31230712]
[23]
Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791.
[http://dx.doi.org/10.1126/science.1232458] [PMID: 23258413]
[24]
Xiao, T.S.; Fitzgerald, K.A. The cGAS-STING pathway for DNA sensing. Mol. Cell, 2013, 51(2), 135-139.
[http://dx.doi.org/10.1016/j.molcel.2013.07.004] [PMID: 23870141]
[25]
Tanaka, Y.; Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 2012, 5(214), ra20.
[http://dx.doi.org/10.1126/scisignal.2002521] [PMID: 22394562]
[26]
Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.T.; Grishin, N.V.; Chen, Z.J. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347(6227)aaa2630
[http://dx.doi.org/10.1126/science.aaa2630] [PMID: 25636800]
[27]
Abe, T.; Barber, G.N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol., 2014, 88(10), 5328-5341.
[http://dx.doi.org/10.1128/JVI.00037-14] [PMID: 24600004]
[28]
Konno, H.; Konno, K.; Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell, 2013, 155(3), 688-698.
[http://dx.doi.org/10.1016/j.cell.2013.09.049] [PMID: 24119841]
[29]
Yi, G.; Brendel, V.P.; Shu, C.; Li, P.; Palanathan, S.; Cheng, Kao C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS One, 2013, 8(10)e77846
[http://dx.doi.org/10.1371/journal.pone.0077846] [PMID: 24204993]
[30]
Patel, S.; Jin, L. TMEM173 variants and potential importance to human biology and disease. Genes Immun., 2019, 20(1), 82-89.
[http://dx.doi.org/10.1038/s41435-018-0029-9] [PMID: 29728611]
[31]
Fuertes, M.B.; Kacha, A.K.; Kline, J.; Woo, S.R.; Kranz, D.M.; Murphy, K.M.; Gajewski, T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8alpha+ dendritic cells. J. Exp. Med., 2011, 208(10), 2005-2016.
[http://dx.doi.org/10.1084/jem.20101159] [PMID: 21930765]
[32]
Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; Murphy, K.M.; Schreiber, R.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med., 2011, 208(10), 1989-2003.
[http://dx.doi.org/10.1084/jem.20101158] [PMID: 21930769]
[33]
Woo, S.R.; Fuertes, M.B.; Corrales, L.; Spranger, S.; Furdyna, M.J.; Leung, M.Y.; Duggan, R.; Wang, Y.; Barber, G.N.; Fitzgerald, K.A.; Alegre, M.L.; Gajewski, T.F. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 2014, 41(5), 830-842.
[http://dx.doi.org/10.1016/j.immuni.2014.10.017] [PMID: 25517615]
[34]
Klarquist, J.; Hennies, C.M.; Lehn, M.A.; Reboulet, R.A.; Feau, S.; Janssen, E.M. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol., 2014, 193(12), 6124-6134.
[http://dx.doi.org/10.4049/jimmunol.1401869] [PMID: 25385820]
[35]
Song, S.; Peng, P.; Tang, Z.; Zhao, J.; Wu, W.; Li, H.; Shao, M.; Li, L.; Yang, C.; Duan, F.; Zhang, M.; Zhang, J.; Wu, H.; Li, C.; Wang, X.; Wang, H.; Ruan, Y.; Gu, J. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep., 2017, 7, 39858.
[http://dx.doi.org/10.1038/srep39858] [PMID: 28176788]
[36]
Bu, Y.; Liu, F.; Jia, Q.A.; Yu, S.N. Decreased expression of TMEM173 predicts poor prognosis in patients with hepatocellular carcinoma. PLoS One, 2016, 11(11)e0165681
[http://dx.doi.org/10.1371/journal.pone.0165681] [PMID: 27814372]
[37]
Xia, T.; Konno, H.; Barber, G.N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res., 2016, 76(22), 6747-6759.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1404] [PMID: 27680683]
[38]
Xia, T.; Konno, H.; Ahn, J.; Barber, G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep., 2016, 14(2), 282-297.
[http://dx.doi.org/10.1016/j.celrep.2015.12.029] [PMID: 26748708]
[39]
de Queiroz, N.M.G.P.; Xia, T.; Konno, H.; Barber, G.N. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res., 2019, 17(4), 974-986.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0504] [PMID: 30587523]
[40]
Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 2014, 41(5), 843-852.
[http://dx.doi.org/10.1016/j.immuni.2014.10.019] [PMID: 25517616]
[41]
Härtlova, A.; Erttmann, S.F.; Raffi, F.A.; Schmalz, A.M.; Resch, U.; Anugula, S.; Lienenklaus, S.; Nilsson, L.M.; Kröger, A.; Nilsson, J.A.; Ek, T.; Weiss, S.; Gekara, N.O. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity, 2015, 42(2), 332-343.
[http://dx.doi.org/10.1016/j.immuni.2015.01.012] [PMID: 25692705]
[42]
West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.C.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; Kaech, S.M.; Smiley, J.R.; Means, R.E.; Iwasaki, A.; Shadel, G.S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520(7548), 553-557.
[http://dx.doi.org/10.1038/nature14156] [PMID: 25642965]
[43]
Corrales, L.; McWhirter, S.M.; Dubensky, T.W., Jr; Gajewski, T.F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest., 2016, 126(7), 2404-2411.
[http://dx.doi.org/10.1172/JCI86892] [PMID: 27367184]
[44]
Corrales, L.; Matson, V.; Flood, B.; Spranger, S.; Gajewski, T.F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res., 2017, 27(1), 96-108.
[http://dx.doi.org/10.1038/cr.2016.149] [PMID: 27981969]
[45]
Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; Metchette, K.; Dubensky, T.W., Jr; Gajewski, T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030.
[http://dx.doi.org/10.1016/j.celrep.2015.04.031] [PMID: 25959818]
[46]
Jassar, A.S.; Suzuki, E.; Kapoor, V.; Sun, J.; Silverberg, M.B.; Cheung, L.; Burdick, M.D.; Strieter, R.M.; Ching, L.M.; Kaiser, L.R.; Albelda, S.M. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res., 2005, 65(24), 11752-11761.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1658] [PMID: 16357188]
[47]
Daei, F.A.A.; Jahanban-Esfahlan, R.; Seidi, K.; Samandari-Rad, S.; Zarghami, N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem. Biol. Drug Des., 2018, 91(5), 996-1006.
[http://dx.doi.org/10.1111/cbdd.13166] [PMID: 29288534]
[48]
Conlon, J.; Burdette, D.L.; Sharma, S.; Bhat, N.; Thompson, M.; Jiang, Z.; Rathinam, V.A.; Monks, B.; Jin, T.; Xiao, T.S.; Vogel, S.N.; Vance, R.E.; Fitzgerald, K.A. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol., 2013, 190(10), 5216-5225.
[http://dx.doi.org/10.4049/jimmunol.1300097] [PMID: 23585680]
[49]
Moore, E.; Clavijo, P.E.; Davis, R.; Cash, H.; Van Waes, C.; Kim, Y.; Allen, C.; Established, T. established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol. Res., 2016, 4(12), 1061-1071.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0104] [PMID: 27821498]
[50]
Ager, C.R.; Reilley, M.J.; Nicholas, C.; Bartkowiak, T.; Jaiswal, A.R.; Curran, M.A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res., 2017, 5(8), 676-684.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0049] [PMID: 28674082]
[51]
Fu, J.; Kanne, D.B.; Leong, M.; Glickman, L.H.; McWhirter, S.M.; Lemmens, E.; Mechette, K.; Leong, J.J.; Lauer, P.; Liu, W.; Sivick, K.E.; Zeng, Q.; Soares, K.C.; Zheng, L.; Portnoy, D.A.; Woodward, J.J.; Pardoll, D.M.; Dubensky, T.W., Jr; Kim, Y. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med., 2015, 7(283)283ra52
[http://dx.doi.org/10.1126/scitranslmed.aaa4306] [PMID: 25877890]
[52]
Baird, J.R.; Friedman, D.; Cottam, B.; Dubensky, T.W., Jr; Kanne, D.B.; Bambina, S.; Bahjat, K.; Crittenden, M.R.; Gough, M.J. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res., 2016, 76(1), 50-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3619] [PMID: 26567136]
[53]
Ghaffari, A.; Peterson, N.; Khalaj, K.; Vitkin, N.; Robinson, A.; Francis, J.A.; Koti, M. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer, 2018, 119(4), 440-449.
[http://dx.doi.org/10.1038/s41416-018-0188-5] [PMID: 30046165]
[54]
Jing, W.; McAllister, D.; Vonderhaar, E.P.; Palen, K.; Riese, M.J.; Gershan, J.; Johnson, B.D.; Dwinell, M.B. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J. Immunother. Cancer, 2019, 7(1), 115.
[http://dx.doi.org/10.1186/s40425-019-0573-5] [PMID: 31036082]
[55]
Li, X.D.; Wu, J.; Gao, D.; Wang, H.; Sun, L.; Chen, Z.J. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science, 2013, 341(6152), 1390-1394.
[http://dx.doi.org/10.1126/science.1244040] [PMID: 23989956]
[56]
Guo, F.; Han, Y.; Zhao, X.; Wang, J.; Liu, F.; Xu, C.; Wei, L.; Jiang, J.D.; Block, T.M.; Guo, J.T.; Chang, J. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother., 2015, 59(2), 1273-1281.
[http://dx.doi.org/10.1128/AAC.04321-14] [PMID: 25512416]
[57]
Gao, D.; Wu, J.; Wu, Y.T.; Du, F.; Aroh, C.; Yan, N.; Sun, L.; Chen, Z.J. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science, 2013, 341(6148), 903-906.
[http://dx.doi.org/10.1126/science.1240933] [PMID: 23929945]
[58]
Dubensky, T.W., Jr; Kanne, D.B.; Leong, M.L. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines, 2013, 1(4), 131-143.
[http://dx.doi.org/10.1177/2051013613501988] [PMID: 24757520]
[59]
Li, X.D.; Wu, J.; Gao, D.; Wang, H.; Sun, L.; Chen, Z.J. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science, 2013, 341(6152), 1390-1394.
[http://dx.doi.org/10.1126/science.1244040] [PMID: 23989956]
[60]
Mankan, A.K.; Müller, M.; Witte, G.; Hornung, V. Cyclic dinucleotides in the scope of the mammalian immune system. Handb. Exp. Pharmacol., 2017, 238, 269-289.
[http://dx.doi.org/10.1007/164_2016_5002] [PMID: 28181006]
[61]
Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[62]
Jeremiah, N.; Neven, B.; Gentili, M.; Callebaut, I.; Maschalidi, S.; Stolzenberg, M.C.; Goudin, N.; Frémond, M.L.; Nitschke, P.; Molina, T.J.; Blanche, S.; Picard, C.; Rice, G.I.; Crow, Y.J.; Manel, N.; Fischer, A.; Bader-Meunier, B.; Rieux-Laucat, F. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest., 2014, 124(12), 5516-5520.
[http://dx.doi.org/10.1172/JCI79100] [PMID: 25401470]
[63]
Barber, G.N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol., 2014, 35(2), 88-93.
[http://dx.doi.org/10.1016/j.it.2013.10.010] [PMID: 24309426]
[64]
Ahn, J.; Barber, G.N. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr. Opin. Immunol., 2014, 31, 121-126.
[http://dx.doi.org/10.1016/j.coi.2014.10.009] [PMID: 25459004]
[65]
Safety and efficacy of MIW815 (ADU-S100) +/- Ipilimumab in patients with advanced/metastatic solid tumors or lymphomas. https://clinicaltrials.gov/ct2/show/NCT02675439(Accessed. 2016).
[66]
Study of the safety and efficacy of MIW815 With PDR001 to patients with advanced/metastatic solid tumors or lymphomas. https://clinicaltrials.gov/ct2/show/NCT03172936 (Accessed . 2017).
[67]
Study of MK-1454 alone or in combination with pembrolizumab (MK-3475) in participants with advanced/metastatic solid tumors or lymphomas (MK-1454-001). https://clinicaltrials.gov/ct2/show/NCT03010176 (Accessed . 2017).
[68]
Study of MK-2118 administered as intratumoral injection as monotherapy and in combination with pembrolizumab (MK-3475) or by subcutaneous injection in combination with pembrolizumab in the treatment of adults with advanced/metastatic solid tumors or lymphomas (MK-2118-001). https://clinicaltrials.gov/ct2/show/NCT03249792 (Accessed . 2017).
[69]
Phase 1 First Time in Humans (FTIH), Open label study of gsk3745417 administered to subjects with advanced solid tumors https://www.clinicaltrials.gov/ct2/show/NCT03843359 (Accessed . 2019).
[70]
Harrington, K.J.; Brody, J.; Ingham, M.; Strauss, J.; Cemerski, S.; Wang, M.; Tse, A.; Khilnani, A.; Marabelle, A.; Golan, T. In: ; LBA15 Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas, , ESMO 2018 Congress, Munch, Germany, October 20, . 2018.
[71]
Meric-Bernstam, F.; Werner, T.L.; Hodi, F.S.; Messersmith, W.M.; Lewis, N.; Talluto, C.; Dostalek, M.; Tao, A.; McWhirter, S.M.; Trujillo, D.; Luke, J.J. Phase I dose-finding study of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced solid tumors or lymphomas Annual Meeting in Wahsington, D.C. November 8, 2018.
[72]
Meric-Bernstam, F.; Sandhu, S. K.; Hamid, O.; Spreafico, A.; Kasper, S.; Dummer, R.; Shimizu, T.; Steeghs, N.; Lewis, N.; Talluto, C.C.; Dolan, S.; Bean, A.; Brown, R.; Trujillo, D.; Nair, N.; Luke, J.J. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/ metastatic solid tumors or lymphomas. J. Clin. Oncol.., 2019, 37(15_suppl), 2507-2577.
[73]
Ross, P.; Weinhouse, H.; Aloni, Y.; Michaeli, D.; Weinberger-Ohana, P.; Mayer, R.; Braun, S.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Benziman, M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987, 325(6101), 279-281.
[http://dx.doi.org/10.1038/325279a0] [PMID: 18990795]
[74]
Jenal, U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr. Opin. Microbiol., 2004, 7(2), 185-191.
[http://dx.doi.org/10.1016/j.mib.2004.02.007] [PMID: 15063857]
[75]
Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev., 2013, 77(1), 1-52.
[http://dx.doi.org/10.1128/MMBR.00043-12] [PMID: 23471616]
[76]
Burdette, D.L.; Monroe, K.M.; Sotelo-Troha, K.; Iwig, J.S.; Eckert, B.; Hyodo, M.; Hayakawa, Y.; Vance, R.E. STING is a direct innate immune sensor of cyclic di-GMP. Nature, 2011, 478(7370), 515-518.
[http://dx.doi.org/10.1038/nature10429] [PMID: 21947006]
[77]
Sauer, J.D.; Sotelo-Troha, K.; von Moltke, J.; Monroe, K.M.; Rae, C.S.; Brubaker, S.W.; Hyodo, M.; Hayakawa, Y.; Woodward, J.J.; Portnoy, D.A.; Vance, R.E. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun., 2011, 79(2), 688-694.
[http://dx.doi.org/10.1128/IAI.00999-10] [PMID: 21098106]
[78]
Shu, C.; Yi, G.; Watts, T.; Kao, C.C.; Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol., 2012, 19(7), 722-724.
[http://dx.doi.org/10.1038/nsmb.2331] [PMID: 22728658]
[79]
Shang, G.; Zhu, D.; Li, N.; Zhang, J.; Zhu, C.; Lu, D.; Liu, C.; Yu, Q.; Zhao, Y.; Xu, S.; Gu, L. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol., 2012, 19(7), 725-727.
[http://dx.doi.org/10.1038/nsmb.2332] [PMID: 22728660]
[80]
Huang, Y.H.; Liu, X.Y.; Du, X.X.; Jiang, Z.F.; Su, X.D. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol., 2012, 19(7), 728-730.
[http://dx.doi.org/10.1038/nsmb.2333] [PMID: 22728659]
[81]
Yin, Q.; Tian, Y.; Kabaleeswaran, V.; Jiang, X.; Tu, D.; Eck, M.J.; Chen, Z.J.; Wu, H. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell, 2012, 46(6), 735-745.
[http://dx.doi.org/10.1016/j.molcel.2012.05.029] [PMID: 22705373]
[82]
Witte, G.; Hartung, S.; Büttner, K.; Hopfner, K.P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell, 2008, 30(2), 167-178.
[http://dx.doi.org/10.1016/j.molcel.2008.02.020] [PMID: 18439896]
[83]
Davies, B.W.; Bogard, R.W.; Young, T.S.; Mekalanos, J.J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell, 2012, 149(2), 358-370.
[http://dx.doi.org/10.1016/j.cell.2012.01.053] [PMID: 22500802]
[84]
Chandra, D.; Quispe-Tintaya, W.; Jahangir, A.; Asafu-Adjei, D.; Ramos, I.; Sintim, H.O.; Zhou, J.; Hayakawa, Y.; Karaolis, D.K.; Gravekamp, C. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res., 2014, 2(9), 901-910.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0123] [PMID: 24913717]
[85]
Diner, E.J.; Burdette, D.L.; Wilson, S.C.; Monroe, K.M.; Kellenberger, C.A.; Hyodo, M.; Hayakawa, Y.; Hammond, M.C.; Vance, R.E. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep., 2013, 3(5), 1355-1361.
[http://dx.doi.org/10.1016/j.celrep.2013.05.009] [PMID: 23707065]
[86]
Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B.L.; Zillinger, T.; Serganov, A.A.; Liu, Y.; Jones, R.A.; Hartmann, G.; Tuschl, T.; Patel, D.J. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 2013, 153(5), 1094-1107.
[http://dx.doi.org/10.1016/j.cell.2013.04.046] [PMID: 23647843]
[87]
Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013, 339(6121), 826-830.
[http://dx.doi.org/10.1126/science.1229963] [PMID: 23258412]
[88]
Ablasser, A.; Goldeck, M.; Cavlar, T.; Deimling, T.; Witte, G.; Röhl, I.; Hopfner, K.P.; Ludwig, J.; Hornung, V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature, 2013, 498(7454), 380-384.
[http://dx.doi.org/10.1038/nature12306] [PMID: 23722158]
[89]
Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y.; Celis, E.; Kobayashi, H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother., 2017, 66(6), 705-716.
[http://dx.doi.org/10.1007/s00262-017-1975-1] [PMID: 28243692]
[90]
Woo, S.R.; Corrales, L.; Gajewski, T.F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol., 2015, 36(4), 250-256.
[http://dx.doi.org/10.1016/j.it.2015.02.003] [PMID: 25758021]
[91]
Li, T.; Cheng, H.; Yuan, H.; Xu, Q.; Shu, C.; Zhang, Y.; Xu, P.; Tan, J.; Rui, Y.; Li, P.; Tan, X. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci. Rep., 2016, 6, 19049.
[http://dx.doi.org/10.1038/srep19049] [PMID: 26754564]
[92]
Aduro Biotech establishes major collaboration with Novartis for global research, development and commercialization of immunooncology products derived from its proprietary STING-targeted CDN platform technology, a deal worth up to 750 million dollars that was announced. http://investors.aduro.com/news-releases/news-release-details/aduro-biotech-establishes-major-collaboration-novartis-global?field_nir_news_date_value[min]= 2019 (Accessed . 2015).
[93]
Dubensky, T.W., Jr; Kanne, D.B.; Leong, M.L.L.; Lemmens, E.E.; Glickman, L.H. Compositions comprising cyclic purine dinucleotides having defined stereochemistries and methods for their preparation and use. EP2931738A4, 21,. 2015.
[94]
Katibah, G.E.; Kanne, D.; Sung, L.; Gauthier, K.; Glickman, L.H.; Leong, J.; McWhirter, S.M.; Dubensky, T.W. Jr Preparation of cyclic- di-nucleotides and methods for activating "stimulator of interferon gene" dependent signaling. WO2016145102A1, 15,. 2016.
[95]
Dubensky, T.W. Jr, Jr; Kanne, D.B.; Leong, M.L.L. Glickman, L.H.; Vance, R.E.; Lemmens, E.E.. Compositions and methods for activating "stimulator of interferon gene"-dependent signalling. US20150056224A1, 26, 2015.
[96]
Gajewski, T.F.; Woo, S.-R.; Corrales, L. Use of stimulator of interferon genes (STING) agonist as cancer treatment. WO2015077354A1, 28,. 2015.
[97]
Glickman, L.H.; Corrales, L.; Kanne, D.B.; Kasibhatla, S.; Li, J.; Pferdekamper, A.M.C.; Gauthier, K.S.; Katibah, G.E.; Leong, J.J.; Sung, L.; Metchette, K.; Deng, W.; Desbien, A.L.; Ndubaku, C.; Zheng, L.; Cho, C.; Feng, Y.; McKenna, J.M.; Tallarico, J.A.; Bender, S.L.; McWhirter, S.M.; Gajewski, T.F.; Dubensky, T.W. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030.
[http://dx.doi.org/10.1016/j.celrep.2015.04.031]
[98]
Sivick, K.E.; Desbien, A.L.; Glickman, L.H.; Reiner, G.L.; Corrales, L.; Surh, N.H.; Hudson, T.E.; Vu, U.T.; Francica, B.J.; Banda, T.; Katibah, G.E.; Kanne, D.B.; Leong, J.J.; Metchette, K.; Bruml, J.R.; Ndubaku, C.O.; McKenna, J.M.; Feng, Y.; Zheng, L.; Bender, S.L.; Cho, C.Y.; Leong, M.L.; van Elsas, A.; Dubensky, T. W., Jr; McWhirter, S. M. Magnitude of Therapeutic STING Activation Determines CD8(+) T Cell-Mediated Anti-tumor Immunity. Cell Rep, 2018, 25(11), 3074-3085. e5
[99]
Katibah, G.E.; Kanne, D.; Sung, L.; Gauthier, K.; Glickman, L.H.; Leong, J.; McWhirter, S.M.; Dubensky, T.W.; McKenna, J.; Canham, S.M.; Ndubaku, C. O. Preparation of cyclic purine dinucleotides and their uses for activating "stimulator of interferon gene"- dependent signaling. WO2017075477A1, May 4,. 2017.
[100]
Kanne, D. B.; Ndubaku, C. O.; Bruml, J. R.; Le, T. N. N.; McKenna, J.; Tria, G. S.; Canham, S. Locked nucleic acid cyclic dinucleotide compounds targeting human STING receptor for modulating immune response and treatment of cancer. WO2018009466A1, January 11,. 2018.
[101]
Altman, M.D.; Andresen, B.; Chang, W.; Childers, M. L.; Cumming, J.N.; Haidle, A.M.; Henderson, T.J.; Jewell, J.P.; Liang, R.; Lim, J.; Liu, H.; Lu, M.; Northrup, A. B.; Otte, R.D.; Siu, T.; Trotter, B.W.; Truong, Q.T.; Walsh, S.P.; Zhao, K. Preparation of cyclic di-nucleotide compounds as STING. WO2017027646A1, Feb 16,. 2017.
[102]
Emanuel, S.; Richter, M.; Connolly, P.J.; Edwards, J.P.; Wang, G.; Thatikonda, S.K.; Beigelman, L.; Zhong, M.; Bignan, G. Preparation of cyclic dinucleotides as STING agonists. WO18138684A1, June 14. 2018.
[103]
Oost, T.; Fleck, M.; Kuttruff, C.A.; Carotta, S. Modified cyclic dinucleotide compounds. US20180273578, Sep 27. 2018.
[104]
Biggadike, K.; Champigny, A.C.; Coe, D.M.; Needham, D.; Tape, D.T. Preparation of cyclic di-nucleotides as modulators of sting. US20180186828, Feb 2. 2015.
[105]
Biggadike, K.; Champigny, A.C.; Coe, D.M.; Needham, D.; Tape, D.T. Cyclic dinucleotides useful for the treatment of inter alia cancer. US20180002369, Jan 4, . 2018.
[106]
Adams, J.L.; Duffy, K.J.; Lian, Y. Preparation of cyclic purine dinucleotides as modulators of STING. WO2017093933A1, June 8. 2017.
[107]
Lian, Y. In: Discovery and preclicinal characterization of GSK’532, a highly efficacious STING agonist for immunooncology. , 15th Annual Mastering Medicinal Chemistry, Part of the 17th World Preclinical Congress, Boston, June 18-21,2018.
[108]
Yang, J.; Adam, M.; Clemens, J.; Creech, K.; Schneck, J.; Pasikanti, K.; Tran, J-L.; Joglekar, D.; Hopson, C.; Pesiridis, S.; Ramanjulu, J.; Lian, Y.; Adams, J.L.; Smothers, J.; Hoos, A. In: Preclinical characterization of GSK532, a novel STING agonist with potent anti-tumor activity, , Abstract no 5554: Proceedings of the American Association for Cancer Research Annual Meeting 2018, Chicago, IL, Philadelphia (PA): AACR; Cancer Res: Chicago, IL,. 2018, 78(13 Suppl)(Accessed https://cancerres.aacrjournals.org/content/78/13_ Supplement/5554
[http://dx.doi.org/10.1158/1538-7445.AM2018-5554]
[109]
Altman, M.D.; Andresen, B.; Chang, W.; Childers, M. L.; Cumming, J.N.; Haidle, A.M.; Henderson, T.J.; Jewell, J.P.; Lu, M.; Northrup, A.B.; Otte, R.D.; Siu, T.; Trotter, B.W.; Truong, Q.T. Preparation of Cyclic di-nucleotide compounds as STING agonists. WO2017027645A1, Feb 16,. 2017.
[110]
Cemerski, S.; Cumming, J.N.; Flateland, L.M.; Kopinja, J.E.; Ma, Y.; Perera, S.A.; Trotter, B. W.; Tse, A. N.-C. Cyclic dinucleotide sting agonists for cancer treatment. US2018118665, June 28. 2018.
[111]
Cemerski, S.; Cumming, J.N.; Kopinja, J. E.; Ma, Y.; Perera, S. A.; Trotter, B.W.; Tse, A. N.-C. Combinations of PD-1 antagonists and cyclic dinucleotide sting agonists for cancer treatment. WO2018118664, June 28, . 2018.
[112]
Wu, W.-L.; Lim, J.; Cumming, J.N.; Trotter, B.W. Preparation of Cyclic di-nucleotide compounds as STING agonists. WO2017027646A1, February 16 . 2018.
[113]
Bignan, G.C.; Connolly, P.; Edwards, J.P.; Emanuel, S.; Laquerre, S.; Tianbao, L.; Richter, M.; Beigelman, L.; Thatikonda, S.K.; Wang, G.; Zhong, M. Preparation of cyclic dinucleotides as STING agonists. US20180162899, June 14 . 2018.
[114]
Emanuel, S.; Richter, M.; Connolly, P.J.; Edwards, J.P.; Wang, G.; Thatikonda, S.K.; Beigelman, L.; Zhong, M.; Bignan, G.; Schepens, W.; Viellevoye, M.; Thuring, J. W.J.F. Preparation of cyclic dinucleotides as STING agonists. WO2018138685A2, August 2, . 2018.
[115]
Zhong, B.; Sun, L.; Wei, Q.; Dai, Y.; Chen, C.; Chen, Z. Preparation of cyclic di-nucleotide compounds and methods of use. WO2017161349, September 21 . 2017.
[116]
Song, Y.; Li, A.; Chen, X. Cyclic di-nucleotides as stimulator of interferon genes modulators. WO2019043634, March 7, . 2019.
[117]
Glick, G.; Ghosh, S.; Olhava, E.J.; Roush, W.R.; Jones, R. Cyclic dinucleotides for treating conditions associated with STING activity such as cancer. EP3402801, January 11 . 2017.
[118]
Glick, G.; Ghosh, S.; Roush, W.R.; Olhava, E.J.; Jones, R. Preparation of cyclic dinucleotide analogs for treating conditions associated with STING (stimulator of interferon genes) activity. WO2018045204A1, March 8 . 2018.
[119]
Fink, B.E.; Dodd, D.S.; Qin, L.-Y.; Ruan, Z.; Zhao, Y.; Harikrishnan, L.S.; Kamau, M.G. Preparation of cyclic dinucleotides as anticancer agents. WO2019160884, August 22. 2019.
[120]
Kim, D.-S.; Fang, F.; Endo, A.; Choi, H.-W.; Hao, M.-H.; Bao, X.; Huang, K.-C. Cyclic di-nucleotides derivative for the treatment of cancer. WO2018152453A1, August 23, . 2018.
[121]
Lioux, T.; Mauny, M.A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A.S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J. Med. Chem., 2016, 59(22), 10253-10267.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01300] [PMID: 27783523]
[122]
Vernejoul, F.; Tiraby, G.; Lioux, T. Preparation of fluorinated cyclic dinucleotides for cytokine induction. WO2016096174A1, September 29 . 2016.
[123]
Vernejoul, F.; Drocourt, D.; Romo, J.; Tiraby, G.; Lioux, T. Combined use of a chemotherapeutic agent and a cyclic dinucleotide for cancer treatment. WO2016096577A1, June 23, . 2016.
[124]
Genieser, H.-G.; Schwede, F.; Rentsch, A. Cyclic dinucleotides containing benzimidazole, method for the production of same, and use of same to activate stimulator of interferon genes (sting)- dependent signaling pathways. WO2018065360A1, April 12 . 2018.
[125]
Curran, M. A.; Di Francesco, M.; Jones, P. Preparation of cyclic dinucleotides as agonists of stimulator of interferon gene dependent signaling. WO2018156625, August 30. 2018.
[126]
Sinha, N.; Karche, N. P.; Kurhade, S. P.; Jadhav, G. R.; Hajare, A. K.; Gupta, N. R.; Thube, B. R.; Shaikh, J. S.; Palle, V. P.; Kamboj, R. K. Preparation of cyclic di-nucleotide compounds with tricyclic nucleobases as antitumor, antibacterial, and antiviral agents. WO2018198084A1, November 1,. 2018.
[127]
Qin, L.-Y.; Ruan, Z.; Chen, L.; Watterson, S. H.; Fink, B. E. Cyclic dinucleotides as anticancer agents. WO2019046498A1, March 7, . 2019.
[128]
Dodd, D. S.; Fink, B. E.; Zhang, Y. Cyclic dinucleotides as anticancer agents. WO19046500A1, March 7 . 2019.
[129]
Harikrishnan, L. S.; Kamau, M. G. Preparation of cyclic dinucleotides and their use as anticancer agents. WO19046496A1, March 7,. 2019.
[130]
Fink, B. E.; Zhao, Y.; Chen, L.; Huang, A. Preparation of cyclic dinucleotides as anticancer agents. WO2019079261A1, April 25,. 2019.
[131]
Oost, T.; Carotta, S.; Fleck, M. Preparation of cyclic dinucleotide compounds as modulators of STING. WO2018060323A1, April 5, . 2018.
[132]
Sheri, A.; Meher, G.; Challa, S.; Zhou, S.; Iyer, R. P. Compounds, compositions, and methods for the treatment of disease. WO19046511A1, Jan 18, . 2018.
[133]
Iyer, R. P.; Sheri, A.; Padmanabhan, S.; Meher, G.; Zhou, S.; Challa, S.; Gimi, R. H.; Cleary, D. Preparation of cyclic nucleotides as antitumor agents. WO2018013908, Jan 18, . 2018.
[134]
Yoshikawa, M.; Saitoh, M.; Kato, T.; Yoshitomi, Y.; Seki, T.; Nakagawa, Y.; Tominari, Y.; Seto, M.; Sasaki, Y.; Okaniwa, M.; Oda, T.; Shibuya, A.; Hidaka, K.; Shiokawa, Z.; Murata, S.; Okabe, A.; Nakada, Y.; Mochizuki, M.; Freeze, B.S.; Tawaraishi, T.; Wada, Y.; Greenspan, P.D. Preparation and STING agonistic activity of cyclic dinucleotides. WO2018200812, November 1,. 2018.
[135]
Dubensky, T.W., Jr; Bruml, J.R.; Canham, S.; Cho, C.Y.; Gauthier, K.; Glickman, L.H.; Hao, X.; Kanne, D.; Kasibhatla, S.; Katibah, G.E.; Le, T.N. L.; Leong, J.; McKenna, J.; McWhirter, S.; Ndubaku, C.O.; Ou, W.; Sung, L.; Tria, G.S.; Uno, T.; Wu, T.Y.-H.; Wan, Y. Antibody conjugates comprising sting agonist. WO2018200812A1, November 1, . 2018.
[136]
Iyer, R. P.; Meher, G.; Sheri, A.; Zhou, S.; Challa, S.; Gimi, R.H.; Padmanabhan, S.; Cleary, D. Compounds compositions, and meth ods for the treatment of disease. WO2018013908, January 18,. 2018.
[137]
Iyer, R. P. Compounds, compositions, and methods for the treatment of disease. WO2018013908, January 18,. 2018.
[138]
Keen, N.; McDonnell, K.; Park, P.U. Bicyclic peptide ligand STING conjugates and uses thereof. WO2019034866, February 21, . 2019.
[139]
Plowman, J.; Narayanan, V.L.; Dykes, D.; Szarvasi, E.; Briet, P.; Yoder, O.C.; Paull, K.D. Flavone acetic acid: A novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer Treat. Rep., 1986, 70(5), 631-635.
[PMID: 3708611]
[140]
Siegenthaler, P.; Kaye, S.B.; Monfardini, S.; Renard, J. Phase II trial with Flavone Acetic Acid (NSC.347512, LM975) in patients with non-small cell lung cancer. Ann. Oncol., 1992, 3(2), 169-170.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058137] [PMID: 1318743]
[141]
Pratt, C.B.; Relling, M.V.; Meyer, W.H.; Douglass, E.C.; Kellie, S.J.; Avery, L. Phase I study of flavone acetic acid (NSC 347512, LM975) in patients with pediatric malignant solid tumors. Am. J. Clin. Oncol., 1991, 14(6), 483-486.
[http://dx.doi.org/10.1097/00000421-199112000-00005] [PMID: 1957836]
[142]
Havlin, K.A.; Kuhn, J.G.; Craig, J.B.; Boldt, D.H.; Weiss, G.R.; Koeller, J.; Harman, G.; Schwartz, R.; Clark, G.N.; Von Hoff, D.D. Phase I clinical and pharmacokinetic trial of flavone acetic acid. J. Natl. Cancer Inst., 1991, 83(2), 124-128.
[http://dx.doi.org/10.1093/jnci/83.2.124] [PMID: 1703237]
[143]
Bibby, M.C.; Double, J.A. Flavone acetic acid--from laboratory to clinic and back. Anticancer Drugs, 1993, 4(1), 3-17.
[http://dx.doi.org/10.1097/00001813-199302000-00001] [PMID: 8457711]
[144]
Bibby, M.C. Flavone acetic acid--An interesting novel therapeutic agent or just another disappointment? Br. J. Cancer, 1991, 63(1), 3-5.
[http://dx.doi.org/10.1038/bjc.1991.2] [PMID: 1989662]
[145]
Rewcastle, G.W.; Atwell, G.J.; Baguley, B.C.; Calveley, S.B.; Denny, W.A. Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. J. Med. Chem., 1989, 32(4), 793-799.
[http://dx.doi.org/10.1021/jm00124a012] [PMID: 2704025]
[146]
Rewcastle, G.W.; Atwell, G.J.; Palmer, B.D.; Boyd, P.D.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 62. Structure-activity relationships for tricyclic compounds related to the colon tumor active drug 9-oxo-9H-xanthene-4-acetic acid. J. Med. Chem., 1991, 34(2), 491-496.
[http://dx.doi.org/10.1021/jm00106a003] [PMID: 1995870]
[147]
Rewcastle, G.W.; Atwell, G.J.; Li, Z.A.; Baguley, B.C.; Denny, W.A. Potential antitumor agents. 61. Structure-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J. Med. Chem., 1991, 34(1), 217-222.
[http://dx.doi.org/10.1021/jm00105a034] [PMID: 1992120]
[148]
Rewcastle, G.W.; Atwell, G.J.; Baguley, B.C.; Boyd, M.; Thomsen, L.L.; Zhuang, L.; Denny, W.A. Potential antitumor agents. 63. Structure-activity relationships for side-chain analogues of the colon 38 active agent 9-oxo-9H-xanthene-4-acetic acid. J. Med. Chem., 1991, 34(9), 2864-2870.
[http://dx.doi.org/10.1021/jm00113a027] [PMID: 1895304]
[149]
McKeage, M.J.; Jameson, M.B.; Investigators, A.S.S.G. Comparative outcomes of squamous and non-squamous non-small cell lung cancer (NSCLC) patients in phase II studies of ASA404 (DMXAA) - retrospective analysis of pooled data. J. Thorac. Dis., 2010, 2(4), 199-204.
[http://dx.doi.org/10.3978/j.issn.2072-1439.2010.02.04.1] [PMID: 22263047]
[150]
Hida, T.; Tamiya, M.; Nishio, M.; Yamamoto, N.; Hirashima, T.; Horai, T.; Tanii, H.; Shi, M.M.; Kobayashi, K.; Horio, Y. Phase I study of intravenous ASA404 (vadimezan) administered in combination with paclitaxel and carboplatin in Japanese patients with non-small cell lung cancer. Cancer Sci., 2011, 102(4), 845-851.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01839.x] [PMID: 21205086]
[151]
Lara, P.N., Jr; Douillard, J.Y.; Nakagawa, K.; von Pawel, J.; McKeage, M.J.; Albert, I.; Losonczy, G.; Reck, M.; Heo, D.S.; Fan, X.; Fandi, A.; Scagliotti, G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(22), 2965-2971.
[http://dx.doi.org/10.1200/JCO.2011.35.0660] [PMID: 21709202]
[152]
McKeage, M.J.; Reck, M.; Jameson, M.B.; Rosenthal, M.A.; Gibbs, D.; Mainwaring, P.N.; Freitag, L.; Sullivan, R.; Von Pawel, J. Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer, 2009, 65(2), 192-197.
[http://dx.doi.org/10.1016/j.lungcan.2009.03.027] [PMID: 19409645]
[153]
Pili, R.; Rosenthal, M.A.; Mainwaring, P.N.; Van Hazel, G.; Srinivas, S.; Dreicer, R.; Goel, S.; Leach, J.; Wong, S.; Clingan, P. Phase II study on the addition of ASA404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRMPC. Clin. Cancer Res., 2010, 16(10), 2906-2914.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-3026] [PMID: 20460477]
[154]
McKeage, M.J. Clinical trials of vascular disrupting agents in advanced non-small-cell lung cancer. Clin. Lung Cancer, 2011, 12(3), 143-147.
[http://dx.doi.org/10.1016/j.cllc.2011.03.010] [PMID: 21663855]
[155]
Lorusso, P.M.; Boerner, S.A.; Hunsberger, S. Clinical development of vascular disrupting agents: What lessons can we learn from ASA404? J. Clin. Oncol., 2011, 29(22), 2952-2955.
[http://dx.doi.org/10.1200/JCO.2011.36.1311] [PMID: 21709201]
[156]
Laws, A.L.; Matthew, A.M.; Double, J.A.; Bibby, M.C. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid. Br. J. Cancer, 1995, 71(6), 1204-1209.
[http://dx.doi.org/10.1038/bjc.1995.234] [PMID: 7779712]
[157]
Philpott, M.; Ching, L.M.; Baguley, B.C. The antitumour agent 5,6-dimethylxanthenone-4-acetic acid acts in vitro on human mononuclear cells as a co-stimulator with other inducers of tumour necrosis factor. Eur. J. Cancer, 2001, 37(15), 1930-1937.
[http://dx.doi.org/10.1016/S0959-8049(01)00210-6] [PMID: 11576850]
[158]
Ching, L.M.; Goldsmith, D.; Joseph, W.R.; Körner, H.; Sedgwick, J.D.; Baguley, B.C. Induction of intratumoral tumor necrosis factor (TNF) synthesis and hemorrhagic necrosis by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF knockout mice. Cancer Res., 1999, 59(14), 3304-3307.
[PMID: 10416582]
[159]
Philpott, M.; Joseph, W.R.; Crosier, K.E.; Baguley, B.C.; Ching, L.M. Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br. J. Cancer, 1997, 76(12), 1586-1591.
[http://dx.doi.org/10.1038/bjc.1997.601] [PMID: 9413946]
[160]
Philpott, M.; Baguley, B.C.; Ching, L.M. Induction of tumour necrosis factor-alpha by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol., 1995, 36(2), 143-148.
[http://dx.doi.org/10.1007/BF00689199] [PMID: 7767951]
[161]
Kramer, M.J.; Cleeland, R.; Grunberg, E. Antiviral activity of 10-carboxymethyl-9-acridanone. Antimicrob. Agents Chemother., 1976, 9(2), 233-238.
[http://dx.doi.org/10.1128/AAC.9.2.233] [PMID: 1267425]
[162]
Taylor, J.L.; Schoenherr, C.; Grossberg, S.E. Protection against Japanese encephalitis virus in mice and hamsters by treatment with carboxymethylacridanone, a potent interferon inducer. J. Infect. Dis., 1980, 142(3), 394-399.
[http://dx.doi.org/10.1093/infdis/142.3.394] [PMID: 6255036]
[163]
Taylor, J.L.; Schoenherr, C.K.; Grossberg, S.E. High-yield interferon induction by 10-carboxymethyl-9-acridanone in mice and hamsters. Antimicrob. Agents Chemother., 1980, 18(1), 20-26.
[http://dx.doi.org/10.1128/AAC.18.1.20] [PMID: 6158292]
[164]
Cavlar, T.; Deimling, T.; Ablasser, A.; Hopfner, K.P.; Hornung, V. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J., 2013, 32(10), 1440-1450.
[http://dx.doi.org/10.1038/emboj.2013.86] [PMID: 23604073]
[165]
Shih, A.Y.; Damm-Ganamet, K.L.; Mirzadegan, T. Dynamic structural differences between human and mouse STING lead to differing sensitivity to DMXAA. Biophys. J., 2018, 114(1), 32-39.
[http://dx.doi.org/10.1016/j.bpj.2017.10.027] [PMID: 29320694]
[166]
Hwang, J.; Kang, T.; Lee, J.; Choi, B.S.; Han, S. Design, synthesis, and biological evaluation of C7-functionalized DMXAA derivatives as potential human-STING agonists. Org. Biomol. Chem., 2019, 17(7), 1869-1874.
[http://dx.doi.org/10.1039/C8OB01798K] [PMID: 30117503]
[167]
Gao, P.; Zillinger, T.; Wang, W.; Ascano, M.; Dai, P.; Hartmann, G.; Tuschl, T.; Deng, L.; Barchet, W.; Patel, D.J. Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep., 2014, 8(6), 1668-1676.
[http://dx.doi.org/10.1016/j.celrep.2014.08.010] [PMID: 25199835]
[168]
Tijono, S.M.; Guo, K.; Henare, K.; Palmer, B.D.; Wang, L.C.; Albelda, S.M.; Ching, L.M. Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Br. J. Cancer, 2013, 108(6), 1306-1315.
[http://dx.doi.org/10.1038/bjc.2013.101] [PMID: 23481185]
[169]
Zhang, Y.; Sun, Z.; Pei, J.; Luo, Q.; Zeng, X.; Li, Q.; Yang, Z.; Quan, J. Identification of α-Mangostin as an Agonist of Human STING. ChemMedChem, 2018, 13(19), 2057-2064.
[http://dx.doi.org/10.1002/cmdc.201800481] [PMID: 30079976]
[170]
Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; Muelbaier, M.; Schneck, J.L.; Clemens, J.; Adam, M.; Mehlmann, J.; Romano, J.; Morales, A.; Kang, J.; Leister, L.; Graybill, T.L.; Charnley, A.K.; Ye, G.; Nevins, N.; Behnia, K.; Wolf, A.I.; Kasparcova, V.; Nurse, K.; Wang, L.; Puhl, A.C.; Li, Y.; Klein, M.; Hopson, C.B.; Guss, J.; Bantscheff, M.; Bergamini, G.; Reilly, M.A.; Lian, Y.; Duffy, K.J.; Adams, J.; Foley, K.P.; Gough, P.J.; Marquis, R.W.; Smothers, J.; Hoos, A.; Bertin, J. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564(7736), 439-443.
[http://dx.doi.org/10.1038/s41586-018-0705-y] [PMID: 30405246]
[171]
Charnley, A. K.; Darcy, M. G.; Dodson, J. W.; Dong, X.; Hughes, T. V.; Kang, J.; Leister, L. K.; Lian, Y.; Li, Y.; Mehlmann, J. F.; Nevins, N.; Ramanjulu, J. M.; Romano, J. J.; Wang, G. Z.; Ye, G.; Zhang, D. Heterocyclic amides useful as STING protein modulators and their preparation. WO2017175147A1, October 12, . 2017.
[172]
Charnley, A. K.; Darcy, M. G.; Dodson, J. W.; Hughes, T. V.; Li, Y.; Lian, Y.; Nevins, N.; Ramanjulu, J. M. Heterocyclic amides useful as STING protein modulators and their preparation. WO2017175156A1, October 12, . 2017.
[173]
Charnley, A. K.; Darcy, M. G.; Dodson, J. W.; Dong, X.; Favre, D.; Hughes, T. V.; Kang, J.; Leister, L. K.; Li, Y.; Lian, Y.; Mehlmann, J. F.; Nevins, N.; Ramanjulu, J. M.; Romano, J. J.; Wang, G. Z.; Ye, G.; Zhang, D. Preparation of heterocyclic amides as modulators of stimulator of interferon genes (STING) useful in treating HIV. WO2019069269A1, April 11, . 2019.
[174]
Fosbenner, D. T.; Graybill, T. L.; Kang, J.; King, B. W.; Lan, Y.; Leister, L. K.; Mahajan, M. K.; Mehlmann, J. F.; Morales-Ramos, A. I.; Pesiridis, G. S.; Ramanjulu, J. M.; Romano, J. J.; Romeril, S. P.; Schulz, M. J.; Zhou, H. Preparation of heterocyclic amides as modulators of stimulator of interferon genes (STING). WO2019069270A1, April 11, . 2019.
[175]
Pesiridis, G.S. Preparation of heterocyclic amides as STING agonists and methods of use. WO2019069275A1, April 11, . 2019.
[176]
Altman, M. D.; Cash, B. D.; Chang, W.; Cumming, J. N.; Haidle, A. M.; Henderson, T. J.; Jewell, J. P.; Larsen, M. A.; Liang, R.; Lim, J.; Lu, M.; Otte, R. D.; Siu, T.; Trotter, B. W.; Tyagarajan, S. Benzo[b]thiophene compounds as sting agonists. US20180093964A1, April 5,. 2018.
[177]
Cemerski, S.; Cumming, J. N.; Kopinja, J. E.; Perera, S. A.; Trotter, B. W.; Tse, A. N.-C. Benzo[b]thiophene sting agonists for cancer treatment. WO2019027858A1, Feb 7 . 2019.
[178]
Cemerski, S.; Cumming, J. N.; Kopinja, J. E.; Perera, S. A.; Trotter, B. W.; Tse, A. N.-C. Combinations of pd-1 antagonists and benzo[b]thiophene sting agonists for cancer treatment. WO2019027857A1, Feb 7, . 2019.
[179]
Banerjee, M.; Middya, S.; Basu, S.; Yadav, D.; Ghosh, R.; Pryde, D.; Shrivastava, R.; Surya, A. Preparation of N-substituted 2-oxoindolin- 6-yl carboxamides as modulators of human STING. WO2018234807A1, Dec 27 . 2018.
[180]
Banerjee, M.; Middya, S.; Basu, S.; Ghosh, R.; Pryde, D.; Yadav, D.; Shrivastava, R.; Surya, A. Preparation of fused (hetero) arylpyrimidine carboxamide compounds as modulators of human STING and therapeutic uses thereof. WO2018234808A1, December 27,. 2018.
[181]
Banerjee, M.; Middya, S.; Basu, S.; Ghosh, R.; Pryde, D.; Yadav, D.; Shrivastava, R.; Surya, A. Prepn. of fused (hetero)arylthiazine carboxamides as STING modulators. WO2018234805A1, Dec 27, . 2018.
[182]
Liu, B.; Tang, L.; Zhang, X.; Ma, J.; Sehgal, M.; Cheng, J.; Zhang, X.; Zhou, Y.; Du, Y.; Kulp, J.; Guo, J.T.; Chang, J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res., 2017, 147, 37-46.
[http://dx.doi.org/10.1016/j.antiviral.2017.10.001] [PMID: 28982551]
[183]
Zhang, X.; Liu, B.; Tang, L.; Su, Q.; Hwang, N.; Sehgal, M.; Cheng, J.; Ma, J.; Zhang, X.; Tan, Y.; Zhou, Y.; Duan, Z.; DeFilippis, V.R.; Viswanathan, U.; Kulp, J.; Du, Y.; Guo, J.T.; Chang, J. Discovery and mechanistic study of a novel human-stimulator-of-interferon-genes agonist. ACS Infect. Dis., 2019, 5(7), 1139-1149.
[http://dx.doi.org/10.1021/acsinfecdis.9b00010] [PMID: 31060350]
[184]
Siu, T.; Altman, M.D.; Baltus, G.A.; Childers, M.; Ellis, J.M.; Gunaydin, H.; Hatch, H.; Ho, T.; Jewell, J.; Lacey, B.M.; Lesburg, C.A.; Pan, B.S.; Sauvagnat, B.; Schroeder, G.K.; Xu, S. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Med. Chem. Lett., 2018, 10(1), 92-97.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00466] [PMID: 30655953]
[185]
Haag, S.M.; Gulen, M.F.; Reymond, L.; Gibelin, A.; Abrami, L.; Decout, A.; Heymann, M.; van der Goot, F.G.; Turcatti, G.; Behrendt, R.; Ablasser, A. Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559(7713), 269-273.
[http://dx.doi.org/10.1038/s41586-018-0287-8] [PMID: 29973723]
[186]
Li, L.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J.L.; Wu, H.; Mitchison, T.J. Hydrolysis of 2‘3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol., 2014, 10(12), 1043-1048.
[http://dx.doi.org/10.1038/nchembio.1661] [PMID: 25344812]
[187]
Kaadige, M.R. Development of ENPP1 inhibitors as a strategy to activate stimulator of interferon genes (STING) in cancers and other diseases. Int. J. Cell. Sci. Mol. Biol, 2018, 5(1)555655
[http://dx.doi.org/10.19080/IJCSMB.2018.05.555655]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 24
Year: 2019
Page: [2205 - 2227]
Pages: 23
DOI: 10.2174/1568026619666191010155903
Price: $65

Article Metrics

PDF: 90
HTML: 13
EPUB: 1
PRC: 2