The Role of Vascular Aging in Atherosclerotic Plaque Development and Vulnerability

Author(s): Luca Liberale, Giovanni G. Camici*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 29 , 2019

Abstract:

Background: The ongoing demographical shift is leading to an unprecedented aging of the population. As a consequence, the prevalence of age-related diseases, such as atherosclerosis and its thrombotic complications is set to increase in the near future. Endothelial dysfunction and vascular stiffening characterize arterial aging and set the stage for the development of cardiovascular diseases. Atherosclerotic plaques evolve over time, the extent to which these changes might affect their stability and predispose to sudden complications remains to be determined. Recent advances in imaging technology will allow for longitudinal prospective studies following the progression of plaque burden aimed at better characterizing changes over time associated with plaque stability or rupture. Oxidative stress and inflammation, firmly established driving forces of age-related CV dysfunction, also play an important role in atherosclerotic plaque destabilization and rupture. Several genes involved in lifespan determination are known regulator of redox cellular balance and pre-clinical evidence underlines their pathophysiological roles in age-related cardiovascular dysfunction and atherosclerosis.

Objective: The aim of this narrative review is to examine the impact of aging on arterial function and atherosclerotic plaque development. Furthermore, we report how molecular mechanisms of vascular aging might regulate age-related plaque modifications and how this may help to identify novel therapeutic targets to attenuate the increased risk of CV disease in elderly people.

Keywords: Atherosclerosis, aging, vascular aging, endothelial dysfunction, inflammation, oxidative stress.

[1]
United Nations [homepage on the internet]. Ageing [cited 2019 Jan 05]. Available from:.. http://www.un.org/en/sections/issues-depth/ageing
[2]
Tofield A. Age in an ageing society. Eur Heart J 2018; 39(35): 3271-5.
[http://dx.doi.org/10.1093/eurheartj/ehy468] [PMID: 30219877]
[3]
Camici GG, Liberale L. Aging: the next cardiovascular disease? Eur Heart J 2017; 38(21): 1621-3.
[http://dx.doi.org/10.1093/eurheartj/ehx239] [PMID: 29447349]
[4]
Eurostat [homepage on the internet]. People in the EU - statistics on demographic changes [cited 2019 Jan 05]. Available from:. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=People_in_the_EU_-_statistics_on_demographic_changes
[5]
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature 2018; 561(7721): 45-56.
[http://dx.doi.org/10.1038/s41586-018-0457-8] [PMID: 30185958]
[6]
Carbone F, Liberale L, Bonaventura A, Cea M, Montecucco F. Targeting inflammation in primary cardiovascular prevention. Curr Pharm Des 2016; 22(37): 5662-75.
[http://dx.doi.org/10.2174/1381612822666160822124546] [PMID: 27549380]
[7]
McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 2000; 72(5)(Suppl.): 1307S-15S.
[http://dx.doi.org/10.1093/ajcn/72.5.1307s] [PMID: 11063473]
[8]
Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J 2010; 40(1): 1-9.
[http://dx.doi.org/10.4070/kcj.2010.40.1.1] [PMID: 20111646]
[9]
Webber BJ, Seguin PG, Burnett DG, Clark LL, Otto JL. Prevalence of and risk factors for autopsy-determined atherosclerosis among US service members, 2001-2011. JAMA 2012; 308(24): 2577-83.
[http://dx.doi.org/10.1001/jama.2012.70830] [PMID: 23268516]
[10]
Benjamin EJ, Virani SS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: A Report from the American Heart Association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[11]
Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016; 37(29): 2315-81.
[http://dx.doi.org/10.1093/eurheartj/ehw106] [PMID: 27222591]
[12]
Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63(25 Pt B): 2935-59.
[http://dx.doi.org/10.1016/j.jacc.2013.11.005] [PMID: 24239921]
[13]
Goldschmidt-Clermont PJ, Creager MA, Losordo DW, Lam GK, Wassef M, Dzau VJ. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation 2005; 112(21): 3348-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.577460] [PMID: 16301361]
[14]
Madonna R, Novo G, Balistreri CR. Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: As biomarkers and targets for new treatments. Mech Ageing Dev 2016; 159: 22-30.
[http://dx.doi.org/10.1016/j.mad.2016.03.005] [PMID: 26993150]
[15]
Benjamin EJ, Muntner P, Alonso A, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[16]
Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. The Aging Cardiovascular System: Understanding it at the cellular and clinical levels. J Am Coll Cardiol 2017; 69(15): 1952-67.
[http://dx.doi.org/10.1016/j.jacc.2017.01.064] [PMID: 28408026]
[17]
Camici GG, Savarese G, Akhmedov A, Lüscher TF. Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J 2015; 36(48): 3392-403.
[http://dx.doi.org/10.1093/eurheartj/ehv587] [PMID: 26543043]
[18]
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43(2): 109-42.
[PMID: 1852778]
[19]
Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 1994; 24(2): 471-6.
[http://dx.doi.org/10.1016/0735-1097(94)90305-0] [PMID: 8034885]
[20]
Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 2003; 107(1): 139-46.
[http://dx.doi.org/10.1161/01.CIR.0000048892.83521.58] [PMID: 12515756]
[21]
Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 2007; 100(11): 1659-66.
[http://dx.doi.org/10.1161/01.RES.0000269183.13937.e8] [PMID: 17478731]
[22]
Carbone F, Liberale L, Bonaventura A, et al. Regulation and function of extracellular nicotinamide phosphoribosyltransferase/visfatin. Compr Physiol 2017; 7(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c160029] [PMID: 28333382]
[23]
Casula M, Montecucco F, Bonaventura A, et al. Update on the role of Pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul Pharmacol 2017; 99: 1-12.
[http://dx.doi.org/10.1016/j.vph.2017.10.003] [PMID: 29051088]
[24]
Liberale L, Bonaventura A, Vecchiè A, et al. The role of adipocytokines in coronary atherosclerosis. Curr Atheroscler Rep 2017; 19(2): 10.
[http://dx.doi.org/10.1007/s11883-017-0644-3] [PMID: 28185154]
[25]
Bonaventura A, Liberale L, Vecchié A, et al. Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci 2016; 17(12): 17.
[http://dx.doi.org/10.3390/ijms17121967] [PMID: 27898011]
[26]
Carbone F, Rigamonti F, Burger F, et al. Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis. Int J Cardiol 2018; 255: 195-9.
[http://dx.doi.org/10.1016/j.ijcard.2018.01.008] [PMID: 29317141]
[27]
Liberale L, Montecucco F, Casetta I, et al. Decreased serum PCSK9 levels after ischaemic stroke predict worse outcomes. Eur J Clin Invest 2016; 46(12): 1053-62.
[http://dx.doi.org/10.1111/eci.12692] [PMID: 27759884]
[28]
Liberale L, Carbone F, Bertolotto M, et al. Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis. Int J Cardiol 2018; 263: 138-41.
[http://dx.doi.org/10.1016/j.ijcard.2018.03.081] [PMID: 29754909]
[29]
Liberale L, Carbone F, Bertolotto M, et al. Serum adiponectin levels predict acute coronary syndrome (ACS) in patients with severe carotid stenosis. Vascul Pharmacol 2018; 102: 37-43.
[http://dx.doi.org/10.1016/j.vph.2017.12.066] [PMID: 29305337]
[30]
Liberale L, Bertolotto M, Carbone F, et al. Resistin exerts a beneficial role in atherosclerotic plaque inflammation by inhibiting neutrophil migration. Int J Cardiol 2018; 272: 13-9.
[http://dx.doi.org/10.1016/j.ijcard.2018.07.112] [PMID: 30075966]
[31]
Rigamonti F, Carbone F, Montecucco F, et al. Serum lipoprotein (a) predicts acute coronary syndromes in patients with severe carotid stenosis. Eur J Clin Invest 2018; 48(3): 48.
[http://dx.doi.org/10.1111/eci.12888] [PMID: 29327345]
[32]
Delp MD, Behnke BJ, Spier SA, Wu G, Muller-Delp JM. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J Physiol 2008; 586(4): 1161-8.
[http://dx.doi.org/10.1113/jphysiol.2007.147686] [PMID: 18063659]
[33]
van der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000; 192(12): 1731-44.
[http://dx.doi.org/10.1084/jem.192.12.1731] [PMID: 11120770]
[34]
Lüscher TF, Yang ZH, Diederich D, Bühler FR. Endothelium-derived vasoactive substances: potential role in hypertension, atherosclerosis, and vascular occlusion. J Cardiovasc Pharmacol 1989; 14(Suppl. 6): S63-9.
[http://dx.doi.org/10.1097/00005344-198906146-00014] [PMID: 2478827]
[35]
Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 2006; 5(5): 391-400.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00232.x] [PMID: 16930126]
[36]
Donato AJ, Gano LB, Eskurza I, et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2009; 297(1): H425-32.
[http://dx.doi.org/10.1152/ajpheart.00689.2008] [PMID: 19465546]
[37]
Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 2014; 20(22): 3548-53.
[http://dx.doi.org/10.2174/13816128113196660746] [PMID: 24180388]
[38]
Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases-the role of oxidative stress and inflammation. Curr Pharm Des 2014; 20(22): 3579-94.
[http://dx.doi.org/10.2174/13816128113196660748] [PMID: 24180381]
[39]
Katusic ZS. Mechanisms of endothelial dysfunction induced by aging: role of arginase I. Circ Res 2007; 101(7): 640-1.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.162701] [PMID: 17901365]
[40]
Santhanam L, Christianson DW, Nyhan D, Berkowitz DE. Arginase and vascular aging. J Appl Physiol 2008; 105(5): 1632-42.
[http://dx.doi.org/10.1152/japplphysiol.90627.2008] [PMID: 18719233]
[41]
Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. BioMed Res Int 2014; 2014615312
[http://dx.doi.org/10.1155/2014/615312] [PMID: 25143940]
[42]
Lüscher TF. Ageing, inflammation, and oxidative stress: final common pathways of cardiovascular disease. Eur Heart J 2015; 36(48): 3381-3.
[http://dx.doi.org/10.1093/eurheartj/ehv679] [PMID: 26690751]
[43]
Lüscher TF. Inflammation: the new cardiovascular risk factor. Eur Heart J 2018; 39(38): 3483-7.
[http://dx.doi.org/10.1093/eurheartj/ehy607] [PMID: 30295766]
[44]
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part series. J Am Coll Cardiol 2017; 70(2): 212-29.
[http://dx.doi.org/10.1016/j.jacc.2017.05.035] [PMID: 28683969]
[45]
Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007; 26(5): 675-87.
[http://dx.doi.org/10.1016/j.molcel.2007.04.021] [PMID: 17560373]
[46]
Li JM, Fan LM, Christie MR, Shah AM. Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 2005; 25(6): 2320-30.
[http://dx.doi.org/10.1128/MCB.25.6.2320-2330.2005] [PMID: 15743827]
[47]
Montecucco F, Liberale L, Bonaventura A, Vecchiè A, Dallegri F, Carbone F. The role of inflammation in cardiovascular outcome. Curr Atheroscler Rep 2017; 19(3): 11.
[http://dx.doi.org/10.1007/s11883-017-0646-1] [PMID: 28194569]
[48]
Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol 2017; 70(18): 2278-89.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028] [PMID: 29073957]
[49]
Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 2013; 19(10): 1085-94.
[http://dx.doi.org/10.1089/ars.2012.4604] [PMID: 22443458]
[50]
Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006; 72(11): 1493-505.
[http://dx.doi.org/10.1016/j.bcp.2006.04.011] [PMID: 16723122]
[51]
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21(1): 103-15.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[52]
Heymes C, Habib A, Yang D, et al. Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing. Br J Pharmacol 2000; 131(4): 804-10.
[http://dx.doi.org/10.1038/sj.bjp.0703632] [PMID: 11030731]
[53]
Tang EH, Vanhoutte PM. Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 2008; 32(3): 409-18.
[http://dx.doi.org/10.1152/physiolgenomics.00136.2007] [PMID: 18056786]
[54]
Van Guilder GP, Westby CM, Greiner JJ, Stauffer BL, DeSouza CA. Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension 2007; 50(2): 403-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.088294] [PMID: 17576858]
[55]
Ivanova EA, Orekhov AN. The role of endoplasmic reticulum stress and unfolded protein response in atherosclerosis. Int J Mol Sci 2016; 17(2): 17.
[http://dx.doi.org/10.3390/ijms17020193] [PMID: 26840309]
[56]
Estébanez B, de Paz JA, Cuevas MJ, González-Gallego J. Endoplasmic reticulum unfolded protein response, aging and exercise: an update. Front Physiol 2018; 9: 1744.
[http://dx.doi.org/10.3389/fphys.2018.01744] [PMID: 30568599]
[57]
Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci 2009; 20(1): 23-37.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.1.23] [PMID: 19526732]
[58]
Mucchiano G, Cornwell GG III, Westermark P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am J Pathol 1992; 140(4): 871-7.
[PMID: 1562050]
[59]
Wang M, Monticone RE, Lakatta EG. Arterial aging: a journey into subclinical arterial disease. Curr Opin Nephrol Hypertens 2010; 19(2): 201-7.
[http://dx.doi.org/10.1097/MNH.0b013e3283361c0b] [PMID: 20040868]
[60]
Wang Y, Feng X, Shen B, Ma J, Zhao W. Is vascular amyloidosis intertwined with arterial aging, hypertension and atherosclerosis? Front Genet 2017; 8: 126.
[http://dx.doi.org/10.3389/fgene.2017.00126] [PMID: 29085385]
[61]
Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ Res 2016; 118(3): 379-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307722] [PMID: 26846637]
[62]
Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015; 6: 112.
[http://dx.doi.org/10.3389/fgene.2015.00112] [PMID: 25926844]
[63]
Fritze O, Romero B, Schleicher M, et al. Age-related changes in the elastic tissue of the human aorta. J Vasc Res 2012; 49(1): 77-86.
[http://dx.doi.org/10.1159/000331278] [PMID: 22105095]
[64]
Ignotz RA, Massagué J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986; 261(9): 4337-45.
[PMID: 3456347]
[65]
Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 2003; 21(1): 3-12.
[http://dx.doi.org/10.1097/00004872-200301000-00002] [PMID: 12544424]
[66]
Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991; 11(5): 1223-30.
[http://dx.doi.org/10.1161/01.ATV.11.5.1223] [PMID: 1911708]
[67]
Li Z, Froehlich J, Galis ZS, Lakatta EG. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 1999; 33(1): 116-23.
[http://dx.doi.org/10.1161/01.HYP.33.1.116] [PMID: 9931091]
[68]
McNulty M, Spiers P, McGovern E, Feely J. Aging is associated with increased matrix metalloproteinase-2 activity in the human aorta. Am J Hypertens 2005; 18(4 Pt 1): 504-9.
[http://dx.doi.org/10.1016/j.amjhyper.2004.11.011] [PMID: 15831360]
[69]
Duca L, Blaise S, Romier B, et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 2016; 110(3): 298-308.
[http://dx.doi.org/10.1093/cvr/cvw061] [PMID: 27009176]
[70]
Sun Z. Aging, arterial stiffness, and hypertension. Hypertension 2015; 65(2): 252-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03617] [PMID: 25368028]
[71]
Payne RA, Wilkinson IB, Webb DJ. Arterial stiffness and hypertension: emerging concepts. Hypertension 2010; 55(1): 9-14.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.090464] [PMID: 19948990]
[72]
Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 2012; 8(1): 143-64.
[http://dx.doi.org/10.1016/j.hfc.2011.08.011] [PMID: 22108734]
[73]
Houghton D, Jones TW, Cassidy S, et al. The effect of age on the relationship between cardiac and vascular function. Mech Ageing Dev 2016; 153: 1-6.
[http://dx.doi.org/10.1016/j.mad.2015.11.001] [PMID: 26590322]
[74]
Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med 2009; 122(1)(Suppl.): S3-S14.
[http://dx.doi.org/10.1016/j.amjmed.2008.10.013] [PMID: 19110086]
[75]
Spagnoli LG, Mauriello A, Palmieri G, Santeusanio G, Amante A, Taurino M. Relationships between risk factors and morphological patterns of human carotid atherosclerotic plaques. A multivariate discriminant analysis. Atherosclerosis 1994; 108(1): 39-60.
[http://dx.doi.org/10.1016/0021-9150(94)90036-1] [PMID: 7980706]
[76]
van Oostrom O, Velema E, Schoneveld AH, et al. Age-related changes in plaque composition: a study in patients suffering from carotid artery stenosis. Cardiovasc Pathol 2005; 14(3): 126-34.
[http://dx.doi.org/10.1016/j.carpath.2005.03.002] [PMID: 15914297]
[77]
Redgrave JN, Lovett JK, Rothwell PM. Histological features of symptomatic carotid plaques in relation to age and smoking: the oxford plaque study. Stroke 2010; 41(10): 2288-94.
[http://dx.doi.org/10.1161/STROKEAHA.110.587006] [PMID: 20814007]
[78]
van Lammeren GW, Reichmann BL, Moll FL, et al. Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting. Stroke 2011; 42(9): 2550-5.
[http://dx.doi.org/10.1161/STROKEAHA.110.607382] [PMID: 21737811]
[79]
Grufman H, Schiopu A, Edsfeldt A, et al. Evidence for altered inflammatory and repair responses in symptomatic carotid plaques from elderly patients. Atherosclerosis 2014; 237(1): 177-82.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.08.042] [PMID: 25240113]
[80]
Wendorff C, Wendorff H, Pelisek J, et al. Carotid plaque morphology is significantly associated with sex, age, and history of neurological symptoms. Stroke 2015; 46(11): 3213-9.
[http://dx.doi.org/10.1161/STROKEAHA.115.010558] [PMID: 26451032]
[81]
Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res 2016; 118(4): 750-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306247] [PMID: 26892971]
[82]
Liberale L, Dallegri F, Montecucco F, Carbone F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 2017; 117(1): 7-18.
[http://dx.doi.org/10.1160/TH16-08-0593] [PMID: 27683760]
[83]
Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002; 106(15): 2026-34.
[http://dx.doi.org/10.1161/01.CIR.0000034392.34211.FC] [PMID: 12370230]
[84]
Ruiz-García J, Lerman A, Weisz G, et al. Age- and gender-related changes in plaque composition in patients with acute coronary syndrome: the prospect study. EuroIntervention 2012; 8(8): 929-38.
[http://dx.doi.org/10.4244/EIJV8I8A142] [PMID: 23253546]
[85]
Tota-Maharaj R, Blaha MJ, Rivera JJ, et al. Differences in coronary plaque composition with aging measured by coronary computed tomography angiography. Int J Cardiol 2012; 158(2): 240-5.
[http://dx.doi.org/10.1016/j.ijcard.2011.01.041] [PMID: 21316114]
[86]
Cheung HM, Moody AR, Singh N, Bitar R, Zhan J, Leung G. Late stage complicated atheroma in low-grade stenotic carotid disease: MR imaging depiction--prevalence and risk factors. Radiology 2011; 260(3): 841-7.
[http://dx.doi.org/10.1148/radiol.11101652] [PMID: 21734157]
[87]
van den Bouwhuijsen QJ, Vernooij MW, Hofman A, Krestin GP, van der Lugt A, Witteman JC. Determinants of magnetic resonance imaging detected carotid plaque components: the rotterdam study. Eur Heart J 2012; 33(2): 221-9.
[http://dx.doi.org/10.1093/eurheartj/ehr227] [PMID: 21821844]
[88]
Canton G, Hippe DS, Sun J, et al. Characterization of distensibility, plaque burden, and composition of the atherosclerotic carotid artery using magnetic resonance imaging. Med Phys 2012; 39(10): 6247-53.
[http://dx.doi.org/10.1118/1.4754302] [PMID: 23039660]
[89]
Zhao XQ, Hatsukami TS, Hippe DS, et al. AIM-HIGH Carotid MRI Sub-study Investigators. Clinical factors associated with high-risk carotid plaque features as assessed by magnetic resonance imaging in patients with established vascular disease (from the AIM-HIGH Study). Am J Cardiol 2014; 114(9): 1412-9.
[http://dx.doi.org/10.1016/j.amjcard.2014.08.001] [PMID: 25245415]
[90]
Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 2012; 111(2): 245-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261388] [PMID: 22773427]
[91]
Hariri RJ, Hajjar DP, Coletti D, Alonso DR, Weksler ME, Rabellino E. Aging and arteriosclerosis. Cell cycle kinetics of young and old arterial smooth muscle cells. Am J Pathol 1988; 131(1): 132-6.
[PMID: 3354639]
[92]
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586.
[http://dx.doi.org/10.3389/fimmu.2018.00586] [PMID: 29686666]
[93]
Bonaventura A, Liberale L, Carbone F, et al. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost 2018; 118(1): 6-27.
[http://dx.doi.org/10.1160/TH17-09-0630] [PMID: 29304522]
[94]
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109(23)(Suppl. 1): III27-32.
[PMID: 15198963]
[95]
O’Brien ER, Alpers CE, Stewart DK, et al. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res 1993; 73(2): 223-31.
[http://dx.doi.org/10.1161/01.RES.73.2.223] [PMID: 8101140]
[96]
O’Sullivan M, Scott SD, McCarthy N, et al. Differential cyclin E expression in human in-stent stenosis smooth muscle cells identifies targets for selective anti-restenosis therapy. Cardiovasc Res 2003; 60(3): 673-83.
[http://dx.doi.org/10.1016/j.cardiores.2003.09.018] [PMID: 14659813]
[97]
Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95(5): 2266-74.
[http://dx.doi.org/10.1172/JCI117917] [PMID: 7738191]
[98]
Matthews C, Gorenne I, Scott S, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 2006; 99(2): 156-64.
[http://dx.doi.org/10.1161/01.RES.0000233315.38086.bc] [PMID: 16794190]
[99]
Bennett MR, Macdonald K, Chan SW, Boyle JJ, Weissberg PL. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circ Res 1998; 82(6): 704-12.
[http://dx.doi.org/10.1161/01.RES.82.6.704] [PMID: 9546379]
[100]
Patel VA, Zhang QJ, Siddle K, et al. Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ Res 2001; 88(9): 895-902.
[http://dx.doi.org/10.1161/hh0901.090305] [PMID: 11348998]
[101]
Paneni F, Costantino S, Kränkel N, Cosentino F, Lüscher TF. Reprogramming ageing and longevity genes restores paracrine angiogenic properties of early outgrowth cells. Eur Heart J 2016; 37(22): 1733-7.
[http://dx.doi.org/10.1093/eurheartj/ehw073] [PMID: 26941203]
[102]
Xu Q, Wang J, He J, et al. Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis 2011; 219(1): 92-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.118] [PMID: 21855069]
[103]
Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 1999; 41(2): 473-9.
[http://dx.doi.org/10.1016/S0008-6363(98)00311-3] [PMID: 10341847]
[104]
Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92(20): 9363-7.
[http://dx.doi.org/10.1073/pnas.92.20.9363] [PMID: 7568133]
[105]
Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102144] [PMID: 20078217]
[106]
Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002; 105(13): 1541-4.
[http://dx.doi.org/10.1161/01.CIR.0000013836.85741.17] [PMID: 11927518]
[107]
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22(5): 786-95.
[http://dx.doi.org/10.1016/j.drudis.2017.01.004] [PMID: 28111332]
[108]
Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet 2001; 358(9280): 472-3.
[http://dx.doi.org/10.1016/S0140-6736(01)05633-1] [PMID: 11513915]
[109]
Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Nordestgaard BG. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol 2012; 32(3): 822-9.
[http://dx.doi.org/10.1161/ATVBAHA.111.237271] [PMID: 22199369]
[110]
Farhat N, Thorin-Trescases N, Voghel G, et al. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can J Physiol Pharmacol 2008; 86(11): 761-9.
[http://dx.doi.org/10.1139/Y08-082] [PMID: 19011671]
[111]
Chen JH, Ozanne SE, Hales CN. Heterogeneity in premature senescence by oxidative stress correlates with differential DNA damage during the cell cycle. DNA Repair (Amst) 2005; 4(10): 1140-8.
[http://dx.doi.org/10.1016/j.dnarep.2005.06.003] [PMID: 16006199]
[112]
Costantino S, Camici GG, Mohammed SA, Volpe M, Lüscher TF, Paneni F. Epigenetics and cardiovascular regenerative medicine in the elderly. Int J Cardiol 2018; 250: 207-14.
[http://dx.doi.org/10.1016/j.ijcard.2017.09.188] [PMID: 28988828]
[113]
Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999; 402(6759): 309-13.
[http://dx.doi.org/10.1038/46311] [PMID: 10580504]
[114]
Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012; 335(6076): 1638-43.
[http://dx.doi.org/10.1126/science.1215135] [PMID: 22461615]
[115]
Yan L, Vatner DE, O’Connor JP, et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 2007; 130(2): 247-58.
[http://dx.doi.org/10.1016/j.cell.2007.05.038] [PMID: 17662940]
[116]
Laurent G, Solari F, Mateescu B, et al. Oxidative stress contributes to aging by enhancing pancreatic angiogenesis and insulin signaling. Cell Metab 2008; 7(2): 113-24.
[http://dx.doi.org/10.1016/j.cmet.2007.12.010] [PMID: 18249171]
[117]
Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 2013; 18(3): 416-30.
[http://dx.doi.org/10.1016/j.cmet.2013.07.013] [PMID: 24011076]
[118]
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124(2): 315-29.
[http://dx.doi.org/10.1016/j.cell.2005.11.044] [PMID: 16439206]
[119]
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483(7388): 218-21.
[http://dx.doi.org/10.1038/nature10815] [PMID: 22367546]
[120]
Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390(6655): 45-51.
[http://dx.doi.org/10.1038/36285] [PMID: 9363890]
[121]
Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005; 309(5742): 1829-33.
[http://dx.doi.org/10.1126/science.1112766] [PMID: 16123266]
[122]
Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2008; 28(4): 622-8.
[http://dx.doi.org/10.1161/ATVBAHA.107.156059] [PMID: 18162611]
[123]
Paneni F, Cosentino F. p66 Shc as the engine of vascular aging. Curr Vasc Pharmacol 2012; 10(6): 697-9.
[http://dx.doi.org/10.2174/157016112803520747] [PMID: 23259557]
[124]
Spescha RD, Glanzmann M, Simic B, et al. Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension 2014; 64(2): 347-53.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02129] [PMID: 24842918]
[125]
Francia P. delli Gatti C, Bachschmid M, et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004; 110(18): 2889-95.
[http://dx.doi.org/10.1161/01.CIR.0000147731.24444.4D] [PMID: 15505103]
[126]
Shi Y, Savarese G, Perrone-Filardi P, Lüscher TF, Camici GG. Enhanced age-dependent cerebrovascular dysfunction is mediated by adaptor protein p66Shc. Int J Cardiol 2014; 175(3): 446-50.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.025] [PMID: 25012499]
[127]
Spescha RD, Klohs J, Semerano A, et al. Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke. Eur Heart J 2015; 36(25): 1590-600.
[http://dx.doi.org/10.1093/eurheartj/ehv140] [PMID: 25904764]
[128]
Spescha RD, Shi Y, Wegener S, et al. Deletion of the ageing gene p66(Shc) reduces early stroke size following ischaemia/reperfusion brain injury. Eur Heart J 2013; 34(2): 96-103.
[http://dx.doi.org/10.1093/eurheartj/ehs331] [PMID: 23008506]
[129]
Franzeck FC, Hof D, Spescha RD, et al. Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 2012; 220(1): 282-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.10.035] [PMID: 22100252]
[130]
Shi Y, Cosentino F, Camici GG, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol 2011; 31(9): 2090-7.
[http://dx.doi.org/10.1161/ATVBAHA.111.229260] [PMID: 21817106]
[131]
Shi Y, Lüscher TF, Camici GG. Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS One 2014; 9(9)e107787
[http://dx.doi.org/10.1371/journal.pone.0107787] [PMID: 25247687]
[132]
Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 2003; 100(4): 2112-6.
[http://dx.doi.org/10.1073/pnas.0336359100] [PMID: 12571362]
[133]
Martin-Padura I, de Nigris F, Migliaccio E, et al. p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 2008; 15(5-6): 276-87.
[http://dx.doi.org/10.1080/10623320802487791] [PMID: 19065319]
[134]
Shahzad K, Gadi I, Nazir S, et al. Activated protein C reverses epigenetically sustained p66Shc expression in plaque-associated macrophages in diabetes. Commun Biol 2018; 1: 104.
[http://dx.doi.org/10.1038/s42003-018-0108-5] [PMID: 30271984]
[135]
Vatner SF, Pachon RE, Vatner DE. Inhibition of adenylyl cyclase type 5 increases longevity and healthful aging through oxidative stress protection. Oxid Med Cell Longev 2015; 2015250310
[http://dx.doi.org/10.1155/2015/250310] [PMID: 25945149]
[136]
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases-similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta 2014; 1842(12 Pt B): 2535-47.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.012] [PMID: 25193033]
[137]
Henneberry RC, Smith CC, Tallman JF. Relationship between beta-adrenergic receptors and adenylate cyclase in HeLa cells. Nature 1977; 268(5617): 252-4.
[http://dx.doi.org/10.1038/268252a0] [PMID: 196205]
[138]
Vatner SF, Park M, Yan L, et al. Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Physiol Heart Circ Physiol 2013; 305(1): H1-8.
[http://dx.doi.org/10.1152/ajpheart.00080.2013] [PMID: 23624627]
[139]
Lai L, Yan L, Gao S, et al. Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation 2013; 127(16): 1692-701.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001212] [PMID: 23536361]
[140]
Bravo CA, Vatner DE, Pachon R, Zhang J, Vatner SF. A Food and Drug Administration-approved antiviral agent that inhibits adenylyl cyclase type 5 protects the ischemic heart even when administered after reperfusion. J Pharmacol Exp Ther 2016; 357(2): 331-6.
[http://dx.doi.org/10.1124/jpet.116.232538] [PMID: 26941173]
[141]
Iwatsubo K, Minamisawa S, Tsunematsu T, et al. Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration. J Biol Chem 2004; 279(39): 40938-45.
[http://dx.doi.org/10.1074/jbc.M314238200] [PMID: 15262973]
[142]
Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493(7432): 338-45.
[http://dx.doi.org/10.1038/nature11861] [PMID: 23325216]
[143]
Zhang D, Contu R, Latronico MV, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 2010; 120(8): 2805-16.
[http://dx.doi.org/10.1172/JCI43008] [PMID: 20644257]
[144]
Zhu Y, Pires KM, Whitehead KJ, et al. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS One 2013; 8(1)e54221
[http://dx.doi.org/10.1371/journal.pone.0054221] [PMID: 23342106]
[145]
Shende P, Plaisance I, Morandi C, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 2011; 123(10): 1073-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.977066] [PMID: 21357822]
[146]
Shioi T, McMullen JR, Tarnavski O, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 2003; 107(12): 1664-70.
[http://dx.doi.org/10.1161/01.CIR.0000057979.36322.88] [PMID: 12668503]
[147]
McMullen JR, Sherwood MC, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004; 109(24): 3050-5.
[http://dx.doi.org/10.1161/01.CIR.0000130641.08705.45] [PMID: 15184287]
[148]
Wu X, Cao Y, Nie J, et al. Genetic and pharmacological inhibition of Rheb1-mTORC1 signaling exerts cardioprotection against adverse cardiac remodeling in mice. Am J Pathol 2013; 182(6): 2005-14.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.012] [PMID: 23567640]
[149]
Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res 2011; 109(5): 502-11.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.249532] [PMID: 21737790]
[150]
Buss SJ, Muenz S, Riffel JH, et al. Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol 2009; 54(25): 2435-46.
[http://dx.doi.org/10.1016/j.jacc.2009.08.031] [PMID: 20082935]
[151]
Sciarretta S, Zhai P, Shao D, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012; 125(9): 1134-46.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.078212] [PMID: 22294621]
[152]
Ming XF, Montani JP, Yang Z. Perspectives of targeting mtorc1-s6k1 in cardiovascular aging. Front Physiol 2012; 3: 5.
[http://dx.doi.org/10.3389/fphys.2012.00005] [PMID: 22291661]
[153]
Camici GG, Steffel J, Amanovic I, et al. Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents. Eur Heart J 2010; 31(2): 236-42.
[http://dx.doi.org/10.1093/eurheartj/ehp259] [PMID: 19567381]
[154]
Putman CT, Kiricsi M, Pearcey J, et al. AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 2003; 551(Pt 1): 169-78.
[http://dx.doi.org/10.1113/jphysiol.2003.040691] [PMID: 12813156]
[155]
Zong H, Ren JM, Young LH, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 2002; 99(25): 15983-7.
[http://dx.doi.org/10.1073/pnas.252625599] [PMID: 12444247]
[156]
Reznick RM, Zong H, Li J, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007; 5(2): 151-6.
[http://dx.doi.org/10.1016/j.cmet.2007.01.008] [PMID: 17276357]
[157]
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 2007; 104(29): 12017-22.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[158]
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30(2): 214-26.
[http://dx.doi.org/10.1016/j.molcel.2008.03.003] [PMID: 18439900]
[159]
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450(7170): 736-40.
[http://dx.doi.org/10.1038/nature06322] [PMID: 18046414]
[160]
Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27(35): 4757-67.
[http://dx.doi.org/10.1038/onc.2008.120] [PMID: 18427548]
[161]
Tsuji Y. JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress. Oncogene 2005; 24(51): 7567-78.
[http://dx.doi.org/10.1038/sj.onc.1208901] [PMID: 16007120]
[162]
Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K. Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem 2005; 280(6): 4785-91.
[http://dx.doi.org/10.1074/jbc.M408143200] [PMID: 15563473]
[163]
Xiao L, Rao JN, Zou T, et al. Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochem J 2007; 403(3): 573-81.
[http://dx.doi.org/10.1042/BJ20061436] [PMID: 17253961]
[164]
Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008; 80(2): 191-9.
[http://dx.doi.org/10.1093/cvr/cvn224] [PMID: 18689793]
[165]
Paneni F, Osto E, Costantino S, et al. Deletion of the activated protein-1 transcription factor JunD induces oxidative stress and accelerates age-related endothelial dysfunction. Circulation 2013; 2013: 1229-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000826]
[166]
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012; 13(4): 225-38.
[http://dx.doi.org/10.1038/nrm3293] [PMID: 22395773]
[167]
Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer 2010; 10(12): 819-23.
[http://dx.doi.org/10.1038/nrc2962] [PMID: 21102633]
[168]
Kuningas M, Putters M, Westendorp RG, Slagboom PE, van Heemst D. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J Gerontol A Biol Sci Med Sci 2007; 62(9): 960-5.
[http://dx.doi.org/10.1093/gerona/62.9.960] [PMID: 17895433]
[169]
Figarska SM, Vonk JM, Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS One 2013; 8(3)e58636
[http://dx.doi.org/10.1371/journal.pone.0058636] [PMID: 23505545]
[170]
Thompson AM, Wagner R, Rzucidlo EM. Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol 2014; 307(4): H533-41.
[http://dx.doi.org/10.1152/ajpheart.00871.2013] [PMID: 24973384]
[171]
Gong H, Pang J, Han Y, et al. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol Med Rep 2014; 10(6): 3296-302.
[http://dx.doi.org/10.3892/mmr.2014.2648] [PMID: 25323555]
[172]
Guo Y, Xu C, Wc Man A, et al. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc Res 2019; 115(3): 678-90.
[PMID: 30165439]
[173]
Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 2013; 14(2): 3834-59.
[http://dx.doi.org/10.3390/ijms14023834] [PMID: 23434668]
[174]
Miranda MX, van Tits LJ, Lohmann C, et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 2015; 36(1): 51-9.
[http://dx.doi.org/10.1093/eurheartj/ehu095] [PMID: 24603306]
[175]
Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY) 2016; 8(10): 2290-307.
[http://dx.doi.org/10.18632/aging.101068] [PMID: 27744418]
[176]
de Kreutzenberg SV, Ceolotto G, Papparella I, et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 2010; 59(4): 1006-15.
[http://dx.doi.org/10.2337/db09-1187] [PMID: 20068143]
[177]
Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8(4): 333-41.
[http://dx.doi.org/10.1016/j.cmet.2008.08.014] [PMID: 18840364]
[178]
Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6(6): 759-67.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00335.x] [PMID: 17877786]
[179]
Wang XQ, Shao Y, Ma CY, et al. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med 2014; 18(11): 2298-310.
[http://dx.doi.org/10.1111/jcmm.12395] [PMID: 25210848]
[180]
Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003; 38(10): 1065-70.
[http://dx.doi.org/10.1016/S0531-5565(03)00209-2] [PMID: 14580859]
[181]
Albani D, Ateri E, Mazzuco S, et al. Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study “Treviso Longeva (TRELONG)”. Age (Dordr) 2014; 36(1): 469-78.
[http://dx.doi.org/10.1007/s11357-013-9559-2] [PMID: 23839864]
[182]
TenNapel MJ, Lynch CF, Burns TL, et al. SIRT6 minor allele genotype is associated with >5-year decrease in lifespan in an aged cohort. PLoS One 2014; 9(12)e115616
[http://dx.doi.org/10.1371/journal.pone.0115616] [PMID: 25541994]
[183]
Diaz-Cañestro C, Merlini M, Bonetti NR, et al. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int J Cardiol 2018; 260: 148-55.
[http://dx.doi.org/10.1016/j.ijcard.2017.12.060] [PMID: 29622432]
[184]
Daitoku H, Sakamaki J, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim Biophys Acta 2011; 1813(11): 1954-60.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.001] [PMID: 21396404]
[185]
Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 2013; 63: 222-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.002] [PMID: 23665396]
[186]
Tseng AH, Wu LH, Shieh SS, Wang DL. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem J 2014; 464(1): 157-68.
[http://dx.doi.org/10.1042/BJ20140213] [PMID: 25162939]
[187]
Winnik S, Gaul DS, Preitner F, et al. Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development. Basic Res Cardiol 2014; 109(1): 399.
[http://dx.doi.org/10.1007/s00395-013-0399-0] [PMID: 24370889]
[188]
Jia G, Su L, Singhal S, Liu X. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging. Mol Cell Biochem 2012; 364(1-2): 345-50.
[http://dx.doi.org/10.1007/s11010-012-1236-8] [PMID: 22286818]
[189]
Liao CY, Kennedy BK. SIRT6, oxidative stress, and aging. Cell Res 2016; 26(2): 143-4.
[http://dx.doi.org/10.1038/cr.2016.8] [PMID: 26780861]
[190]
Roichman A, Kanfi Y, Glazz R, et al. SIRT6 overexpression improves various aspects of mouse healthspan. J Gerontol A Biol Sci Med Sci 2017; 72(5): 603-15.
[PMID: 27519885]
[191]
Peshti V, Obolensky A, Nahum L, et al. Characterization of physiological defects in adult SIRT6-/- mice. PLoS One 2017; 12(4)e0176371
[http://dx.doi.org/10.1371/journal.pone.0176371] [PMID: 28448551]
[192]
Tasselli L, Zheng W, Chua KF. SIRT6: Novel mechanisms and links to aging and disease. Trends Endocrinol Metab 2017; 28(3): 168-85.
[http://dx.doi.org/10.1016/j.tem.2016.10.002] [PMID: 27836583]
[193]
Xu S, Yin M, Koroleva M, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY) 2016; 8(5): 1064-82.
[http://dx.doi.org/10.18632/aging.100975] [PMID: 27249230]
[194]
Balestrieri ML, Rizzo MR, Barbieri M, et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64(4): 1395-406.
[http://dx.doi.org/10.2337/db14-1149] [PMID: 25325735]
[195]
Castellano G, Intini A, Stasi A, et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. Am J Transplant 2016; 16(1): 325-33.
[http://dx.doi.org/10.1111/ajt.13415] [PMID: 26280899]
[196]
Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev 2015; 36(2): 174-93.
[http://dx.doi.org/10.1210/er.2013-1079] [PMID: 25695404]
[197]
Bloch L, Sineshchekova O, Reichenbach D, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett 2009; 583(19): 3221-4.
[http://dx.doi.org/10.1016/j.febslet.2009.09.009] [PMID: 19737556]
[198]
Ding HY, Ma HX. Significant roles of anti-aging protein klotho and fibroblast growth factor23 in cardiovascular disease. J Geriatr Cardiol 2015; 12(4): 439-47.
[PMID: 26347327]
[199]
Kuro-o M. Klotho and aging. Biochim Biophys Acta 2009; 1790(10): 1049-58.
[http://dx.doi.org/10.1016/j.bbagen.2009.02.005] [PMID: 19230844]
[200]
Dubal DB, Zhu L, Sanchez PE, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35(6): 2358-71.
[http://dx.doi.org/10.1523/JNEUROSCI.5791-12.2015] [PMID: 25673831]
[201]
Martín-Núñez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Implications of klotho in vascular health and disease. World J Cardiol 2014; 6(12): 1262-9.
[http://dx.doi.org/10.4330/wjc.v6.i12.1262] [PMID: 25548616]
[202]
Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005; 280(45): 38029-34.
[http://dx.doi.org/10.1074/jbc.M509039200] [PMID: 16186101]
[203]
Wang Y, Kuro-o M, Sun Z. Klotho gene delivery suppresses Nox2 expression and attenuates oxidative stress in rat aortic smooth muscle cells via the cAMP-PKA pathway. Aging Cell 2012; 11(3): 410-7.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00796.x] [PMID: 22260450]
[204]
Song S, Gao P, Xiao H, Xu Y, Si LY. Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One 2013; 8(12)e82968
[http://dx.doi.org/10.1371/journal.pone.0082968] [PMID: 24340070]
[205]
Gao D, Zuo Z, Tian J, et al. Activation of SIRT1 attenuates klotho deficiency-induced arterial stiffness and hypertension by enhancing amp-activated protein kinase activity. Hypertension 2016; 68(5): 1191-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07709] [PMID: 27620389]
[206]
Yokoyama JS, Marx G, Brown JA, et al. Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging. Brain Imaging Behav 2017; 11(2): 391-400.
[http://dx.doi.org/10.1007/s11682-016-9598-2] [PMID: 27714549]
[207]
Martín-Núñez E, Donate-Correa J, López-Castillo Á, et al. Soluble levels and endogenous vascular gene expression of KLOTHO are related to inflammation in human atherosclerotic disease. Clin Sci (Lond) 2017; 131(21): 2601-9.
[http://dx.doi.org/10.1042/CS20171242] [PMID: 28963437]
[208]
Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 140(11): e596-646.
[PMID: 30879355]
[209]
Koskinas KC, Siontis GCM, Piccolo R, et al. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur Heart J 2018; 39(14): 1172-80.
[http://dx.doi.org/10.1093/eurheartj/ehx566] [PMID: 29069377]
[210]
Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering-are they clinically relevant? Eur Heart J 2003; 24(3): 225-48.
[http://dx.doi.org/10.1016/S0195-668X(02)00419-0] [PMID: 12590901]
[211]
Liberale L, Montecucco F, Camici GG, et al. Treatment with Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors to reduce cardiovascular inflammation and outcomes. Curr Med Chem 2017; 24(14): 1403-16.
[http://dx.doi.org/10.2174/0929867324666170303123734] [PMID: 28260498]
[212]
Miettinen TA, Pyörälä K, Olsson AG, et al. Cholesterol-lowering therapy in women and elderly patients with myocardial infarction or angina pectoris: findings from the Scandinavian Simvastatin Survival Study (4S). Circulation 1997; 96(12): 4211-8.
[http://dx.doi.org/10.1161/01.CIR.96.12.4211] [PMID: 9416884]
[213]
Hunt D, Young P, Simes J, et al. Benefits of pravastatin on cardiovascular events and mortality in older patients with coronary heart disease are equal to or exceed those seen in younger patients: Results from the LIPID trial. Ann Intern Med 2001; 134(10): 931-40.
[http://dx.doi.org/10.7326/0003-4819-134-10-200105150-00007] [PMID: 11352694]
[214]
Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7-22.
[http://dx.doi.org/10.1016/S0140-6736(02)09327-3] [PMID: 12114036]
[215]
Savarese G, Gotto AM Jr, Paolillo S, et al. Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. J Am Coll Cardiol 2013; 62(22): 2090-9.
[http://dx.doi.org/10.1016/j.jacc.2013.07.069] [PMID: 23954343]
[216]
Afilalo J, Duque G, Steele R, Jukema JW, de Craen AJ, Eisenberg MJ. Statins for secondary prevention in elderly patients: a hierarchical bayesian meta-analysis. J Am Coll Cardiol 2008; 51(1): 37-45.
[http://dx.doi.org/10.1016/j.jacc.2007.06.063] [PMID: 18174034]
[217]
Cholesterol Treatment Trialists’ Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet 2019; 393(10170): 407-15.
[http://dx.doi.org/10.1016/S0140-6736(18)31942-1] [PMID: 30712900]
[218]
Iwere RB, Hewitt J. Myopathy in older people receiving statin therapy: a systematic review and meta-analysis. Br J Clin Pharmacol 2015; 80(3): 363-71.
[http://dx.doi.org/10.1111/bcp.12687] [PMID: 26032930]
[219]
Andreotti F, Rocca B, Husted S, et al. Antithrombotic therapy in the elderly: expert position paper of the European Society of Cardiology Working Group on Thrombosis. Eur Heart J 2015; 36(46): 3238-49.
[http://dx.doi.org/10.1093/eurheartj/ehv304] [PMID: 26163482]
[220]
Baigent C, Blackwell L, Collins R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373(9678): 1849-60.
[http://dx.doi.org/10.1016/S0140-6736(09)60503-1] [PMID: 19482214]
[221]
Ikeda Y, Shimada K, Teramoto T, et al. Low-dose aspirin for primary prevention of cardiovascular events in Japanese patients 60 years or older with atherosclerotic risk factors: a randomized clinical trial. JAMA 2014; 312(23): 2510-20.
[http://dx.doi.org/10.1001/jama.2014.15690] [PMID: 25401325]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 25
ISSUE: 29
Year: 2019
Page: [3098 - 3111]
Pages: 14
DOI: 10.2174/1381612825666190830175424
Price: $65

Article Metrics

PDF: 23
HTML: 2
EPUB: 1