Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Use of Novel m6A Regulator-mediated Methylation Modification Patterns in Distinct Tumor Microenvironment Profiles to Identify and Predict Glioma Prognosis and Progression, T-cell Dysfunction, and Clinical Response to ICI Immunotherapy

Author(s): Binghao Zhao, Zhongtian Xiang, Bo Wu, Xiang Zhang, Nan Feng, Yiping Wei and Wenxiong Zhang*

Volume 29, Issue 1, 2023

Published on: 21 December, 2022

Page: [60 - 78] Pages: 19

DOI: 10.2174/1381612829666221207112438

Price: $65

Abstract

Background: The specific functions of RNA N6-methyladenosine (m6A) modifications in the glioma tumor microenvironment (TME) and glioma patient prognosis and treatment have not been determined to date.

Objective: The objective of the study was to determine the role of m6A modifications in glioma TME.

Methods: Nonnegative matrix factorization (NMF) methods were used to determine m6A clusters and m6A gene signatures based on 21 genes relating to m6A modifications. TME characteristics for each m6A cluster and m6A gene signature were quantified by established m6A score. The utility of m6A score was validated in immunotherapy and other antiangiogenic treatment cohorts.

Results: Three m6A clusters were identified among 3,395 glioma samples, and they were linked to different biological activities and clinical outcomes. The m6A clusters were highly consistent with immune profiles known as immune-inflamed, immune-excluded, and immune-desert phenotypes. Clusters within individual tumors could predict glioma inflammation, molecular subtypes, TME stromal activity, genetic variation, alternative splicing, and prognosis. As for the m6A score and m6A gene signature, patients with low m6A scores exhibited an increased tumor mutation burden, immune activity, neoantigen load, and prolonged survival. A low m6A score indicated the potential for a low level of T-cell dysfunction, a considerably better treatment response, and durable clinical benefits from immunotherapy, bevacizumab and regorafenib.

Conclusion: Glioma m6A clusters and gene signatures have distinctive TME features. The m6A gene signature may guide prognostic assessments and promote the use of effective strategies.

Keywords: Glioma, m6A modification, m6A score, tumor microenvironment, immunotherapy, targeted therapy, multiomics scale.

« Previous
[1]
Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res 2018; 46(D1): D303-7.
[http://dx.doi.org/10.1093/nar/gkx1030] [PMID: 29106616]
[2]
Cohn WE. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: Isolation, structure, and chemical characteristics. J Biol Chem 1960; 235(5): 1488-98.
[http://dx.doi.org/10.1016/S0021-9258(18)69432-3] [PMID: 13811056]
[3]
He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18(1): 176.
[http://dx.doi.org/10.1186/s12943-019-1109-9] [PMID: 31801551]
[4]
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer 2019; 18(1): 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[5]
Davalos V, Blanco S, Esteller M. SnapShot: Messenger RNA Modifications. Messenger RNA Modifications Cell 2018; 174(2): 498-498.e1.
[PMID: 30007421]
[6]
Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21(5): 501-12.
[http://dx.doi.org/10.1038/s41590-020-0650-4] [PMID: 32284591]
[7]
Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncol 2019; 21 (Suppl. 5): v1-v100.
[http://dx.doi.org/10.1093/neuonc/noz150] [PMID: 31675094]
[8]
Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14(12): 717-34.
[http://dx.doi.org/10.1038/nrclinonc.2017.101] [PMID: 28741618]
[9]
Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 2015; 15(11): 669-82.
[http://dx.doi.org/10.1038/nri3902] [PMID: 26471778]
[10]
Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov 2021; 11(3): 575-90.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1474] [PMID: 33558264]
[11]
Zhao B, Wang Y, Wang Y, et al. Systematic identification, development, and validation of prognostic biomarkers involving the tumor‐immune microenvironment for glioblastoma. J Cell Physiol 2021; 236(1): 507-22.
[http://dx.doi.org/10.1002/jcp.29878] [PMID: 32572951]
[12]
Visvanathan A, Patil V, Arora A, et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 2018; 37(4): 522-33.
[http://dx.doi.org/10.1038/onc.2017.351] [PMID: 28991227]
[13]
Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 2017; 18(11): 2622-34.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[14]
Zhang S, Zhao BS, Zhou A, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591-606.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.02.013] [PMID: 28344040]
[15]
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016; 62(3): 335-45.
[http://dx.doi.org/10.1016/j.molcel.2016.03.021] [PMID: 27117702]
[16]
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113(14): E2047-56.
[http://dx.doi.org/10.1073/pnas.1602883113] [PMID: 27001847]
[17]
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 2017; 31(1): 127-41.
[http://dx.doi.org/10.1016/j.ccell.2016.11.017] [PMID: 28017614]
[18]
Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K. Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 2009; 7(2): 157-67.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0435] [PMID: 19208739]
[19]
Chen Q, Han B, Meng X, et al. Immunogenomic analysis reveals LGALS1 contributes to the immune heterogeneity and immunosuppression in glioma. Int J Cancer 2019; 145(2): 517-30.
[http://dx.doi.org/10.1002/ijc.32102] [PMID: 30613962]
[20]
Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer 2020; 19(1): 53.
[http://dx.doi.org/10.1186/s12943-020-01170-0] [PMID: 32164750]
[21]
Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 5: Recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 2020; 139(3): 603-8.
[http://dx.doi.org/10.1007/s00401-020-02127-9] [PMID: 31996992]
[22]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[23]
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12(5): 453-7.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[24]
Jiménez-Sánchez A, Cast O, Miller ML. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res 2019; 79(24): 6238-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3560] [PMID: 31641033]
[25]
Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife 2017; 6: e26476.
[http://dx.doi.org/10.7554/eLife.26476] [PMID: 29130882]
[26]
Li B, Cui Y, Nambiar DK, Sunwoo JB, Li R. The immune subtypes and landscape of squamous cell carcinoma. Clin Cancer Res 2019; 25(12): 3528-37.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4085] [PMID: 30833271]
[27]
Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016; 17(1): 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5] [PMID: 27765066]
[28]
Finotello F, Mayer C, Plattner C, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13073-019-0638-6] [PMID: 31126321]
[29]
Aran D, Hu Z, Butte AJ. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017; 18(1): 220.
[http://dx.doi.org/10.1186/s13059-017-1349-1] [PMID: 29141660]
[30]
Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013; 4(1): 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[31]
Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457): 214-8.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[32]
Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554(7693): 544-8.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[33]
Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 2019; 7(5): 737-50.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0436] [PMID: 30842092]
[34]
Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006; 98(4): 262-72.
[http://dx.doi.org/10.1093/jnci/djj052] [PMID: 16478745]
[35]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[36]
Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41(Database issue): D955-61.
[PMID: 23180760]
[37]
Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016; 166(3): 740-54.
[http://dx.doi.org/10.1016/j.cell.2016.06.017] [PMID: 27397505]
[38]
Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 2016; 165(1): 35-44.
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[39]
Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015; 350(6257): 207-11.
[http://dx.doi.org/10.1126/science.aad0095] [PMID: 26359337]
[40]
Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018; 24(10): 1550-8.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[41]
Yao MD, Jiang Q, Ma Y, et al. Role of METTL3-Dependent N6-methyladenosine mRNA modification in the promotion of angiogenesis. Mol Ther 2020; 28(10): 2191-202.
[http://dx.doi.org/10.1016/j.ymthe.2020.07.022] [PMID: 32755566]
[42]
Lombardi G, De Salvo GL, Brandes AA, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2019; 20(1): 110-9.
[http://dx.doi.org/10.1016/S1470-2045(18)30675-2] [PMID: 30522967]
[43]
Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol 2018; 11(2): 311-29.
[http://dx.doi.org/10.1016/j.tranon.2018.01.011] [PMID: 29413765]
[44]
Jiang Z, Liu Z, Li M, Chen C, Wang X. Immunogenomics analysis reveals that TP53 mutations inhibit tumor immunity in gastric cancer. Transl Oncol 2018; 11(5): 1171-87.
[http://dx.doi.org/10.1016/j.tranon.2018.07.012] [PMID: 30059832]
[45]
Lyu H, Li M, Jiang Z, Liu Z, Wang X. Correlate the TP53 mutation and the HRAS mutation with immune signatures in head and neck squamous cell cancer. Comput Struct Biotechnol J 2019; 17: 1020-30.
[http://dx.doi.org/10.1016/j.csbj.2019.07.009] [PMID: 31428295]
[46]
Gromeier M, Brown MC, Zhang G, et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat Commun 2021; 12(1): 352.
[http://dx.doi.org/10.1038/s41467-020-20469-6] [PMID: 33441554]
[47]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18(3): 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[48]
Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 2020; 9: e52176.
[http://dx.doi.org/10.7554/eLife.52176] [PMID: 32014107]
[49]
Chen YG, Chen R, Ahmad S, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell 2019; 76(1): 96-109.e9.
[http://dx.doi.org/10.1016/j.molcel.2019.07.016] [PMID: 31474572]
[50]
Yang Z, Li J, Feng G, et al. MicroRNA-145 Modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J Biol Chem 2017; 292(9): 3614-23.
[http://dx.doi.org/10.1074/jbc.M116.749689] [PMID: 28104805]
[51]
Chen J, Sun Y, Xu X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle 2017; 16(23): 2259-71.
[http://dx.doi.org/10.1080/15384101.2017.1380125] [PMID: 29135329]
[52]
Fang R, Chen X, Zhang S, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 2021; 12(1): 177.
[http://dx.doi.org/10.1038/s41467-020-20379-7] [PMID: 33420027]
[53]
Gestrich CK, Couce ME, Cohen ML. Adult diffuse astrocytic and oligodendroglial tumors. Neurosurgery 2021; 89(5): 737-49.
[http://dx.doi.org/10.1093/neuros/nyab042] [PMID: 33611566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy