Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Sulfonamide-Functionalized Polymeric Nanoparticles for Enhanced In Vivo Colorectal Cancer Therapy

Author(s): Pedro Pires Goulart Guimarães, Celso Tarso Rodrigues Viana, Luciana Pereira, Savio Morato Lacerda Gontijo, Paula Peixoto Campos, Silvia Passos Andrade, Robson A.S. Santos and Rubén D. Sinisterra*

Volume 19, Issue 6, 2022

Published on: 13 January, 2022

Page: [676 - 685] Pages: 10

DOI: 10.2174/1567201818666210729110127

Price: $65

Abstract

Background: Colorectal cancer (CRC) is the third most common cancer in the world. 5- Fluorouracil (5-FU) is a conventional and most effective drug used in the clinic for the treatment of CRC. However, the clinical use of 5-FU is limited due to the acquired resistance and systemic toxicity, such as hepatotoxicity and gastrointestinal toxicity.

Objective: Recent advances in nanomedicine are being exploited to develop nanoparticle platforms to overcome resistance and therapeutic delivery of active molecules. Here, we developed 5-FU loaded sulfadiazine-poly(lactide-co-glycolide) nanoparticles (SUL-PLGA NPs) to be applied in the colorectal cancer model.

Methods: We assessed the in vivo efficacy of the SUL-PLGA NPs to enhance the antitumor effect of 5-FU.

Results: In vivo treatment with 5-FU-SUL-PLGA NPs significantly reduced tumor growth in a colon cancer xenograft model compared to free 5-FU and 5-FU loaded non-targeted NPs. Treatment with 5-FU-SUL-PLGA NPs also increased blood vessel diameters within tumors, which could act in conjunction to enhance antitumor efficacy. In addition, 5-FU-SUL-PLGA NPs significantly reduced liver mass and lung mass, which are the most common metastasis sites of CRC, and decreased liver hepatotoxicity compared to free 5-FU drug and 5-FU loaded non-targeted NPs.

Conclusion: Our findings suggest that the use of 5-FU-SUL-PLGA NPs is a promising strategy to enhance 5-FU efficacy against CRC.

Keywords: PLGA, polymeric nanoparticles, sulfonamide, drug delivery, colorectal cancer, cancer therapy.

Graphical Abstract
[1]
Riihimäki M, Thomsen H, Sundquist K, Hemminki K. Colorectal cancer patients: what do they die of? Frontline Gastroenterol 2012; 3(3): 143-9.
[http://dx.doi.org/10.1136/flgastro-2012-100141] [PMID: 28839655]
[2]
Riihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep 2016; 6: 29765-5.
[http://dx.doi.org/10.1038/srep29765] [PMID: 27416752]
[3]
He J, Liang X, Luo F, et al. P53 is involved in a three-dimensional architecture-mediated decrease in chemosensitivity in colon cancer. J Cancer 2016; 7(8): 900-9.
[http://dx.doi.org/10.7150/jca.14506] [PMID: 27313779]
[4]
He J, Pei L, Jiang H, Yang W, Chen J, Liang H. Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation. J Cancer 2017; 8(7): 1187-96.
[http://dx.doi.org/10.7150/jca.18171] [PMID: 28607593]
[5]
Wyatt MD, Wilson DM III. Participation of DNA repair in the response to 5-fluorouracil. Cell Mol Life Sci 2009; 66(5): 788-99.
[http://dx.doi.org/10.1007/s00018-008-8557-5] [PMID: 18979208]
[6]
Ooyama A, Oka T, Zhao H-Y, Yamamoto M, Akiyama S, Fukushima M. Anti-angiogenic effect of 5-Fluorouracil-based drugs against human colon cancer xenografts. Cancer Lett 2008; 267(1): 26-36.
[http://dx.doi.org/10.1016/j.canlet.2008.03.008] [PMID: 18420342]
[7]
El-Sayyad HI, Ismail MF, Shalaby FM, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci 2009; 5(5): 466-73.
[http://dx.doi.org/10.7150/ijbs.5.466] [PMID: 19584954]
[8]
Soares PMG, Mota JMSC, Souza EP, et al. Inflammatory intestinal damage induced by 5-fluorouracil requires IL-4. Cytokine 2013; 61(1): 46-9.
[http://dx.doi.org/10.1016/j.cyto.2012.10.003] [PMID: 23107827]
[9]
Zhang N, Yin Y, Xu S-J, Chen W-S. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 2008; 13(8): 1551-69.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[10]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[11]
Guimarães PPG, Oliveira MF, Gomes ADM, et al. PLGA nanofibers improves the antitumoral effect of daunorubicin. Colloids Surf B Biointerfaces 2015; 136: 248-55.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.005] [PMID: 26402423]
[12]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[13]
Stylianopoulos T, Martin JD, Chauhan VP, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci USA 2012; 109(38): 15101-8.
[http://dx.doi.org/10.1073/pnas.1213353109] [PMID: 22932871]
[14]
Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11): 653-64.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[15]
Tong R, Chiang HH, Kohane DS. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc Natl Acad Sci USA 2013; 110(47): 19048-53.
[http://dx.doi.org/10.1073/pnas.1315336110] [PMID: 24191048]
[16]
Sano K, Nakajima T, Choyke PL, Kobayashi H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013; 7(1): 717-24.
[http://dx.doi.org/10.1021/nn305011p] [PMID: 23214407]
[17]
Maeda H. Nitroglycerin enhances vascular blood flow and drug delivery in hypoxic tumor tissues: analogy between angina pectoris and solid tumors and enhancement of the EPR effect. J Control Release 2010; 142(3): 296-8.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.002] [PMID: 20074683]
[18]
Fang J, Qin H, Nakamura H, Tsukigawa K, Shin T, Maeda H. Carbon monoxide, generated by heme oxygenase-1, mediates the enhanced permeability and retention effect in solid tumors. Cancer Sci 2012; 103(3): 535-41.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02178.x] [PMID: 22145952]
[19]
Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci USA 2011; 108(7): 2909-14.
[http://dx.doi.org/10.1073/pnas.1018892108] [PMID: 21282607]
[20]
Kang HC, Bae YH. pH-tunable endosomolytic oligomers for enhanced nucleic acid delivery.Adv Funct Mater. John Wiley & Sons 2007; 17: pp. (8)1263-72.
[21]
Na K, Lee ES, Bae YH. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release 2003; 87(1-3): 3-13.
[http://dx.doi.org/10.1016/S0168-3659(02)00345-0] [PMID: 12618018]
[22]
Sethuraman VA, Lee MC, Bae YH. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm Res 2008; 25(3): 657-66.
[http://dx.doi.org/10.1007/s11095-007-9480-4] [PMID: 17999164]
[23]
Owa T, Nagasu T. Novel sulphonamide derivatives for the treatment of cancer. Expert opinion on therapeutic patents. Taylor & Francis 2000; 10: pp. (11)1725-40.
[http://dx.doi.org/10.1517/13543776.10.11.1725]
[24]
Owa T, Yoshino H, Okauchi T, et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 1999; 42(19): 3789-99.
[http://dx.doi.org/10.1021/jm9902638] [PMID: 10508428]
[25]
Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Anticancer and antiviral sulfonamides. Curr Med Chem 2003; 10(11): 925-53.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[26]
Kamal A, Dastagiri D, Ramaiah MJ, et al. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Eur J Med Chem 2011; 46(12): 5817-24.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.039] [PMID: 22000207]
[27]
Guimarães PPG, Oliveira SR, de Castro Rodrigues G, et al. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability. Molecules 2015; 20(1): 879-99.
[http://dx.doi.org/10.3390/molecules20010879] [PMID: 25580685]
[28]
Viana CTR, Campos PP, Carvalho LA, et al. Distinct types of tumors exhibit differential grade of inflammation and angiogenesis in mice. Microvasc Res 2013; 86: 44-51.
[http://dx.doi.org/10.1016/j.mvr.2012.12.002] [PMID: 23253264]
[29]
Kato KC, Morais-Teixeira E, Reis PG, et al. Hepatotoxicity of pentavalent antimonial drug: possible role of residual Sb(III) and protective effect of ascorbic acid. Antimicrob Agents Chemother 2014; 58(1): 481-8.
[http://dx.doi.org/10.1128/AAC.01499-13] [PMID: 24189251]
[30]
Villanueva MT. Angiogenesis: going with the flow. Nat Rev Cancer 2016; 16(12): 751.
[http://dx.doi.org/10.1038/nrc.2016.127] [PMID: 27876772]
[31]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[32]
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[33]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy