Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of MicroRNAs in the Progression and Metastasis of Colon Cancer

Author(s): Shruthi Sanjitha Sampath, Sivaramakrishnan Venkatabalasubramanian and Satish Ramalingam*

Volume 21, Issue 1, 2021

Published on: 25 August, 2020

Page: [35 - 46] Pages: 12

DOI: 10.2174/1871530320666200825184924

Price: $65

Abstract

MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours, while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis, which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc, will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.

Keywords: MicroRNA, ulcerative colitis, colon cancer, Crohn's disease, metastasis, biomarkers.

Graphical Abstract
[1]
Willett, W.J.N. The search for the causes of breast and colon cancer, 1989, 338, 389.
[http://dx.doi.org/10.1038/338389a0]
[2]
Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med., 2019, 69, 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005] [PMID: 31233770]
[3]
Wu, W.K.; Law, P.T.; Lee, C.W.; Cho, C.H.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J. MicroRNA in colorectal cancer: From benchtop to bedside. Carcinogenesis, 2011, 32(3), 247-253.
[http://dx.doi.org/10.1093/carcin/bgq243] [PMID: 21081475]
[4]
Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology, 2010, 138(6), 2044-2058.
[http://dx.doi.org/10.1053/j.gastro.2010.01.054] [PMID: 20420945]
[5]
Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Paraskeva, C.; Markowitz, S.; Willson, J.K.; Hamilton, S.; Vogelstein, B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res., 1990, 50(23), 7717-7722.
[PMID: 2253215]
[6]
Farazi, T.A.; Spitzer, J.I.; Morozov, P.; Tuschl, T. miRNAs in human cancer. J. Pathol., 2011, 223(2), 102-115.
[http://dx.doi.org/10.1002/path.2806] [PMID: 21125669]
[7]
Gregory, R.I.; Chendrimada, T.P.; Cooch, N.; Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4), 631-640.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[8]
Yoo, B.K.; Santhekadur, P.K.; Gredler, R.; Chen, D.; Emdad, L.; Bhutia, S.; Pannell, L.; Fisher, P.B.; Sarkar, D. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology, 2011, 53(5), 1538-1548.
[http://dx.doi.org/10.1002/hep.24216] [PMID: 21520169]
[9]
Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1), 25-33.
[http://dx.doi.org/10.1016/S0092-8674(00)80620-0] [PMID: 10778853]
[10]
Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer, 2015, 15(6), 321-333.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[11]
Eulalio, A.; Huntzinger, E.; Nishihara, T.; Rehwinkel, J.; Fauser, M.; Izaurralde, E. Deadenylation is a widespread effect of miRNA regulation. RNA, 2009, 15(1), 21-32.
[http://dx.doi.org/10.1261/rna.1399509] [PMID: 19029310]
[12]
Ibrahim, M.L. Myeloid-derived suppressor cells produce IL-10 to elicit DNMT3b-dependent IRF8 silencing to promote colitis-associated colon tumorigenesis. Cell Rep., 2018, 25(11), 3036-3046.
[13]
Beaugerie, L. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology, 2013, 145(1), 166-175.
[http://dx.doi.org/10.1053/j.gastro.2013.03.044]
[14]
Rybaczyk, L.; Rozmiarek, A.; Circle, K.; Grants, I.; Needleman, B.; Wunderlich, J.E.; Huang, K.; Christofi, F.L. New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm. Bowel Dis., 2009, 15(7), 971-984.
[http://dx.doi.org/10.1002/ibd.20893] [PMID: 19253308]
[15]
Arijs, I.; Li, K.; Toedter, G.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; De Hertogh, G.; Lemaire, K.; Ferrante, M.; Schnitzler, F.; Thorrez, L.; Ma, K.; Song, X.Y.; Marano, C.; Van Assche, G.; Vermeire, S.; Geboes, K.; Schuit, F.; Baribaud, F.; Rutgeerts, P. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut, 2009, 58(12), 1612-1619.
[http://dx.doi.org/10.1136/gut.2009.178665] [PMID: 19700435]
[16]
Pekow, J.R.; Kwon, J.H. MicroRNAs in inflammatory bowel disease. Inflamm. Bowel Dis., 2012, 18(1), 187-193.
[http://dx.doi.org/10.1002/ibd.21691] [PMID: 21425211]
[17]
Dalmasso, G.; Nguyen, H.T.T.; Faïs, T.; Massier, S.; Barnich, N.; Delmas, J.; Bonnet, R. Crohn’s disease-associated adherent-invasive escherichia coli manipulate host autophagy by impairing SUMOylation. Cells, 2019, 8(1)E35
[http://dx.doi.org/10.3390/cells8010035] [PMID: 30634511]
[18]
Wu, F. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology, 2008, 135(5), 1624-1635.
[19]
Wu, F.; Zhang, S.; Dassopoulos, T.; Harris, M.L.; Bayless, T.M.; Meltzer, S.J.; Brant, S.R.; Kwon, J.H. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm. Bowel Dis., 2010, 16(10), 1729-1738.
[http://dx.doi.org/10.1002/ibd.21267] [PMID: 20848482]
[20]
Wu, F.; Guo, N.J.; Tian, H.; Marohn, M.; Gearhart, S.; Bayless, T.M.; Brant, S.R.; Kwon, J.H. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm. Bowel Dis., 2011, 17(1), 241-250.
[http://dx.doi.org/10.1002/ibd.21450] [PMID: 20812331]
[21]
Paraskevi, A.; Theodoropoulos, G.; Papaconstantinou, I.; Mantzaris, G.; Nikiteas, N.; Gazouli, M. Circulating MicroRNA in inflammatory bowel disease. J. Crohn’s Colitis, 2012, 6(9), 900-904.
[http://dx.doi.org/10.1016/j.crohns.2012.02.006] [PMID: 22386737]
[22]
Gwiggner, M.; Martinez-Nunez, R.T.; Whiteoak, S.R.; Bondanese, V.P.; Claridge, A.; Collins, J.E.; Cummings, J.R.F.; Sanchez-Elsner, T. MicroRNA-31 and MicroRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1. Genes (Basel), 2018, 9(2)E85
[http://dx.doi.org/10.3390/genes9020085] [PMID: 29438285]
[23]
Olaru, A.V.; Selaru, F.M.; Mori, Y.; Vazquez, C.; David, S.; Paun, B.; Cheng, Y.; Jin, Z.; Yang, J.; Agarwal, R.; Abraham, J.M.; Dassopoulos, T.; Harris, M.; Bayless, T.M.; Kwon, J.; Harpaz, N.; Livak, F.; Meltzer, S.J. Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm. Bowel Dis., 2011, 17(1), 221-231.
[http://dx.doi.org/10.1002/ibd.21359] [PMID: 20848542]
[24]
Lewis, A.; Felice, C.; Kumagai, T.; Lai, C.; Singh, K.; Jeffery, R.R.; Feakins, R.; Giannoulatou, E.; Armuzzi, A.; Jawad, N.; Lindsay, J.O.; Silver, A. The miR-200 family is increased in dysplastic lesions in ulcerative colitis patients. PLoS One, 2017, 12(3)e0173664
[http://dx.doi.org/10.1371/journal.pone.0173664] [PMID: 28288169]
[25]
Zidar, N.; Boštjančič, E.; Jerala, M.; Kojc, N.; Drobne, D.; Štabuc, B.; Glavač, D. Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases - hallmark of epithelial-mesenchymal transition. J. Cell. Mol. Med., 2016, 20(10), 1813-1820.
[http://dx.doi.org/10.1111/jcmm.12869] [PMID: 27113480]
[26]
Shi, C.; Yang, Y.; Xia, Y.; Okugawa, Y.; Yang, J.; Liang, Y.; Chen, H.; Zhang, P.; Wang, F.; Han, H.; Wu, W.; Gao, R.; Gasche, C.; Qin, H.; Ma, Y.; Goel, A. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut, 2016, 65(9), 1470-1481.
[http://dx.doi.org/10.1136/gutjnl-2014-308455] [PMID: 25994220]
[27]
Ludwig, K.; Fassan, M.; Mescoli, C.; Pizzi, M.; Balistreri, M.; Albertoni, L.; Pucciarelli, S.; Scarpa, M.; Sturniolo, G.C.; Angriman, I.; Rugge, M. PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis. Virchows Arch., 2013, 462(1), 57-63.
[http://dx.doi.org/10.1007/s00428-012-1345-5] [PMID: 23224068]
[28]
Bu, P.; Wang, L.; Chen, K.Y.; Srinivasan, T.; Murthy, P.K.; Tung, K.L.; Varanko, A.K.; Chen, H.J.; Ai, Y.; King, S.; Lipkin, S.M.; Shen, X. A miR-34a-Numb feedforward loop triggered by inflammation Regulates asymmetric stem cell division in intestine and colon cancer. Cell Stem Cell, 2016, 18(2), 189-202.
[http://dx.doi.org/10.1016/j.stem.2016.01.006] [PMID: 26849305]
[29]
Polytarchou, C.; Oikonomopoulos, A.; Mahurkar, S.; Touroutoglou, A.; Koukos, G.; Hommes, D.W.; Iliopoulos, D. Assessment of circulating micrornas for the diagnosis and disease activity evaluation in patients with ulcerative colitis by using the nanostring technology. Inflamm. Bowel Dis., 2015, 21(11), 2533-2539.
[http://dx.doi.org/10.1097/MIB.0000000000000547] [PMID: 26313695]
[30]
He, C. MicroRNA 301A promotes intestinal inflammation and colitisassociated cancer development by inhibiting BTG1 Gastroenterology 2017, 152(6), 1434-1448.
[31]
Jeppsson, S.; Srinivasan, S.; Chandrasekharan, B.; Neuropeptide, Y.; Neuropeptide, Y. NPY) promotes inflammation-induced tumorigenesis by enhancing epithelial cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(2), G103-G111.
[http://dx.doi.org/10.1152/ajpgi.00410.2015] [PMID: 27856419]
[32]
Pekow, J.; Meckel, K.; Dougherty, U.; Huang, Y.; Chen, X.; Almoghrabi, A.; Mustafi, R.; Ayaloglu-Butun, F.; Deng, Z.; Haider, H.I.; Hart, J.; Rubin, D.T.; Kwon, J.H.; Bissonnette, M. miR-193a-3p is a key tumor suppressor in ulcerative colitis-associated colon cancer and promotes carcinogenesis through upregulation of IL17RD. Clin. Cancer Res., 2017, 23(17), 5281-5291.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0171] [PMID: 28600480]
[33]
Pekow, J.; Hutchison, A.L.; Meckel, K.; Harrington, K.; Deng, Z.; Talasila, N.; Rubin, D.T.; Hanauer, S.B.; Hurst, R.; Umanskiy, K.; Fichera, A.; Hart, J.; Dinner, A.R.; Bissonnette, M. miR-4728-3p functions as a tumor suppressor in ulcerative colitis-associated colorectal neoplasia through regulation of focal adhesion signaling. Inflamm. Bowel Dis., 2017, 23(8), 1328-1337.
[http://dx.doi.org/10.1097/MIB.0000000000001104] [PMID: 28594651]
[34]
Liu, Z.; Bai, J.; Zhang, L.; Lou, F.; Ke, F.; Cai, W.; Wang, H. Conditional knockout of microRNA-31 promotes the development of colitis associated cancer. Biochem. Biophys. Res. Commun., 2017, 490(1), 62-68.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.012] [PMID: 28600172]
[35]
Zhao, H.; Xu, Z.; Qin, H.; Gao, Z.; Gao, L. miR-30b regulates migration and invasion of human colorectal cancer via SIX1. Biochem. J., 2014, 460(1), 117-125.
[http://dx.doi.org/10.1042/BJ20131535] [PMID: 24593661]
[36]
Kourtidis, A.; Ngok, S.P.; Pulimeno, P.; Feathers, R.W.; Carpio, L.R.; Baker, T.R.; Carr, J.M.; Yan, I.K.; Borges, S.; Perez, E.A.; Storz, P.; Copland, J.A.; Patel, T.; Thompson, E.A.; Citi, S.; Anastasiadis, P.Z. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity. Nat. Cell Biol., 2015, 17(9), 1145-1157.
[http://dx.doi.org/10.1038/ncb3227] [PMID: 26302406]
[37]
Soroosh, A.; Rankin, C.R.; Polytarchou, C.; Lokhandwala, Z.A.; Patel, A.; Chang, L.; Pothoulakis, C.; Iliopoulos, D.; Padua, D.M. miR-24 is elevated in ulcerative colitis patients and regulates intestinal epithelial barrier function. Am. J. Pathol., 2019, 189(9), 1763-1774.
[http://dx.doi.org/10.1016/j.ajpath.2019.05.018] [PMID: 31220450]
[38]
Ge, Y.; Sun, M.; Wu, W.; Ma, C.; Zhang, C.; He, C.; Li, J.; Cong, Y.; Zhang, D.; Liu, Z. MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J. Autoimmun., 2019, 101, 109-120.
[http://dx.doi.org/10.1016/j.jaut.2019.04.014] [PMID: 31014918]
[39]
Fasseu, M.; Tréton, X.; Guichard, C.; Pedruzzi, E.; Cazals-Hatem, D.; Richard, C.; Aparicio, T.; Daniel, F.; Soulé, J.C.; Moreau, R.; Bouhnik, Y.; Laburthe, M.; Groyer, A.; Ogier-Denis, E. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One, 2010, 5(10)e13160
[http://dx.doi.org/10.1371/journal.pone.0013160] [PMID: 20957151]
[40]
Dalal, S.R.; Kwon, J.H. The role of MicroRNA in inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.), 2010, 6(11), 714-722.
[PMID: 21437020]
[41]
Zhang, H.; Li, W. MicroRNA-15 activates NF-κB pathway via down regulating expression of adenosine A2 receptor in ulcerative colitis. Cell. Physiol. Biochem., 2018, 51(4), 1932-1944.
[http://dx.doi.org/10.1159/000495718] [PMID: 30513523]
[42]
Feng, Y.; Dong, Y.W.; Song, Y.N.; Xiao, J.H.; Guo, X.Y.; Jiang, W.L.; Lu, L.G. MicroRNA 449a is a potential predictor of colitis associated colorectal cancer progression. Oncol. Rep., 2018, 40(3), 1684-1694.
[http://dx.doi.org/10.3892/or.2018.6566] [PMID: 30015944]
[43]
Singh, U.P.; Murphy, A.E.; Enos, R.T.; Shamran, H.A.; Singh, N.P.; Guan, H.; Hegde, V.L.; Fan, D.; Price, R.L.; Taub, D.D.; Mishra, M.K.; Nagarkatti, M.; Nagarkatti, P.S. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses. Immunology, 2014, 143(3), 478-489.
[http://dx.doi.org/10.1111/imm.12328] [PMID: 24891206]
[44]
Feng, X.; Wang, H.; Ye, S.; Guan, J.; Tan, W.; Cheng, S.; Wei, G.; Wu, W.; Wu, F.; Zhou, Y. Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα. PLoS One, 2012, 7(12)e52782
[http://dx.doi.org/10.1371/journal.pone.0052782] [PMID: 23285182]
[45]
Bian, Z.; Li, L.; Cui, J.; Zhang, H.; Liu, Y.; Zhang, C.Y.; Zen, K. Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J. Pathol., 2011, 225(4), 544-553.
[http://dx.doi.org/10.1002/path.2907] [PMID: 21590770]
[46]
Ye, D.; Guo, S.; Al-Sadi, R.; Ma, T.Y. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology, 2011, 141(4), 1323-1333.
[http://dx.doi.org/10.1053/j.gastro.2011.07.005] [PMID: 21763238]
[47]
Masuda, T.; Hayashi, N.; Kuroda, Y.; Ito, S.; Eguchi, H.; Mimori, K. MicroRNAs as biomarkers in colorectal cancer. Cancers (Basel), 2017, 9(9)E124
[http://dx.doi.org/10.3390/cancers9090124] [PMID: 28902152]
[48]
Migliore, C.; Martin, V.; Leoni, V.P.; Restivo, A.; Atzori, L.; Petrelli, A.; Isella, C.; Zorcolo, L.; Sarotto, I.; Casula, G.; Comoglio, P.M.; Columbano, A.; Giordano, S. MiR-1 downregulation cooperates with MACC1 in promoting MET overexpression in human colon cancer. Clin. Cancer Res., 2012, 18(3), 737-747.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1699] [PMID: 22179665]
[49]
Chen, Y.C.; Ou, M.C.; Fang, C.W.; Lee, T.H.; Tzeng, S.L. High glucose concentrations negatively regulate the IGF1R/Src/ERK axis through the MicroRNA-9 in colorectal cancer. Cells, 2019, 8(4)E326
[http://dx.doi.org/10.3390/cells8040326] [PMID: 30965609]
[50]
Ma, J.; Yang, Y.; Fu, Y.; Guo, F.; Zhang, X.; Xiao, S.; Zhu, W.; Huang, Z.; Zhang, J.; Chen, J. PIAS3-mediated feedback loops promote chronic colitis-associated malignant transformation. Theranostics, 2018, 8(11), 3022-3037.
[http://dx.doi.org/10.7150/thno.23046] [PMID: 29896300]
[51]
Yin, J.; Bai, Z.; Song, J.; Yang, Y.; Wang, J.; Han, W.; Zhang, J.; Meng, H.; Ma, X.; Yang, Y.; Wang, T.; Li, W.; Zhang, Z. Differential expression of serum miR-126, miR-141 and miR-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chin. J. Cancer Res., 2014, 26(1), 95-103.
[PMID: 24653631]
[52]
Wang, Q.; Huang, Z.; Ni, S.; Xiao, X.; Xu, Q.; Wang, L.; Huang, D.; Tan, C.; Sheng, W.; Du, X. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One, 2012, 7(9)e44398
[http://dx.doi.org/10.1371/journal.pone.0044398] [PMID: 22970209]
[53]
Toiyama, Y.; Takahashi, M.; Hur, K.; Nagasaka, T.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J. Natl. Cancer Inst., 2013, 105(12), 849-859.
[http://dx.doi.org/10.1093/jnci/djt101] [PMID: 23704278]
[54]
Pu, X.X.; Huang, G.L.; Guo, H.Q.; Guo, C.C.; Li, H.; Ye, S.; Ling, S.; Jiang, L.; Tian, Y.; Lin, T.Y. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J. Gastroenterol. Hepatol., 2010, 25(10), 1674-1680.
[http://dx.doi.org/10.1111/j.1440-1746.2010.06417.x] [PMID: 20880178]
[55]
Nugent, M.; Miller, N.; Kerin, M.J. Circulating miR-34a levels are reduced in colorectal cancer. J. Surg. Oncol., 2012, 106(8), 947-952.
[http://dx.doi.org/10.1002/jso.23174] [PMID: 22648208]
[56]
Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 2009, 58(10), 1375-1381.
[http://dx.doi.org/10.1136/gut.2008.167817] [PMID: 19201770]
[57]
Huang, Z.; Huang, D.; Ni, S.; Peng, Z.; Sheng, W.; Du, X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer, 2010, 127(1), 118-126.
[http://dx.doi.org/10.1002/ijc.25007] [PMID: 19876917]
[58]
Cheng, H.; Zhang, L.; Cogdell, D.E.; Zheng, H.; Schetter, A.J.; Nykter, M.; Harris, C.C.; Chen, K.; Hamilton, S.R.; Zhang, W. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One, 2011, 6(3)e17745
[http://dx.doi.org/10.1371/journal.pone.0017745] [PMID: 21445232]
[59]
Kanaan, Z.; Roberts, H.; Eichenberger, M.R.; Billeter, A.; Ocheretner, G.; Pan, J.; Rai, S.N.; Jorden, J.; Williford, A.; Galandiuk, S. A plasma microRNA panel for detection of colorectal adenomas: A step toward more precise screening for colorectal cancer. Ann. Surg., 2013, 258(3), 400-408.
[http://dx.doi.org/10.1097/SLA.0b013e3182a15bcc] [PMID: 24022433]
[60]
Schepeler, T.; Reinert, J.T.; Ostenfeld, M.S.; Christensen, L.L.; Silahtaroglu, A.N.; Dyrskjøt, L.; Wiuf, C.; Sørensen, F.J.; Kruhøffer, M.; Laurberg, S.; Kauppinen, S.; Ørntoft, T.F.; Andersen, C.L. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res., 2008, 68(15), 6416-6424.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6110] [PMID: 18676867]
[61]
Hrašovec, S.; Glavač, D. MicroRNAs as novel biomarkers in colorectal cancer. Front. Genet., 2012, 3, 180.
[http://dx.doi.org/10.3389/fgene.2012.00180] [PMID: 23091478]
[62]
Akao, Y.; Nakagawa, Y.; Naoe, T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol. Rep., 2006, 16(4), 845-850.
[http://dx.doi.org/10.3892/or.16.4.845] [PMID: 16969504]
[63]
Yang, Q.; Yu, W.; Han, X. Overexpression of microRNA 101 causes anti tumor effects by targeting CREB1 in colon cancer. Mol. Med. Rep., 2019, 19(4), 3159-3167.
[http://dx.doi.org/10.3892/mmr.2019.9952] [PMID: 30816471]
[64]
Lin, C.; Zhang, Y.; Chen, Y.; Bai, Y.; Zhang, Y. Long noncoding RNA LINC01234 promotes serine hydroxymethyltransferase 2 expression and proliferation by competitively binding miR-642a-5p in colon cancer. Cell Death Dis., 2019, 10(2), 137.
[http://dx.doi.org/10.1038/s41419-019-1352-4] [PMID: 30755591]
[65]
Zhu, H.; He, G.; Wang, Y.; Hu, Y.; Zhang, Z.; Qian, X.; Wang, Y. Long intergenic noncoding RNA 00707 promotes colorectal cancer cell proliferation and metastasis by sponging miR-206. OncoTargets Ther., 2019, 12, 4331-4340.
[http://dx.doi.org/10.2147/OTT.S198140] [PMID: 31213848]
[66]
Zhu, Y.; Zhang, X.; Qi, M.; Zhang, Y.; Ding, F. miR-873-5p inhibits the progression of colon cancer via repression of tumor suppressor candidate 3/AKT signaling. J. Gastroenterol. Hepatol., 2019, 34(12), 2126-2134.
[http://dx.doi.org/10.1111/jgh.14697] [PMID: 31039290]
[67]
Gupta, G.P. Massagué, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[68]
Khan, I.; Steeg, P.S. Metastasis suppressors: functional pathways. Lab. Invest., 2018, 98(2), 198-210.
[http://dx.doi.org/10.1038/labinvest.2017.104] [PMID: 28967874]
[69]
Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell, 2017, 168(4), 670-691.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[70]
Chiang, S.P.H.; Cabrera, R.M.; Segall, J.E. Tumor cell intravasation. Am. J. Physiol. Cell Physiol., 2016, 311(1), C1-C14.
[http://dx.doi.org/10.1152/ajpcell.00238.2015] [PMID: 27076614]
[71]
Naumov, G.N.; MacDonald, I.C.; Weinmeister, P.M.; Kerkvliet, N.; Nadkarni, K.V.; Wilson, S.M.; Morris, V.L.; Groom, A.C.; Chambers, A.F. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res., 2002, 62(7), 2162-2168.
[PMID: 11929839]
[72]
Luzzi, K.J.; MacDonald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, V.L.; Chambers, A.F.; Groom, A.C. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol., 1998, 153(3), 865-873.
[http://dx.doi.org/10.1016/S0002-9440(10)65628-3] [PMID: 9736035]
[73]
Toiyama, Y.; Hur, K.; Tanaka, K.; Inoue, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann. Surg., 2014, 259(4), 735-743.
[http://dx.doi.org/10.1097/SLA.0b013e3182a6909d] [PMID: 23982750]
[74]
Hur, K.; Toiyama, Y.; Okugawa, Y.; Ide, S.; Imaoka, H.; Boland, C.R.; Goel, A. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut, 2017, 66(4), 654-665.
[http://dx.doi.org/10.1136/gutjnl-2014-308737] [PMID: 26701878]
[75]
Huang, L.; Wang, X.; Wen, C.; Yang, X.; Song, M.; Chen, J.; Wang, C.; Zhang, B.; Wang, L.; Iwamoto, A.; Wang, J.; Liu, H. Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-α induced epithelial-to-mesenchymal transition in colorectal cancer. Sci. Rep., 2015, 5, 13350.
[http://dx.doi.org/10.1038/srep13350] [PMID: 26302825]
[76]
Sun, L.N.; Zhi, Z.; Chen, L.Y.; Zhou, Q.; Li, X.M.; Gan, W.J.; Chen, S.; Yang, M.; Liu, Y.; Shen, T.; Xu, Y.; Li, J.M. SIRT1 suppresses colorectal cancer metastasis by transcriptional repression of miR-15b-5p. Cancer Lett., 2017, 409, 104-115.
[http://dx.doi.org/10.1016/j.canlet.2017.09.001] [PMID: 28923398]
[77]
Tang, W.; Zhu, Y.; Gao, J.; Fu, J.; Liu, C.; Liu, Y.; Song, C.; Zhu, S.; Leng, Y.; Wang, G.; Chen, W.; Du, P.; Huang, S.; Zhou, X.; Kang, J.; Cui, L. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br. J. Cancer, 2014, 110(2), 450-458.
[http://dx.doi.org/10.1038/bjc.2013.724] [PMID: 24281002]
[78]
Luo, F.; Zhou, J.; Wang, S.; Sun, Z.; Han, Q.; Bai, C. microRNA-222 promotes colorectal cancer cell migration and invasion by targeting MST3. FEBS Open Bio, 2019, 9(5), 901-913.
[http://dx.doi.org/10.1002/2211-5463.12623] [PMID: 31034165]
[79]
Xin, H.; Wang, C.; Liu, Z. miR-196a-5p promotes metastasis of colorectal cancer via targeting IκBα. BMC Cancer, 2019, 19(1), 30.
[http://dx.doi.org/10.1186/s12885-018-5245-1] [PMID: 30621631]
[80]
Liu, X.; Zhang, Z.; Sun, L.; Chai, N.; Tang, S.; Jin, J.; Hu, H.; Nie, Y.; Wang, X.; Wu, K.; Jin, H.; Fan, D. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis, 2011, 32(12), 1798-1805.
[http://dx.doi.org/10.1093/carcin/bgr213] [PMID: 21934092]
[81]
Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008, 27(15), 2128-2136.
[http://dx.doi.org/10.1038/sj.onc.1210856] [PMID: 17968323]
[82]
Fang, L.; Li, H.; Wang, L.; Hu, J.; Jin, T.; Wang, J.; Yang, B.B. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget, 2014, 5(10), 2974-2987.
[http://dx.doi.org/10.18632/oncotarget.1614] [PMID: 24912422]
[83]
Sur, D.G.; Colceriu, M.; Sur, G.; Aldea, C.; Silaghi, C.; Samasca, G.; Lupan, I.; Căinap, C.; Burz, C.; Irimie, A. MiRNAs roles in the diagnosis, prognosis and treatment of colorectal cancer. Expert Rev. Proteomics, 2019, 16(10), 851-856.
[http://dx.doi.org/10.1080/14789450.2019.1659732] [PMID: 31446809]
[84]
Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; Gallagher, W.M.; Eccles, S.A.; Croce, C.M.; Esteller, M. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13556-13561.
[http://dx.doi.org/10.1073/pnas.0803055105] [PMID: 18768788]
[85]
Zhu, L.; Chen, H.; Zhou, D.; Li, D.; Bai, R.; Zheng, S.; Ge, W. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med. Oncol., 2012, 29(2), 1037-1043.
[http://dx.doi.org/10.1007/s12032-011-9975-z] [PMID: 21562850]
[86]
Sheng, S.; Xie, L.; Wu, Y.; Ding, M.; Zhang, T.; Wang, X. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci. Rep., 2019, 39(3)BSR20181895
[http://dx.doi.org/10.1042/BSR20181895] [PMID: 30745456]
[87]
Yuan, M. DC-SIGN-LEF1/TCF1-miR-185 feedback loop promotes colorectal cancer invasion and metastasis. Cell Death Differ., 2019, 27(1), 379-395.
[PMID: 31217502]
[88]
Kogure, A.; Kosaka, N.; Ochiya, T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: An emerging player in cancer metastasis. J. Biomed. Sci., 2019, 26(1), 7.
[http://dx.doi.org/10.1186/s12929-019-0500-6] [PMID: 30634952]
[89]
Kyuno, D.; Zhao, K.; Bauer, N.; Ryschich, E.; Zöller, M. Therapeutic targeting cancer-initiating cell markers by exosome miRNA: Efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl. Oncol., 2019, 12(2), 191-199.
[http://dx.doi.org/10.1016/j.tranon.2018.08.021] [PMID: 30393102]
[90]
Chen, M.; Xu, R.; Rai, A.; Suwakulsiri, W.; Izumikawa, K.; Ishikawa, H.; Greening, D.W.; Takahashi, N.; Simpson, R.J. Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for colorectal cancer. PLoS One, 2019, 14(1)e0210003
[http://dx.doi.org/10.1371/journal.pone.0210003] [PMID: 30608951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy