Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Heat Stress and Pulsed Unfocused Ultrasound: The Viability of these Physical Approaches for Drug Delivery into Testicular Seminiferous Tubules

Author(s): Yuanyuan Li, Mohammad Ishraq Zafar, Xiaotong Wang, Xiaofang Ding* and Honggang Li*

Volume 17, Issue 5, 2020

Page: [438 - 446] Pages: 9

DOI: 10.2174/1567201817666200514080811

Price: $65

Abstract

Aim: To investigate the application of Scrotal Heat Stress (SHS) and Pulsed Unfocused Ultrasound (PuFUS) to explore Blood-Testis Barrier (BTB) permeability in adult mice.

Background: The BTB provides a stable microenvironment and a unique immune barrier for spermatogenesis. Meanwhile, it blocks macromolecular substances access, including therapeutic agents and antibodies, thereby it decreases the therapeutic or immunocontraception effects.

Objectives: To determine the viability of these physical approaches in delivering macromolecular substances into seminiferous tubules.

Materials & Methods: Mice were subjected to receive single SHS intervention at 39°C, 41°C, or 43°C for 30 min. Whereas, mice received the PuFUS intervention at 1.75w/cm2, 1.25w/cm2, and 2.5w/cm2 for 2 min, 5 min, and 10 min, respectively. The Biotin and macromolecular substances (IgG, IgM, and exosomes) were separately injected into the testicular interstitium at different times following SHS or PuFUS interventions, to observe their penetration through BTB into seminiferous tubules.

Results: As detected by Biotin tracer, the BTB opening started from day-2 following the SHS and lasted for more than three days, whereas the BTB opening started from 1.5h following PuFUS and lasted up to 24h. Apparent penetration of IgG, IgM, and exosomes into seminiferous tubules was observed after five days of the SHS at 43°C, but none at 39°C, or any conditions tested with PuFUS.

Conclusion: The current results indicate that SHS at 43°C comparatively has the potential for delivering macromolecular substances into seminiferous tubules, whereas the PuFUS could be a novel, quick, and mild approach to open the BTB. These strategies might be useful for targeted drug delivery into testicular seminiferous tubules. However, further studies are warranted to validate our findings.

Keywords: Drug delivery, blood-testis barrier, ultrasound, scrotal heat stress, pulsed unfocused ultrasound, SHS.

« Previous
Graphical Abstract
[1]
Cheng, C.Y.; Mruk, D.D. The blood-testis barrier and its implications for male contraception. Pharmacol. Rev., 2012, 64(1), 16-64.
[http://dx.doi.org/10.1124/pr.110.002790] [PMID: 22039149]
[2]
Govero, J.; Esakky, P.; Scheaffer, S.M.; Fernandez, E.; Drury, A.; Platt, D.J.; Gorman, M.J.; Richner, J.M.; Caine, E.A.; Salazar, V.; Moley, K.H.; Diamond, M.S. Zika virus infection damages the testes in mice. Nature, 2016, 540(7633), 438-442.
[http://dx.doi.org/10.1038/nature20556] [PMID: 27798603]
[3]
Jenabian, M.A.; Costiniuk, C.T.; Mehraj, V.; Ghazawi, F.M.; Fromentin, R.; Brousseau, J.; Brassard, P.; Bélanger, M.; Ancuta, P.; Bendayan, R.; Chomont, N.; Routy, J.P. Orchid study group. Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS, 2016, 30(18), 2777-2786.
[http://dx.doi.org/10.1097/QAD.0000000000001282] [PMID: 27677162]
[4]
Li, X.X.; Chen, S.R.; Shen, B.; Yang, J.L.; Ji, S.Y.; Wen, Q.; Zheng, Q.S.; Li, L.; Zhang, J.; Hu, Z.Y.; Huang, X.X.; Liu, Y.X. The heat induced reversible change in the Blood-Testis Barrier (BTB) is regulated by the Androgen Receptor (AR) via the Partitioning-defective protein (Par) polarity complex in the mouse. Biol. Reprod., 2013, 89(1), 12.
[http://dx.doi.org/10.1095/biolreprod.113.109405] [PMID: 23759306]
[5]
Long, J.E.; Lee, M.S.; Blithe, D.L. Male Contraceptive development: update on novel hormonal and nonhormonal methods. Clin. Chem., 2019, 65(1), 153-160.
[http://dx.doi.org/10.1373/clinchem.2018.295089] [PMID: 30602479]
[6]
Yan, H.H.; Cheng, C.Y. Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11722-11727.
[http://dx.doi.org/10.1073/pnas.0503855102] [PMID: 16085710]
[7]
Cao, X.N.; Shen, L.J.; Wu, S.D.; Yan, C.; Zhou, Y.; Xiong, G.; Wang, Y.C.; Liu, Y.; Liu, B.; Tang, X.L.; Guo, M.; Liu, D.Y.; Long, C.L.; Sun, M.; He, D.W.; Lin, T.; Wei, G.H. Urban fine particulate matter exposure causes male reproductive injury through destroying Blood-Testis Barrier (BTB) integrity. Toxicol. Lett., 2017, 266, 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2016.12.004] [PMID: 27939690]
[8]
Wan, H.T.; Mruk, D.D.; Wong, C.K.; Cheng, C.Y. Perfluorooctanesulfonate (PFOS) perturbs male rat Sertoli cell blood-testis barrier function by affecting F-actin organization via p-FAK-Tyr(407): an in vitro study. Endocrinology, 2014, 155(1), 249-262.
[http://dx.doi.org/10.1210/en.2013-1657] [PMID: 24169556]
[9]
Zhang, J.; Li, Z.; Qie, M.; Zheng, R.; Shetty, J.; Wang, J. Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice. Food Chem. Toxicol., 2016, 94, 103-111.
[http://dx.doi.org/10.1016/j.fct.2016.05.017] [PMID: 27237588]
[10]
Cai, H.; Ren, Y.; Li, X.X.; Yang, J.L.; Zhang, C.P.; Chen, M.; Fan, C.H.; Hu, X.Q.; Hu, Z.Y.; Gao, F.; Liu, Y.X. Scrotal heat stress causes a transient alteration in tight junctions and induction of TGF-β expression. Int. J. Androl., 2011, 34(4), 352-362.
[http://dx.doi.org/10.1111/j.1365-2605.2010.01089.x] [PMID: 20633196]
[11]
Wang, J.C.; Chang, K.V.; Wu, W.T.; Han, D.S.; Özçakar, L. Ultrasound-guided standard vs dual-target subacromial corticosteroid injections for shoulder impingement syndrome: a randomized controlled trial. Arch. Phys. Med. Rehabil., 2019, 100(11), 2119-2128.
[http://dx.doi.org/10.1016/j.apmr.2019.04.016] [PMID: 31150601]
[12]
Wu, W.T.; Chang, K.V.; Mezian, K.; Naňka, O.; Lin, C.P.; Özçakar, L. Basis of shoulder nerve entrapment syndrome: an ultrasonographic study exploring factors influencing cross-sectional area of the suprascapular nerve. Front. Neurol., 2018, 9(9), 902.
[http://dx.doi.org/10.3389/fneur.2018.00902] [PMID: 30405524]
[13]
Beccaria, K.; Canney, M.; Goldwirt, L.; Fernandez, C.; Adam, C.; Piquet, J.; Autret, G.; Clément, O.; Lafon, C.; Chapelon, J.Y.; Carpentier, A. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. J. Neurosurg., 2013, 119(4), 887-898.
[http://dx.doi.org/10.3171/2013.5.JNS122374] [PMID: 23790118]
[14]
Karakatsani, M.E.M.; Samiotaki, G.M.; Downs, M.E.; Ferrera, V.P.; Konofagou, E.E. Targeting effects on the volume of the focused ultrasound induced blood-brain barrier opening in nonhuman primates in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2017, 64(5), 798-810.
[http://dx.doi.org/10.1109/TUFFC.2017.2681695] [PMID: 28320656]
[15]
Alonso, A. Ultrasound-induced blood-brain barrier opening for drug delivery. Front Neurol. Neurosci., 2015, 36, 106-115.
[http://dx.doi.org/10.1159/000366242] [PMID: 25531667]
[16]
Meng, J.; Holdcraft, R.W.; Shima, J.E.; Griswold, M.D.; Braun, R.E. Androgens regulate the permeability of the blood-testis barrier. Proc. Natl. Acad. Sci. USA, 2005, 102(46), 16696-16700.
[http://dx.doi.org/10.1073/pnas.0506084102] [PMID: 16275920]
[17]
Zeng, H.Q.; Lü, L.; Wang, F.; Luo, Y.; Lou, S.F. Focused ultrasound-induced blood-brain barrier disruption enhances the delivery of cytarabine to the rat brain. J. Chemother., 2012, 24(6), 358-363.
[http://dx.doi.org/10.1179/1973947812Y.0000000043] [PMID: 23174101]
[18]
Ballantine, H.T., Jr; Bell, E.; Manlapaz, J. Progress and problems in the neurological applications of focused ultrasound. J. Neurosurg., 1960, 17, 858-876.
[http://dx.doi.org/10.3171/jns.1960.17.5.0858] [PMID: 13686380]
[19]
Kung, Y.; Lan, C.; Hsiao, M.Y.; Sun, M.K.; Hsu, Y.H.; Huang, A.P.; Liao, W.H.; Liu, H.L.; Inserra, C.; Chen, W.S. Focused shockwave induced blood-brain barrier opening and transfection. Sci. Rep., 2018, 8(1), 2218.
[http://dx.doi.org/10.1038/s41598-018-20672-y] [PMID: 29396523]
[20]
Zahoor, T.; Mitchell, R.; Bhasin, P.; Guo, Y.; Paudel, S.; Schon, L.; Zhang, Z. Effect of low-intensity pulsed ultrasound on joint injury and post-traumatic osteoarthritis: an animal study. Ultrasound Med. Biol., 2018, 44(1), 234-242.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.09.014] [PMID: 29111161]
[21]
Abbassy, A.F.; Shaker, Z.A.; el-Raziky, E.H.; Aboul-Ezz, F.M.; Naguib, Y.A. A preliminary report on the materno-foetal immunological changes in schistosomiasis. I. Immunoglobulin changes. Egypt. J. Bilharz., 1978, 5(1-2), 71-76.
[PMID: 555756]
[22]
Sullivan, R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J. Androl., 2015, 17(5), 726-729.
[http://dx.doi.org/10.4103/1008-682X.155255] [PMID: 26112475]
[23]
Sullivan, R.; Saez, F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction, 2013, 146(1), R21-R35.
[http://dx.doi.org/10.1530/REP-13-0058] [PMID: 23613619]
[24]
Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; Song, L.; Carone, B.R.; Ricci, E.P.; Li, X.Z.; Fauquier, L.; Moore, M.J.; Sullivan, R.; Mello, C.C.; Garber, M.; Rando, O.J. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351(6271), 391-396.
[http://dx.doi.org/10.1126/science.aad6780] [PMID: 26721685]
[25]
Belleannée, C.; Calvo, É.; Caballero, J.; Sullivan, R. Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis. Biol. Reprod., 2013, 89(2), 30.
[http://dx.doi.org/10.1095/biolreprod.113.110486] [PMID: 23803555]
[26]
Reilly, J.N.; McLaughlin, E.A.; Stanger, S.J.; Anderson, A.L.; Hutcheon, K.; Church, K.; Mihalas, B.P.; Tyagi, S.; Holt, J.E.; Eamens, A.L.; Nixon, B. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci. Rep., 2016, 6, 31794.
[http://dx.doi.org/10.1038/srep31794] [PMID: 27549865]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy