pH Sensitive Interpenetrating Network Bio Containers of Gum Ghatti for Sustained Release of Glipizide

Author(s): Somasree Ray*, Mohua Bera, Uttam Kumar Bhattacharyya, Samarpita Das, Shalmoli Seth, Pallab Kumar Pal, Abdul Aziz.

Journal Name: Current Drug Delivery

Volume 16 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: A novel natural polymer, Gum Ghatti (GG) was explored to develop a new polymeric system that will combine the biodegradable and biocompatible properties of GG and mechanical properties of poly vinyl alcohol (PVA) for drug delivery application.

Methods: Smart pH sensitive, porous, glutaraldehyde (GA) crosslinked interpenetrating network (IPN) microspheres loaded with glipizide were developed by the emulsion crosslinking method. The drug entrapment efficiency was 92.85±1.5%. FTIR confirmed the formation of IPN structure. Drug release can be extended upto 7 hours by modulating the concentration of crosslinking agent. Swelling study and diffusion co-efficient (D) of water transport were performed in order to understand the phenomenon of water penetration through the microsphere. In vivo antidiabetic activity performed on alloxane induced diabetic rats indicated that in case of pure glipizide sudden reduction of elevated blood glucose was observed after 3 hours.

Results: In case of rats treated with glipizide loaded IPN microparticles, the initial percentage reduction of blood glucose level was slow within the first 3 hours of administration, as compared to pure glipizide but after 6 hours 90% reduction was observed which confirmed sustained release nature of microspheres.

Conclusion: Thus IPN microparticles were found suitable for sustained delivery of BCS class II drug glipizide.

Keywords: Gum ghatti, interpenetrating network, hydrogel, glipizide, anti diabetic effect, microspheres.

[1]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[2]
Mehta, P.; Haj-Ahmad, R.; Rasekh, M.; Arshad, M.S.; Smith, A.; van der Merwe, S.M.; Li, X.; Chang, M.W.; Ahmad, Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov. Today, 2017, 22(1), 157-165.
[http://dx.doi.org/10.1016/j.drudis.2016.09.021] [PMID: 27693432]
[3]
Webber, M.J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev., 2017, 46(21), 6600-6620.
[http://dx.doi.org/10.1039/C7CS00391A] [PMID: 28828455]
[4]
Hyun, H.; Park, J.; Willis, K.; Park, J.E.; Lyle, L.T.; Lee, W.; Yeo, Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials, 2018, 180, 206-224.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.024] [PMID: 30048910]
[5]
Ravi Kumar, M.N.V. Drug Dev. Ind. Pharm., 2001, 27(1), 1-30.
[http://dx.doi.org/10.1081/DDC-100000124] [PMID: 11247530]
[6]
Murillo, M.; Gamazo, C.; Goñi, M.M.; Irache, J.M.; Blanco-Príeto, M.J. Development of microparticles prepared by spray-drying as a vaccine delivery system against brucellosis. Int. J. Pharm., 2002, 242(1-2), 341-344.
[http://dx.doi.org/10.1016/S0378-5173(02)00212-0] [PMID: 12176275]
[7]
Katou, H.; Wandrey, A.J.; Gander, B. Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication. Int. J. Pharm., 2008, 364(1), 45-53.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.015] [PMID: 18782610]
[8]
Berkland, C.; Kim, K.; Pack, D.W. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Release, 2001, 73(1), 59-74.
[http://dx.doi.org/10.1016/S0168-3659(01)00289-9] [PMID: 11337060]
[9]
Reyderman, L.; Stavchansky, S. Electrostatic spraying and its use in drug delivery – cholesterol microspheres. Int. J. Pharm., 1995, 124, 75-85.
[http://dx.doi.org/10.1016/0378-5173(95)00078-W]
[10]
Wang, Q.; Yu, D.G.; Zhang, L.L.; Liu, X.K.; Deng, Y.C.; Zhao, M. Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohydr. Polym., 2017, 174, 617-625.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.075] [PMID: 28821112]
[11]
Wali, A.; Zhang, Y.; Sengupta, P.; Higaki, Y.; Takahara, A.; Badiger, M.V. Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: Characterization and applications. Carbohydr. Polym., 2018, 181, 175-182.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.070] [PMID: 29253960]
[12]
Hai, T.; Wan, X.Yu. D.G.; Wang, K.; Yang, Y.Y.; Liu, Z.P. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Mater. Des., 2019, 162, 70-79.
[http://dx.doi.org/10.1016/j.matdes.2018.11.036]
[13]
Liu, X.; Shao, W.; Luo, M.; Bian, J.; Yu, D-G. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers. Nanomaterials (Basel), 2018, 8(4), 184.
[http://dx.doi.org/10.3390/nano8040184] [PMID: 29565280]
[14]
Yang, Y.; Li, W.; Yu, D.G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr. Polym., 2019, 203, 228-237.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.061] [PMID: 30318208]
[15]
Yang, C.; Yu, D.G.; Pan, D.; Liu, X.K.; Wang, X.; Bligh, S.W.; Williams, G.R. Electrospun pH-sensitive core-shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater., 2016, 35, 77-86.
[http://dx.doi.org/10.1016/j.actbio.2016.02.029] [PMID: 26902432]
[16]
Jin, M.; Yu, D.G.; Wang, X.; Geraldes, C.F.; Williams, G.R.; Bligh, S.W. Electrospun contrast-agent-loaded fibers for colon-targeted MRI. Adv. Healthc. Mater., 2016, 5(8), 977-985.
[http://dx.doi.org/10.1002/adhm.201500872] [PMID: 26899401]
[17]
Wang, K.; Wen, H.F.; Yu, D.G.; Yang, Y.; Zhang, D.F. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des., 2018, 143, 248-255.
[http://dx.doi.org/10.1016/j.matdes.2018.02.016]
[18]
Rokhade, A.P.; Shelke, N.B.; Patil, S.A.; Aminabhavi, T.M. Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr. Polym., 2007, 69, 678-687.
[http://dx.doi.org/10.1016/j.carbpol.2007.02.008]
[19]
KSVK.. Rao, BVK.; Naidu, MCS.; Subha, M.; Sairam, TM. Aminabhavi, Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr. Polym., 2006, 66, 333-344.
[http://dx.doi.org/10.1016/j.carbpol.2006.03.025]
[20]
Vashist, A.; Gupta, Y.K.; Ahmad, S. Interpenetrating biopolymer network based hydrogels for an effective drug delivery system. Carbohydr. Polym., 2012, 87(2), 1433-1439.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.030]
[21]
Kulkarni, R.V.; Boppana, R.; Krishna Mohan, G.; Mutalik, S.; Kalyane, N.V. pH-responsive interpenetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: Synthesis, in vitro and in vivo evaluation. J. Colloid Interface Sci., 2012, 367(1), 509-517.
[http://dx.doi.org/10.1016/j.jcis.2011.10.025] [PMID: 22047923]
[22]
Al-Kahtani Ahmed, A.; Bhojya Naik, H.S.; Sherigara, B.S. AAL-Kahtani Ahmed. Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr. Res., 2009, 344(5), 699-706.
[http://dx.doi.org/10.1016/j.carres.2009.01.011] [PMID: 19246032]
[23]
Rokhade, A.P.; Agnihotri, S.A.; Patil, S.A.; Mallikarjuna, N.N.; Kulkarni, P.V.; Aminabhavi, T.M.a. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym., 2006, 65(3), 243-252.
[http://dx.doi.org/10.1016/j.carbpol.2006.01.013]
[24]
Kulkarni, R.V.; Patel, F.S.; Nanjappaiah, H.M.; Naikawadi, A.A. In vitro and in vivo evaluation of novel interpenetrated polymer network microparticles containing repaglinide. Int. J. Biol. Macromol., 2014, 69, 514-522.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.011] [PMID: 24950312]
[25]
Rokhade, A.P.; Patil, S.A.; Aminabhavi, T.M. Synthesis and characterization of semi-interpenetrating microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr. Polym., 2007, 67, 605-613.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.001]
[26]
Kurkuri, M.D.; Aminabhavi, T.M. Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J. Control. Release, 2004, 96(1), 9-20.
[http://dx.doi.org/10.1016/j.jconrel.2003.12.025] [PMID: 15063025]
[27]
Castellani, O.; Al-Assaf, S.; Axelos, M.; Phillips, G.O.; Anton, M. Hydro-colloids with emulsifying capacity. Part 2, Adsorption properties at the n-hexadecane–water interface. Food Hydrocoll., 2010, 24(2–3), 121-130.
[http://dx.doi.org/10.1016/j.foodhyd.2009.07.006]
[28]
Castellani, O.; Gaillard, C.; Vié, V.; Al-Assaf, S.; Axelos, M.; Phillips, G.O. Hydrocolloids with emulsifying capacity. Part 3. Adsorption and structural prop-erties at the air–water surface. Food Hydrocoll., 2010, 24(2–3), 131-141.
[http://dx.doi.org/10.1016/j.foodhyd.2009.07.009]
[29]
Ray, S.; Roy, G.; Maiti, S.; Bhattacharyya, U.K.; Sil, A.; Mitra, R. Development of smart hydrogels of etherified gum ghatti for sustained oral delivery of ropinirole hydrochloride. Int. J. Biol. Macromol., 2017, 103, 347-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.059] [PMID: 28457956]
[30]
Soppirnath, K.S.; Aminabhavi, T.M. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur. J. Pharm. Biopharm., 2002, 53(1), 87-98.
[http://dx.doi.org/10.1016/S0939-6411(01)00205-3] [PMID: 11777756]
[31]
Jing, B.; Wang, Z.; Yang, R.; Zheng, X.; Zhao, J.; Tang, S.; He, Z. Enhanced oral bioavailability of felodipine by novel solid self-microemulsifying tablets. Drug Dev. Ind. Pharm., 2016, 42(3), 506-512.
[http://dx.doi.org/10.3109/03639045.2015.1058816] [PMID: 26177197]
[32]
EI-Sherbiny, IM.; Abdel-Moqib, M.; Dawidar, AM.; Elsayed, A.; Smyth, HD. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr. Polym., 2011, 83, 1345-1354.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.055]
[33]
Murmu, N.; Ghosh, P.; Gomes, A.; Mitra, S.; Das, M.; Besra, S.E.; Majumdar, J.; Bhattacharya, S.; Sur, P.; Vedasiromoni, J.R. Antineoplastic effect of new boron compounds against leukemic cell lines and cells from leukemic patients. J. Exp. Clin. Cancer Res., 2002, 21(3), 351-356.
[PMID: 12385577]
[34]
Hosszufalusi, N.; Reinherz, L.; Takei, S.; Chan, E.; Charles, M.A. Glipizide-induced prevention of diabetes and autoimmune events in the BB rat. J. Autoimmun., 1994, 7(6), 753-761.
[http://dx.doi.org/10.1006/jaut.1994.1059] [PMID: 7888033]
[35]
Ray, S.; Roy, G.; Maiti, S.; Bhattacharyya, U.K.; Sil, A.; Mitra, R. Development of smart hydrogels of etherified gum ghatti for sustained oral delivery of ropinirole hydrochloride. Int. J. Biol. Macromol., 2017, 103, 347-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.059] [PMID: 28457956]
[36]
Angadi, S.C.; Manjeshwar, L.S.; Aminabhavi, T.M. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int. J. Biol. Macromol., 2010, 47(2), 171-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.003] [PMID: 20471411]
[37]
Agnihotri, S.A.; Aminabhavi, T.M. Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol. Drug Dev. Ind. Pharm., 2005, 31(6), 491-503.
[http://dx.doi.org/10.1080/03639040500215875] [PMID: 16109622]
[38]
Mundargi, R.C.; Patil, S.A.; Kulkarni, P.V.; Mallikarjuna, N.N.; Aminabhavi, T.M. Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J. Microencapsul., 2008, 25(4), 228-240.
[http://dx.doi.org/10.1080/02652040801896435] [PMID: 18465310]
[39]
Ray, R.; Maity, S.; Mandal, S.; Chatterjee, T.K.; Sa, B. Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate for ibuprofen release. Pharmacol. Pharm., 2010, 1, 9-17.
[http://dx.doi.org/10.4236/pp.2010.11002]
[40]
Rokhade, A.P.; Patil, S.A.; Aminabhavi, T.M. Synthesis and characterization of semi-interpenetrating microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr. Polym., 2007, 67, 605-613.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.001]
[41]
Korsmeyer, R.W.; Peppas, N.A. Effect of morphology of hy-drophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci., 1981, 9, 211-227.
[http://dx.doi.org/10.1016/S0376-7388(00)80265-3]
[42]
Kulkarni, A.R.; Soppimath, K.S.; Aminabhavi, T.M.; Rudzinski, W.E. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur. J. Pharm. Biopharm., 2001, 51(2), 127-133.
[http://dx.doi.org/10.1016/S0939-6411(00)00150-8] [PMID: 11226819]
[43]
Tiwari, G.; Tiwari, R.; Srivastava, B.; Rai, A.K. Development and optimization of multi-unit solid dispersion systems of poorly water soluble drug. Res. J. Pharm. Technol., 2008, 1, 444-449.
[44]
Kulkarni, A.R.; Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Mehta, M.H. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J. Control. Release, 2000, 63(1-2), 97-105.
[http://dx.doi.org/10.1016/S0168-3659(99)00176-5] [PMID: 10640583]
[45]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Control. Release, 1987, 5(1), 37-42.
[http://dx.doi.org/10.1016/0168-3659(87)90035-6]
[46]
Chuang, E.Y.; Lin, K.J.; Su, F.Y.; Mi, F.L.; Maiti, B.; Chen, C.T.; Wey, S.P.; Yen, T.C.; Juang, J.H.; Sung, H.W. Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. J. Control. Release, 2013, 172(2), 513-522.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.006] [PMID: 23702234]
[47]
Maiti, S.; Dey, P.; Banik, A.; Sa, B.; Ray, S.; Kaity, S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv., 2010, 17(5), 288-300.
[http://dx.doi.org/10.3109/10717541003706265] [PMID: 20350054]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 9
Year: 2019
Page: [849 - 861]
Pages: 13
DOI: 10.2174/1567201816666191017154719
Price: $65

Article Metrics

PDF: 23
HTML: 3