State of the Art and Progress in Production of Biohydrogen

Integration of Biological H2 Producing Processes

Author(s): Anatoly A. Tsygankov and Daria N. Tekucheva

Pp: 78-93 (16)

DOI: 10.2174/978160805224011201010078

* (Excluding Mailing and Handling)

Abstract

Biological methods of H2 generation are preferable to physico-chemical methods for several reasons: i) biological systems can use renewable sources of energy (sun, organic wastes); ii) biological processes are carrying under ambient pressures and temperatures; that is why they are safer; and iii) biological systems are self-supporting, self-repairing, and self-reproducible in principle. Different biological systems have own advantages and peculiarities. Combining them, the individual strength of each may be exploited and their weaknesses can be overcome. Different strategies of their integration are discussed in this chapter based on literature data. Some methods of integration are promising but still they have not been experimentally supported. The integration of dark fermentative H2 production using organic wastes in the first stage and H2 photoproduction by photosynthetic anoxygenic bacteria using an effluent from the fermentation as the second stage attracted much attention last years. This review evaluates published data with attempts to reveal the most important factors affecting the productivity and efficiency of these dual systems.


Keywords: Biohydrogen, biological hydrogen production, integration of biohydrogen processes, integration of dark fermentation and microbial fuel cell, integration of dark fermentation and photofermentation, organic wastes decomposition, alternative energy from organic wastes.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy