Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry


ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Jab1-siRNA Induces Cell Growth Inhibition and Cell Cycle Arrest in Gall Bladder Cancer Cells via Targeting Jab1 Signalosome

Author(s): Pratibha Pandey, Mohammad H. Siddiqui, Anu Behari, Vinay K. Kapoor, Kumudesh Mishra, Uzma Sayyed, Rohit K. Tiwari, Rafia Shekh and Preeti Bajpai*

Volume 19 , Issue 16 , 2019

Page: [2019 - 2033] Pages: 15

DOI: 10.2174/1871520619666190725122400

Price: $65


Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood.

Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA.

Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining.

Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA.

Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.

Keywords: Gall bladder cancer, Jab1-siRNA, Jab1, gemcitabine, caspase-3, gene silencing.

Graphical Abstract
Noel, R.; Arnelo, U.; Lundell, L.; Sandblom, G. Does the frequency of cholecystectomy affect the ensuing incidence of gallbladder cancer in Sweden? A population-based study with a 16-year coverage. World J. Surg., 2016, 40(1), 66-72.
[] [PMID: 26470697]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[] [PMID: 25220842]
Kanthan, R.; Senger, J.L.; Ahmed, S.; Kanthan, S.C. Gallbladder cancer in the 21st century. J. Oncol., 2015, 2015967472 []
Nehls, O.; Oettle, H.; Hartmann, J.T.; Hofheinz, R.D.; Hass, H.G.; Horger, M.S.; Koppenhöfer, U.; Hochhaus, A.; Stieler, J.; Trojan, J.; Gregor, M.; Klump, B. Capecitabine plus oxaliplatin as first-line treatment in patients with advanced biliary system adenocarcinoma: A prospective multicentre phase II trial. Br. J. Cancer, 2008, 98(2), 309-315.
[] [PMID: 18182984]
Cho, J.Y.; Paik, Y.H.; Chang, Y.S.; Lee, S.J.; Lee, D.K.; Song, S.Y.; Chung, J.B.; Park, M.S.; Yu, J.S.; Yoon, D.S. Capecitabine combined with Gemcitabine (CapGem) as first-line treatment in patients with advanced/metastatic biliary tract carcinoma. Cancer, 2005, 104(12), 2753-2758.
[] [PMID: 16294346]
Knox, J.J.; Hedley, D.; Oza, A.; Feld, R.; Siu, L.L.; Chen, E.; Nematollahi, M.; Pond, G.R.; Zhang, J.; Moore, M.J. Combining gemcitabine and capecitabine in patients with advanced biliary cancer: A phase II trial. J. Clin. Oncol., 2005, 23(10), 2332-2338.
[] [PMID: 15800324]
Kim, T.W.; Chang, H.M.; Kang, H.J.; Lee, J.R.; Ryu, M.H.; Ahn, J.H.; Kim, J.H.; Lee, J.S.; Kang, Y.K. Phase II study of capecitabine plus cisplatin as first-line chemotherapy in advanced biliary cancer. Ann. Oncol., 2003, 14(7), 1115-1120.
[] [PMID: 12853355]
Maurya, S.K.; Tewari, M.; Mishra, R.R.; Shukla, H.S. Genetic aberrations in gallbladder cancer. Surg. Oncol., 2012, 21(1), 37-43.
[] [PMID: 20880699]
Wei, N.; Serino, G.; Deng, X.W. The COP9 signalosome: more than a protease. Trends Biochem. Sci., 2008, 33(12), 592-600.
[] [PMID: 18926707]
Tomoda, K.; Kubota, Y.; Arata, Y.; Mori, S.; Maeda, M.; Tanaka, T.; Yoshida, M.; Yoneda-Kato, N.; Kato, J.Y. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J. Biol. Chem., 2002, 277(3), 2302-2310.
[] [PMID: 11704659]
Tomoda, K.; Kubota, Y.; Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature, 1999, 398(6723), 160-165.
[] [PMID: 10086358]
Adler, A.S.; Lin, M.; Horlings, H.; Nuyten, D.S.; van de Vijver, M.J.; Chang, H.Y. Genetic regulators of large-scale transcriptional signatures in cancer. Nat. Genet., 2006, 38(4), 421-430.
[] [PMID: 16518402]
Calligé, M.; Kieffer, I.; Richard-Foy, H. CSN5/Jab1 is involved in ligand-dependent degradation of estrogen receptor α by the proteasome. Mol. Cell. Biol., 2005, 25(11), 4349-4358.
[] [PMID: 15899841]
Huang, J.; Yuan, H.; Lu, C.; Liu, X.; Cao, X.; Wan, M. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J. Mol. Biol., 2007, 371(2), 514-527.
[] [PMID: 17583730]
Zhang, X.C.; Chen, J.; Su, C.H.; Yang, H.Y.; Lee, M.H. Roles for CSN5 in control of p53/MDM2 activities. J. Cell. Biochem., 2008, 103(4), 1219-1230.
[] [PMID: 17879958]
Kim, B.C.; Lee, H.J.; Park, S.H.; Lee, S.R.; Karpova, T.S.; McNally, J.G.; Felici, A.; Lee, D.K.; Kim, S.J. Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor β signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol., 2004, 24(6), 2251-2262.
[] [PMID: 14993265]
Kim, J.H.; Choi, J.K.; Cinghu, S.; Jang, J.W.; Lee, Y.S.; Li, Y.H.; Bae, S.C. Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. J. Cell. Biochem., 2009, 107, 557-565.
Pan, Y.; Claret, F.X. Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett., 2012, 326(2), 155-160.
[] [PMID: 22867945]
Hasty, P.; Christy, B.A. p53 as an intervention target for cancer and aging. Pathobiol. Aging Age Relat. Dis., 2013, 3, 3.
[] [PMID: 24124625]
Zivny, J.; Klener, P., Jr; Pytlik, R.; Andera, L. The role of apoptosis in cancer development and treatment: Focusing on the development and treatment of hematologic malignancies. Curr. Pharm. Des., 2010, 16(1), 11-33.
[] [PMID: 20214615]
Dykxhoorn, D.M.; Lieberman, J. Knocking down disease with siRNAs. Cell, 2006, 126(2), 231-235.
[] [PMID: 16873051]
Li, J.; Li, Y.; Wang, B.; Ma, Y.; Chen, P. CSN5/Jab1 facilitates non-small cell lung cancer cell growth through stabilizing survivin. Biochem. Biophys. Res. Commun., 2018, 500(2), 132-138.
[] [PMID: 29596838]
Fukumoto, A.; Tomoda, K.; Yoneda-Kato, N.; Nakajima, Y.; Kato, J.Y. Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines. FEBS Lett., 2006, 580(25), 5836-5844.
[] [PMID: 17027978]
Pandey, P.; Sayyed, U.; Tiwari, R.; Pathak, N.; Siddiqui, M.H.; Bajpai, P. Anticancer and apoptosis-inducing effects of curcumin against gall bladder carcinoma. Int. J. Res. Pharmaceut. Sci., 2018, 9, 68-77.
Liu, G.; Yu, M.; Wu, B.; Guo, S.; Huang, X.; Zhou, F.; Pan, Y. Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cell. Signal., 2019, 53, 39-48.
Nag, J.K.; Shrivastava, N.; Tiwari, M.; Gupta, Cl.; Bajpai, P.; Chahar, D.; Misra-Bhattacharya, S. Wolbachia translation initiation factor-1 is copiously expressed by the adult, microfilariae and infective larvae of Brugia malayi and competitively inhibited by tetracycline. Acta Trop., 2014, 138, 51-59.
[] [PMID: 24929215]
Bajpai, P.; Verma, S.K.; Katiyar, D.; Tewari, N.; Tripathi, R.P.; Bansal, I.; Saxena, J.K.; Misra-Bhattacharya, S. Search for new prototypes for the chemotherapy of filariasis: A chemotherapeutic and biochemical approach. Parasitol. Res., 2005, 95(6), 383-390.
[] [PMID: 15739072]
Shakya, N.; Sane, S.A.; Vishwakarma, P.; Bajpai, P.; Gupta, S. Improved treatment of visceral leishmaniasis (kala-azar) by using combination of ketoconazole, miltefosine with an immunomodulator-Picroliv. Acta Trop., 2011, 119(2-3), 188-193.
[] [PMID: 21679679]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[] [PMID: 28872904]
Priya, S.; Nigam, A.; Bajpai, P.; Kumar, S. Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem. Biol. Interact., 2014, 219, 37-47.
[] [PMID: 24814887]
Chandra, V.; Fatima, I.; Saxena, R.; Kitchlu, S.; Sharma, S.
Hussain, M.K.; Hajela, K.; Bajpai, P.; Dwivedi, A. Apoptosis induction and inhibition of hyperplasia formation by 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b)pyran in rat uterus. Am. J. Obstet. Gynecol., 2011, 205(4), 362.e1-362.e11.
[] [PMID: 21782150]
Geller, L.T.; Barzily-Rokni, M.; Danino, T.; Jonas, O.H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z.A.; Shee, K.; Thaiss, C.A.; Reuben, A.; Livny, J.; Avraham, R.; Frederick, D.T.; Ligorio, M.; Chatman, K.; Johnston, S.E.; Mosher, C.M.; Brandis, A.; Fuks, G.; Gurbatri, C.; Gopalakrishnan, V.; Kim, M.; Hurd, M.W.; Katz, M.; Fleming, J.; Maitra, A.; Smith, D.A.; Skalak, M.; Bu, J.; Michaud, M.; Trauger, S.A.; Barshack, I.; Golan, T.; Sandbank, J.; Flaherty, K.T.; Mandinova, A.; Garrett, W.S.; Thayer, S.P.; Ferrone, C.R.; Huttenhower, C.; Bhatia, S.N.; Gevers, D.; Wargo, J.A.; Golub, T.R.; Straussman, R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357(6356), 1156-1160.
[] [PMID: 28912244]
Lu, Y.; Yan, B.; Guo, H.; Qiu, L.; Sun, X.; Wang, X.; Shi, Q.; Bao, Y. Effect of midkine on gemcitabine resistance in biliary tract cancer. Int. J. Mol. Med., 2018, 41(4), 2003-2011.
[] [PMID: 29344648]
Wang, L.; Zheng, J.N.; Pei, D.S. The emerging roles of Jab1/CSN5 in cancer. Med. Oncol., 2016, 33(8), 90.
[] [PMID: 27412572]
Siomi, H.; Siomi, M.C. On the road to reading the RNA-interference code. Nature, 2009, 457(7228), 396-404.
[] [PMID: 19158785]
Liu, G.; Claret, F.X.; Zhou, F.; Pan, Y. Jab1/COPS5 as a novel biomarker for diagnosis, prognosis, therapy prediction and therapeutic tools for human cancer. Front. Pharmacol., 2018, 9, 135.
[] [PMID: 29535627]
Pan, Y.; Claret, F.X. Jab1/Csn5 signaling in breast cancer. In: Breast Cancer-From Biology to Medicine. InTech, 2017. Avaiable from:
Zhu, Y.; Qiu, Z.; Zhang, X.; Qian, F.; Wang, B.; Wang, L.; Shi, H.; Yu, R. Jab1 promotes glioma cell proliferation by regulating Siah1/β-catenin pathway. J. Neurooncol., 2017, 131(1), 31-39.
[] [PMID: 27640199]
Kim, M.; Kim, T.H.; Lee, H.H. The relevance of women’s diseases, jun activation-domain binding protein 1 (JAB1) and p27kip1. J. Menopausal Med., 2016, 22(1), 6-8.
[] [PMID: 27152307]
Kouvaraki, M.A.; Korapati, A.L.; Rassidakis, G.Z.; Tian, L.; Zhang, Q.; Chiao, P.; Ho, L.; Evans, D.B.; Claret, F.X. Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Res., 2006, 66(17), 8581-8589.
[] [PMID: 16951171]
Hsu, M.C.; Chai, C.Y.; Hou, M.F.; Chang, H.C.; Chen, W.T.; Hung, W.C. Jab1 is overexpressed in human breast cancer and is a downstream target for HER-2/neu. Mod. Pathol., 2008, 21(5), 609-616.
[] [PMID: 18246048]
Liu, K.; Cang, S.; Ma, Y.; Chiao, J.W. Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int., 2013, 13(1), 10.
[] [PMID: 23388416]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[PMID: 8183579]
Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J., 1997, 326(Pt 1), 1-16.
[] [PMID: 9337844]
Thornberry, N.A.; Rano, T.A.; Peterson, E.P.; Rasper, D.M.; Timkey, T.; Garcia-Calvo, M.; Houtzager, V.M.; Nordstrom, P.A.; Roy, S.; Vaillancourt, J.P.; Chapman, K.T.; Nicholson, D.W. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem., 1997, 272(29), 17907-17911.
[] [PMID: 9218414]
Woo, M.; Hakem, R.; Soengas, M.S.; Duncan, G.S.; Shahinian, A.; Kägi, D.; Hakem, A.; McCurrach, M.; Khoo, W.; Kaufman, S.A.; Senaldi, G.; Howard, T.; Lowe, S.W.; Mak, T.W. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev., 1998, 12(6), 806-819.
[] [PMID: 9512515]
Ostwal, V.; Swami, R.; Patkar, S.; Majumdar, S.; Goel, M.; Mehta, S.; Engineer, R.; Mandavkar, S.; Kumar, S.; Ramaswamy, A. Gemcitabine-cisplatin (GC) as adjuvant chemotherapy in resected stage II and stage III gallbladder cancers (GBC): A potential way forward. Med. Oncol., 2018, 35(4), 57.
[] [PMID: 29564657]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy