Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antidiabetic Effects of Ethanolic Extract of Ficus glomerata (L.) Roots

Author(s): Mohini C. Upadhye*, Uday Deokate , Rohini Pujari and Vishnu Thakare

Volume 16, Issue 1, 2020

Page: [33 - 41] Pages: 9

DOI: 10.2174/1573407215666190401151405

Price: $65

Abstract

Background: Ficus glomerata (F. glomerata) Linn. Family Moraceace is a large tree found all over India including outer Himalayan ranges, Punjab, Chota Nagpur, Bihar, Orissa, West Bengal, Rajasthan, Deccan and also as a common plant in South India. It is planted around the home and temples. It is cultivated throughout the year, distributed in evergreen forests and moist localities.

Objective: The Ethanolic Extract of roots of F. Glomerata (EEFG) belonging to the family Moraceace, was investigated for its antidiabetic activity using alloxan induced diabetic rats.

Methods: Thirty rats were divided into 5 groups having 6 rats in each group. The alloxan was administered to the rats of all groups except normal control group through intraperitoneal route at a concentration of 140mg/kg body weight. A dose of 100mg/kg and 200 mg/kg body weight of EEFG was administered to alloxan induced diabetic rats. The administration of the extract was lasted for 11 days. Effectiveness of the extract on glucose, cholesterol, triglycerides, and high density lipoprotein and protein concentrations was analyzed.

Results: Significant (p<0.05) reduction in the levels of glucose, cholesterol, triglyceride of the diabetic rats was observed after treatment with ethanolic extract. After subjecting to oral glucose tolerance test EEFG also showed significant improvement in glucose tolerance.

Conclusion: F. glomerata root ethanolic extract showed that it possesses antidiabetic effect and can be found useful for the management of diabetes mellitus.

Keywords: Alloxan model, antidiabetic, diabetes, Ficus glomerata, herbal medicine, lipid profiles.

Graphical Abstract
[1]
Ali, S.M.; Fareed, A.; Humail, S.M.; Basit, A.; Ahmedani, M.Y.; Fawwad, A.; Miyan, Z. The personal cost of diabetic foot disease in the developing world--a study from Pakistan. Diabet. Med., 2008, 25(10), 1231-1233.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02529.x] [PMID: 19046203]
[2]
Al-yassin, D.; Ibrahim, K.A. Minor haemoglobin fraction and the level of fasting blood glucose. J. Fac. Med. Univ. Baghdad, 1981, 23, 373-380.
[3]
Nadkarni, K.M. Indian Materia Medica, 3rd ed; Popular Prakashan: Mumbai, India, 1982.
[4]
Kirtikar. K.R. Basu. B.D. Indian Medicinal Plants, 2nd ed; International Book Distributors: Dehradun, India, 1999.
[5]
Upendra, R.M.; Sreenivasulu, M.; Chengaiah, B.; Reddy, K.J.; Chetty, C.M. Herbal medicines for diabetes mellitus: A review. Int. J. Pharm. Tech. Res., 2010, 2(3), 1883-1892.
[6]
Bhattaram, V.A.; Graefe, U.; Kohlert, C.; Veit, M.; Derendorf, H. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine, 2002, 9(Suppl. 3), 1-33.
[http://dx.doi.org/10.1078/1433-187X-00210] [PMID: 12222652]
[7]
Brioukhanov, A.L.; Netrusov, A.I. Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc.), 2004, 69(9), 949-962.
[http://dx.doi.org/10.1023/B:BIRY.0000043537.04115.d9] [PMID: 15521809]
[8]
Herbert, K. Clinical Chemistry: Theory; Analysis and Co-relation; 5thed.; CV Mosby:; Toronto, 1984.
[9]
Rustenbeck, I.; Wienbergen, A.; Bleck, C.; Jörns, A. Desensitization of insulin secretion by depolarizing insulin secretagogues. Diabetes, 2004, 53(3)(Suppl. 3), S140-S150.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S140] [PMID: 15561902]
[10]
Kaplan, L.A. Carbohydrates and metabolite; In clinical chemistry: Theory; Analysis and Co-relation; Kaplan, L.A.; Pesce, L.J., Eds.; C.V. Mosby: Toronto, 1984, pp. 1032-1040.
[11]
Leng, S.H.; Lu, F.E.; Xu, L.J. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol. Sin., 2004, 25(4), 496-502.
[PMID: 15066220]
[12]
Ankur, R.; Shahjad, A. Alloxan induced diabetes: Mechanisms and effects. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(2), 819-823.
[13]
Elsner, M.; Gurgul-Convey, E.; Lenzen, S. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells. Free Radic. Biol. Med., 2006, 41(5), 825-834.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.002] [PMID: 16895803]
[14]
Viswanathaswamy, A.H.; Koti, B.C.; Gore, A.; Thippeswamy, A.H.; Kulkarni, R.V. Antihyperglycemic and antihyperlipidemic activity of plectranthus amboinicus on normal and alloxan-induced diabetic rats. Indian J. Pharm. Sci., 2011, 73(2), 139-145.
[http://dx.doi.org/10.4103/0250-474X.91572] [PMID: 22303055]
[15]
Stanely, P.; Prince, M.; Menon, V.P. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J. Ethnopharmacol., 2000, 70(1), 9-15.
[http://dx.doi.org/10.1016/S0378-8741(99)00136-1] [PMID: 10720784]
[16]
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001, 50(6), 537-546.
[PMID: 11829314]
[17]
Chen, T.; Gao, J.; Xiang, P.; Chen, Y.; Ji, J.; Xie, P.; Wu, H.; Xiao, W.; Wei, Y.; Wang, S.; Lan, L.; Ji, H.; Yan, T. Protective effect of platycodin D on liver injury in alloxan-induced diabetic mice via regulation of Treg/Th17 balance. Int. Immunopharmacol., 2015, 26(2), 338-348.
[http://dx.doi.org/10.1016/j.intimp.2015.04.001] [PMID: 25887267]
[18]
Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab., 2015, 40(8), 769-781.
[http://dx.doi.org/10.1139/apnm-2015-0002] [PMID: 26201855]
[19]
Elsner, M.; Tiedge, M.; Guldbakke, B.; Munday, R.; Lenzen, S. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia, 2002, 45(11), 1542-1549.
[http://dx.doi.org/10.1007/s00125-002-0955-x] [PMID: 12436338]
[20]
Charles, M.A.; Balkau, B.; Vauzelle-Kervröedan, F.; Thibult, N.; Eschwège, E. Revision of diagnostic criteria for diabetes. Lancet, 1996, 348(9042), 1657-1658.
[http://dx.doi.org/10.1016/S0140-6736(05)65719-4] [PMID: 8962002]
[21]
Ramachandran, A.; Snehalatha, C.; Latha, E.; Vijay, V. Evaluation of the use of fasting plasma glucose as a new diagnostic criterion for diabetes in Asian Indian population. Diabetes Care, 1998, 21(4), 666-667.
[http://dx.doi.org/10.2337/diacare.21.4.666] [PMID: 9571361]
[22]
Motala, A.A.; Omar, M.A.K.; Pirie, F.J.; Type, I. Diabetes mellitus in Africa: Epidemiology and pathogenesis. Diabetes Inter. J., 2000, 10, 33-64.
[23]
DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am., 2004, 88(4), 787-835. ix
[http://dx.doi.org/10.1016/j.mcna.2004.04.013] [PMID: 15308380]
[24]
Shirwaikar, A.; Punitha, I.S.R.; Upadhye, M.; Dhiman, A. Antidiabetic activity of alcohol root extract of Holostemma annulare in NIDDM Rats. Pharm. Biol., 2007, 45(6), 440-445.
[http://dx.doi.org/10.1080/13880200701388989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy