Generic placeholder image

Current Drug Metabolism


ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Review Article

Advanced Glycation End Products (AGEs), Glutathione and Breast Cancer: Factors, Mechanism and Therapeutic Interventions

Author(s): Anil K. Sharma, Var R. Sharma, Girish K. Gupta, Ghulam Md. Ashraf and Mohammad A. Kamal*

Volume 20 , Issue 1 , 2019

Page: [65 - 71] Pages: 7

DOI: 10.2174/1389200219666180912104342

Price: $65


Background: Advanced Glycation End products (AGEs) are basically the end result of glycation of proteins and/or lipids in the presence of sugars. Specific cases of hyperglycemia have been reported with increased propensity of generation of AGEs. Many chronic and deadly diseases such as diabetes, cancer and neurodegenerative disorders have been known to be caused as a result of generation of AGEs. The role of glutathione (GSH) metabolism and its intricate association with AGEs have also been well established in breast cancer prognosis and treatment. To understand the etiology, mechanism and production of AGEs along with clinical relevance of Receptors for Advanced Glycation End-products (RAGE) and RAGE ligands, their interplay with GSH is of paramount importance especially in relation to breast cancer.

Methods: The available literature using PubMed, National Library of Medicine database, Web of Science and SCOPUS indexed, Science Direct and other prestigious journals have been systematically reviewed using the keywords: advanced glycation end-products, breast cancer, glutathione RAGE, and AGEs inhibitors. This narrative review of all the relevant papers with significant citations has led us to have greater insight into the action mechanism and potential therapeutic significance of AGEs inhibitors.

Results: Targeting breast cancer with the specific immunoglobulins and with other therapeutic interventions is needed to inhibit the generation of AGEs and manage glutathione expression, thus having strong implications in the management of breast cancer. Many RAGE ligands such as HMGB1, S100P, S100A8, S100A9 etc. have been known to enhance RAGE expression which may further lead to increased proliferation, migration and metastatic nature of tumor cells. Hence, RAGE and RAGE ligands in a close linkup with GSH may prove to be effective therapeutic markers of severity of breast cancer and for angiogenesis of tumor.

Conclusion: This review provides a strong platform to comprehend the etiology, mechanism and production of AGEs and glutathione along with the agents which can block their production, paving a way for the therapeutic intervention and an amicable solution to treat and manage breast cancer.

Keywords: AGEs (Advanced Glycation End Products), breast cancer, glutathione, ligands, RAGE, therapeutic intervention.

Graphical Abstract
Piperi, C.; Adamopoulos, C.; Papavassiliou, A.G. Potential of glycative stress targeting for cancer prevention. Cancer Lett., 2017, 390, 153-159.
Galì, A.; Mucciardi, G.; Butticè, S.; Subba, E.; D’Amico, C.; Lembo, F.; Magno, C. Correlation between advanced glycation end‐products, lower urinary tract symptoms and bladder dysfunctions in patients with type 2 diabetes mellitus. Low. Urin. Tract Symptoms, 2017, 9(1), 15-20.
van Dooren, F.E.; Pouwer, F.; Schalkwijk, C.G.; Sep, S.J.; Stehouwer, C.D.; Henry, R.M.; Dagnelie, P.C.; Schaper, N.C.; van der Kallen, C.J.; Koster, A.; Denollet, J.; Verhey, F.R.; Schram, M.T. Advanced glycation end product (age) accumulation in the skin is associated with depression: the maastricht study. Depress. Anxiety, 2017, 34(1), 59-67.
Kim, Y.; Kim, C.; Son, S.M.; Song, H.; Hong, H.S.; Han, S.H.; Mook-Jung, I. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer’s disease pathogenesis. Mol. Neurodegener., 2016, 11(1), 4.
Prasad, K.; Tiwari, S. Therapeutic Interventions for Advanced Glycation-End Products and its Receptor- Mediated Cardiovascular Disease. Curr. Pharm. Des., 2017, 23(6), 937-943.
Sessa, L.; Gatti, E.; Zeni, F.; Antonelli, A.; Catucci, A.; Koch, M.; Pompilio, G.; Fritz, G.; Raucci, A.; Bianchi, M.E. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of Cell Adhesion Molecules (CAMs). PLoS One, 2014, 9(1), e86903.
Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc., 2010, 110(6), 911-16.e12.
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res., 2013, 47(47), 3-27.
Ahmed, N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 2005, 67(1), 3-21.
Helou, C.; Marier, D.; Jacolot, P.; Abdennebi-Najar, L.; Niquet-Léridon, C.; Tessier, F.J.; Gadonna-Widehem, P. Microorganisms and Maillard reaction products: A review of the literature and recent findings. Amino Acids, 2014, 46(2), 267-277.
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
Kareb, O.; Gomaa, A.; Champagne, C.P.; Jean, J.; Aïder, M. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides. Food Chem., 2017, 221, 590-598.
Szwergold, B.S. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res., 2013, 16(4), 259-272.
Nakashima, T.; Ōmura, S.; Takahashi, Y. Generation of superoxide anions by a glycation reaction in conventional laboratory media. J. Biosci. Bioeng., 2012, 114(3), 275-280.
Gersten, R.A.; Gretebeck, L.M.; Hildick-Smith, G.; Sandwick, R.K. Maillard reaction of ribose 5-phosphate generates superoxide and glycation products for bovine heart cytochrome c reduction. Carbohydr. Res., 2010, 345(17), 2499-2506.
Choudhary, M.I.; Abbas, G.; Ali, S.; Shuja, S.; Khalid, N.
Khan, K.M. Atta-ur-Rahman; Basha, F.Z. Substituted benzenediol Schiff bases as promising new anti-glycation agents. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 98-103.
Nawale, R.B.; Mourya, V.K.; Bhise, S.B. Non-enzymatic glycation of proteins: A cause for complications in diabetes. Indian J. Biochem. Biophys., 2006, 43(6), 337-344.
McCarty, M.F. The low-AGE content of low-fat vegan diets could benefit diabetics - though concurrent taurine supplementation may be needed to minimize endogenous AGE production. Med. Hypotheses, 2005, 64(2), 394-398.
Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6474-6479.
Gursinsky, T.; Ruhs, S.; Friess, U.; Diabaté, S.; Krug, H.F.; Silber, R.E.; Simm, A. Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts. Biol. Chem., 2006, 387(10-11), 1411-1420.
Peppa, M.; Uribarri, J.; Vlassara, H. Glucose, advanced glycation end products, and diabetes complications: What is new and what works. Clin. Diabetes, 2003, 21(4), 186-187.
Vlassara, H.; Uribarri, J.; Cai, W.; Striker, G. Advanced glycation end product homeostasis: exogenous oxidants and innate defenses. Ann. N. Y. Acad. Sci., 2008, 1126(1), 46-52.
Arena, S.; Renzone, G.; D’Ambrosio, C.; Salzano, A.M.; Scaloni, A. Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem., 2017, 219, 477-489.
Nankali, M.; Karimi, J.; Goodarzi, M.T.; Saidijam, M.; Khodadadi, I.; Razavi, A.N.E.; Rahimi, F. Increased expression of the Receptor for Advanced Glycation End-products (RAGE) is associated with advanced breast cancer stage. Oncol. Res. Treat., 2016, 39(10), 622-628.
Sharaf, H.; Matou-Nasri, S.; Wang, Q.; Rabhan, Z.; Al-Eidi, H.; Al Abdulrahman, A.; Ahmed, N. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim. Biophys. Acta, 2015, 1852(3), 429-441.
Nokin, M.J.; Durieux, F.; Peixoto, P.; Chiavarina, B.; Peulen, O.; Blomme, A.; Turtoi, A.; Costanza, B.; Smargiasso, N.; Baiwir, D.; Scheijen, J.L.; Schalkwijk, C.G.; Leenders, J.; De Tullio, P.; Bianchi, E.; Thiry, M.; Uchida, K.; Spiegel, D.A.; Cochrane, J.R.; Hutton, C.A.; De Pauw, E.; Delvenne, P.; Belpomme, D.; Castronovo, V.; Bellahcène, A. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife, 2016, 5, e19375.
Guo, Y.; Zhang, Y.; Yang, X.; Lu, P.; Yan, X.; Xiao, F.; Zhou, H.; Wen, C.; Shi, M.; Lu, J.; Meng, Q.H. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol. Ther., 2016, 17(2), 169-180.
Rulli, A.; Carli, L.; Romani, R.; Baroni, T.; Giovannini, E.; Rosi, G.; Talesa, V. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res. Treat., 2001, 66(1), 67-72.
Al-Maghrebi, M.A.; Al-Mulla, F.; Benov, L.T. Glycolaldehyde induces apoptosis in a human breast cancer cell line. Arch. Biochem. Biophys., 2003, 417(1), 123-127.
Al-Enezi, K.S.; Alkhalaf, M.; Benov, L.T. Glycolaldehyde induces growth inhibition and oxidative stress in human breast cancer cells. Free Radic. Biol. Med., 2006, 40(7), 1144-1151.
Flohr, A.M.; Rogalla, P.; Meiboom, M.; Borrmann, L.; Krohn, M.; Thode-Halle, B.; Bullerdiek, J. Variation of HMGB1 expression in breast cancer. Anticancer Res., 2001, 21(6A), 3881-3885.
Brezniceanu, M.L.; Völp, K.; Bösser, S.; Solbach, C.; Lichter, P.; Joos, S.; Zörnig, M. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J., 2003, 17(10), 1295-1297.
Nass, N.; Ignatov, A.; Andreas, L.; Weißenborn, C.; Kalinski, T.; Sel, S. Accumulation of the advanced glycation end product carboxymethyl lysine in breast cancer is positively associated with estrogen receptor expression and unfavorable prognosis in estrogen receptor-negative cases. Histochem. Cell Biol., 2017, 147(5), 625-634.
Feng, L.J.; Liu, H.L.; Tan, Q.; Jin, P. -374T/A polymorphism of the receptor for advanced glycation end products is associated with decreased risk of breast cancer in a Chinese population. Int. J. Clin. Exp. Med., 2015, 8(6), 10109-10113.
Sharaf, H.; Matou-Nasri, S.; Wang, Q.; Rabhan, Z.; Al-Eidi, H.; Al Abdulrahman, A.; Ahmed, N. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim. Biophys. Acta, 2015, 1852(3), 429-441.
Lata, K.; Mukherjee, T.K. Knockdown of receptor for advanced glycation end products attenuate 17α-ethinyl-estradiol dependent proliferation and survival of MCF-7 breast cancer cells. Biochim. Biophys. Acta, 2014, 1840(3), 1083-1091.
Radia, A.M.; Yaser, A.M.; Ma, X.; Zhang, J.; Yang, C.; Dong, Q.; Rong, P.; Ye, B.; Liu, S.; Wang, W. Specific siRNA targeting Receptor for Advanced Glycation End products (RAGE) decreases proliferation in human breast cancer cell lines. Int. J. Mol. Sci., 2013, 14(4), 7959-7978.
Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm. Metab. Res., 2013, 45(5), 387-390.
Tesarová, P.; Kalousová, M.; Jáchymová, M.; Mestek, O.; Petruželka, L.; Zima, T. Receptor for advanced glycation end products (RAGE)-soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest., 2007, 25(8), 720-725.
Dhumale, S.S.; Waghela, B.N.; Pathak, C. Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life, 2015, 67(5), 361-373.
Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352.
Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 2001, 360(Pt 1), 1-16.
Sahin, E.; Göçmen, A.Y.; Koçak, H.; Tuncer, M.; Gümüslü, S. The association of advanced glycation end-products with glutathione status. Ann. Clin. Biochem., 2008, 45(Pt 4), 369-374.
Deuther-Conrad, W.; Loske, C.; Schinzel, R.; Dringen, R.; Riederer, P.; Münch, G. Advanced glycation endproducts change glutathione redox status in SH-SY5Y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neurosci. Lett., 2001, 312(1), 29-32.
Tang, Y.; Chen, A. Curcumin eliminates the effect of Advanced Glycation End-Products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab. Invest., 2014, 94(5), 503-516.
Perry, R.R.; Mazetta, J.A.; Levin, M.; Barranco, S.C. Glutathione levels and variability in breast tumors and normal tissue. Cancer, 1993, 72(3), 783-787.
Seven, A.; Erbil, Y.; Seven, R.; Inci, F.; Gülyaşar, T.; Barutçu, B.; Candan, G. Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. Cancer Biochem. Biophys., 1998, 16(4), 333-345.
Sohail, A.; Kanwal, N.; Ali, M.; Sadia, S.; Masood, A.I.; Ali, F.; Iqbal, F.; Crickmore, N.; Shaikh, R.S.; Sayyed, A.H. Effects of glutathione-S-transferase polymorphisms on the risk of breast cancer: A population-based case-control study in Pakistan. Environ. Toxicol. Pharmacol., 2013, 35(2), 143-153.
Gudmundsdottir, K.; Tryggvadottir, L.; Eyfjord, J.E. GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene. Cancer Epidemiol. Biomarkers Prev., 2001, 10(11), 1169-1173.
Park, S.K.; Yoo, K.Y.; Lee, S.J.; Kim, S.U.; Ahn, S.H.; Noh, D.Y.; Choe, K.J.; Strickland, P.T.; Hirvonen, A.; Kang, D. Alcohol consumption, glutathione S-transferase M1 and T1 genetic polymorphisms and breast cancer risk. Pharmacogenetics, 2000, 10(4), 301-309.
Lee, K-M.; Park, S-K.; Kim, S-U.; Doll, M.A.; Yoo, K-Y.; Ahn, S-H.; Noh, D-Y.; Hirvonen, A.; Hein, D.W.; Kang, D. N-acetyltransferase (NAT1, NAT2) and glutathione S-transferase (GSTM1, GSTT1) polymorphisms in breast cancer. Cancer Lett., 2003, 196(2), 179-186.
Chen, X.; Carystinos, G.D.; Batist, G. Potential for selective modulation of glutathione in cancer chemotherapy. Chem. Biol. Interact., 1998, 111-112, 263-275.
Kondo, T.; Iida, T. [gamma-GCS and glutathione-new molecular targets in cancer treatment] Gan To Kagaku Ryoho, 1997, 24(15), 2219-2225. .
Bard, S.; Noël, P.; Chauvin, F.; Quash, G. gamma-glutamyltranspeptidase activity in human breast lesions: An unfavourable prognostic sign. Br. J. Cancer, 1986, 53(5), 637-642.
Matulonis, U.A.; Horowitz, N.S.; Campos, S.M.; Lee, H.; Lee, J.; Krasner, C.N.; Berlin, S.; Roche, M.R.; Duska, L.R.; Pereira, L.; Kendall, D.; Penson, R.T.; Phase, I.I. Phase II study of carboplatin and pemetrexed for the treatment of platinum-sensitive recurrent ovarian cancer. J. Clin. Oncol., 2008, 26(35), 5761-5766.
Montero, A.J.; Diaz-Montero, C.M.; Deutsch, Y.E.; Hurley, J.; Koniaris, L.G.; Rumboldt, T.; Yasir, S.; Jorda, M.; Garret-Mayer, E.; Avisar, E.; Slingerland, J.; Silva, O.; Welsh, C.; Schuhwerk, K.; Seo, P.; Pegram, M.D.; Glück, S. Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res. Treat., 2012, 132(1), 215-223.
Lu, J.; Chew, E-H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA, 2007, 104(30), 12288-12293.
Lien, E.C.; Lyssiotis, C.A.; Juvekar, A.; Hu, H.; Asara, J.M.; Cantley, L.C.; Toker, A. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat. Cell Biol., 2016, 18(5), 572-578.
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C-W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy