Generic placeholder image

Current Diabetes Reviews


ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Application of Aptamer-based Hybrid Molecules in Early Diagnosis and Treatment of Diabetes Mellitus: From the Concepts Towards the Future

Author(s): Sepideh Ahmadi, Navid Rabiee and Mohammad Rabiee*

Volume 15 , Issue 4 , 2019

Page: [309 - 313] Pages: 5

DOI: 10.2174/1573399814666180607075550

Price: $65


Aptamers have several positive advantages that made them eminent as a potential factor in diagnosing and treating diseases such as their application in prevention and treatment of diabetes. In this opinion-based mini-review article, we aimed to investigate the DNA and RNA-based hybrid molecules specifically aptamers and had a logical conclusion as a promising future perspective in early diagnosis and treatment of diabetes.

Keywords: Aptamers, diabetes mellitus, early diagnosis, treatment, hybrid molecules, gene therapy.

Sharfstein ST. Non-protein biologic therapeutics. Curr Opin Biotechnol 2018; 53: 65-75.
Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 1996; 59(5): 1134.
Chatterjee B, Pancholi J, Kevalia J, Kothari V, Pandya P, Bhatt U. Significance of molecular markers and dna based technology in research and standardization of medicinal plants: A review. Int J Res Med 2015; 4: 5-16.
Jayasena SD. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin Chem 1999; 45(9): 1628-50.
Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 2009; 78: 305-34.
Uphoff KW, Bell SD, Ellington AD. In vitro selection of aptamers: the dearth of pure reason. Curr Opin Struct Biol 1996; 6(3): 281-8.
Afshar M, Prescott CD, Varani G. Structure-based and combinatorial search for new RNA-binding drugs. Curr Opin Biotechnol 1999; 10(1): 59-63.
Vafajoo A, Rostami A, Parsa SF, et al. Early diagnosis of disease using microbead array technology: A review. Anal Chim Acta 2018; 1032: 1-7.
Farjadian F, Moghoofei M, Mirkiani S, et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36(4): 968-85.
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968): 505-10.
Pfeiffer F, Tolle F, Rosenthal M, Brändle GM, Ewers J, Mayer G. Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat Protoc 2018; 13(5): 1153.
Yu X, Chen F, Wang R, Li Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J Biotechnol 2018; 266: 39-49.
Lauridsen LH, Doessing HB, Long KS, Nielsen AT. A Capture-SELEX strategy for multiplexed selection of rna aptamers against small molecules. Methods Mol Biol 2018; 1671: 291-306.
Amraee M, Oloomi M, Yavari A, Bouzari S. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal Biochem 2017; 536: 36-44.
Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Pat 2018; 22.
Eissa S, Zourob M. Aptamers and sensing technology used for detection of glycated hemoglobin in whole blood. US Patent 9,863,962; 2018.
Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 2005; 383(1): 83-91.
Sefah K, Shangguan D, Xiong X, O’donoghue MB, Tan W. Development of DNA aptamers using Cell-SELEX. Nat Protoc 2010; 5(6): 1169.
Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2005; 20(12): 2424-34.
Prakash S. Role of human serum albumin and oxidative stress in diabetes. J Appl Biotechnol Bioeng 2017; 3(1): 00057.
Japrung D, Apiwat C, Treerattrakoon K, Dharakul T, Luksirikul P. Eds Aptasensor for diabetes mellitus detection and monitoring.Nanotechnology (IEEE-NANO), 2015 IEEE 15th International Conference on; 2015: IEEE.
Japrung D, Dharakul T, Chumseng S. Aptamers bound human serum albumin and glycated human serum albumin. Google Patents 2017.
Takenaka M, Okumura Y, Amino T, Miyachi Y, Ogino C, Kondo A. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin. Bioorg Med Chem Lett 2017; 27(4): 954-7.
Esfandyari-Manesh M, Mohammadi A, Atyabi F, et al. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Int J Pharm 2016; 515(1-2): 607-15.
Apiwat C, Luksirikul P, Kankla P, et al. Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens Bioelectron 2016; 82: 140-5.
Stoltenburg R, Krafčiková P, Víglaský V, Strehlitz B. G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Sci Rep 2016; 6: 33812.
Yamamoto R, Kumar PK. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV‐1. Genes Cells 2000; 5(5): 389-96.
Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005; 67(2): 135-41.
Neff CP, Zhou J, Remling L, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci Trans Med 2011. 3(66): 66ra6-ra6.
Young JA, Rall G. Current topics in microbiology and immunology. 1990.
Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009; 19(3): 209-22.
Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63(3): 601-8.
Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, Yamagishi SI. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 2017; 66(6): 1683-95.
Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens 2013; 653789(10): 4.
Li J, Chang K-W, Wang C-H, Yang C-H, Shiesh S-C, Lee G-B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens Bioelectron 2016; 79: 887-93.
Khalafallah A, Phuah E, Al-Barazan AM, et al. Glycosylated haemoglobin for screening and diagnosis of gestational diabetes mellitus. BMJ Open 2016; 6(4): e011059.
Barnaby OS, Cerny RL, Clarke W, Hage DS. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 2011; 412(3-4): 277-85.
Almusharraf AY, Eissa S, Zourob M. Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim Acta 2018; 185(5): 256.
Yu L-R, Sun J, Daniels JR, et al. Aptamer-based proteomics identifies mortality-associated serum biomarkers in AKI-D patients. Kidney Int Rep 2018; 3(5): 1202-13.
Yamagishi SI. Diabetes and advanced glycation end products Diabetes and Aging-related Complications. Springer 2018; pp. 201-12.
Ghosh S, Datta D, Cheema M, Dutta M, Stroscio MA. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology 2017; 28(43): 1361-6528.
Apiwat C, Luksirikul P, Kankla P, et al. Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens Bioelectron 2016; 82: 140-5.
Jeganathan SE. Anti-angiogenesis drugs in diabetic retinopathy. Curr Pharm Biotechnol 2011; 12(3): 369-72.
P Giuliari G. Diabetic retinopathy: Current and new treatment options. Curr Diabetes Rev 2012; 8(1): 32-41.
Giuliari GP, Guel DA, Gonzalez VH. Pegaptanib sodium for the treatment of proliferative diabetic retinopathy and diabetic macular edema. Curr Diabetes Rev 2009; 5(1): 33-8.
Inoue Y, Inoue M, Saito M, Yoshikawa H, Tamiya E. Sensitive detection of glycated albumin in human serum albumin using electrochemiluminescence. Anal Chem 2017; 89(11): 5909-15.
Schimke I, Haberland A, Wallukat G. Use of aptamers in therapy and/or diagnosis of autoimmune diseases. Google Patents 2018.
Pezzuoli D, Cazzulo A, Angeli E, et al. Nanofluidic sensor for antigen-antibody binding detection. Biophys J 2018; 114(3): 19a-20a.
Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 2011; 18(27): 4206-14.
Wang G, Liu J, Chen K, et al. Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX Sci Rep 2017; 7(1): 017-05840.
Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet 2017; 389(10085): 2239-51.
Mostafa S, Coleman R, Agbaje O, Gray A, Holman R, Bethel M. Modelling incremental benefits on complications rates when targeting lower HbA1c levels in people with Type 2 diabetes and cardiovascular disease. Diabet Med 2018; 35(1): 72-7.
Thomas S, Karalliedde J. Diabetic nephropathy. Medicine 2015; 43(1): 20-5.
Taguchi K, Yamagishi S-I, Yokoro M, et al. RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice. Sci Rep 2018; 8(1): 2686.
Hickey FB, Martin F. Role of the Immune System in Diabetic Kidney Disease. Curr Diab Rep 2018; 18(4): 20.
Alberti KGMM, Zimmet Pf. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998; 15(7): 539-53.
Yamagishi S-i, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med 2015; 21(Suppl. 1): S32.
Ojima A, Matsui T, Maeda S, et al. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab Invest 2014; 94(4): 422.
Kaida Y, Fukami K, Matsui T, et al. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes 2013; 62(9): 3241-50.
Um JE, Park JT, Nam BY, et al. Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Sci Rep 2017; 7(1): 8490.
De Franco E, Caswell R, Houghton J, Iotova V, Hattersley AT, Ellard S. Analysis of cell‐free fetal DNA for non‐invasive prenatal diagnosis in a family with neonatal diabetes. Diabet Med 2017; 34(4): 582-5.
Mironidou-Tzouveleki M, Tsartsalis S, Tomos C. Vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic nephropathy of type 1 diabetes mellitus. Curr Drug Targets 2011; 12(1): 107-14.
Rodriguez-Fontal M, Alfaro V, Kerrison JB, Jablon EP. Ranibizumab for diabetic retinopathy. Curr Diabetes Rev 2009; 5(1): 47-51.
Torabi R, Ghourchian H, Amanlou M, Pasalar P. Aptamer-conjugated calcium phosphate nanoparticles for reducing diabetes risk via retinol binding protein 4 inhibition. Can J Diabetes 2017; 41(3): 305-11.
Amato R, Dal Monte M, Lulli M, Cammalleri M, Raffa V, Casini G. Functionalized magnetic nanoparticles as a novel strategy for the treatment of diabetic retinopathy. Acta Ophthalmologica 2017; 95(S259)
Torabi R, Ghourchian H, Amanlou M, Pasalar P. Aptamer-conjugated calcium phosphate nanoparticles for reducing diabetes risk via retinol binding protein 4 inhibition. Canadian J Diab 2017; 41(3): 305-11.
Park K, Chen Y, Hu Y, et al. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 2009; 58(8): 1902-13.
Gopinath SC, Lakshmipriya T, Chen Y, Phang W-M, Hashim U. Aptamer-based ‘point-of-care testing’. Biotechnol Adv 2016; 34(3): 198-208.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy