Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

A Brief Review on Breast Carcinoma and Deliberation on Current Non Invasive Imaging Techniques for Detection

Author(s): Rajendaran Vairavan, Othman Abdullah, Prema Boshani Retnasamy, Zaliman Sauli, Mukhzeer Mohamad Shahimin and Vithyacharan Retnasamy*

Volume 15 , Issue 2 , 2019

Page: [85 - 121] Pages: 37

DOI: 10.2174/1573405613666170912115617

Price: $65

Abstract

Background: Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival.

Discussion: This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection.

Conclusion: This paper aims to serve as a foundation guidance for the reader to attain bird’s eye understanding on breast carcinoma disease and its current non-invasive modalities.

Keywords: Breast carcinoma, breast cancer, detection, diagnosis, non-invasive, mammography, ultrasound, MRI, imaging.

Graphical Abstract
[1]
Lee H, Chen YP. Cell cycle phase detection with cell deformation analysis. Exp Sys Appli 2014; 41(6): 2644-51.
[2]
Ferlay J, Soerjomataram I, Ervik M, et al. 2012. International agency for research on cancer; 2013. Cancer incidence and mortality worldwide: IARC CancerBase 2012: (10); 1-3.
[3]
Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. Breast Cancer: Targ Ther 2015; 7: 193.
[4]
Nover AB, Jagtap S, Anjum W, et al. Modern breast cancer detection: A technological review. Int J Biomed Imaging 2009; 2009: 26.
[5]
Kilburn-Toppin F, Barter SJ. New horizons in breast imaging. Clin Oncol 2013; 25(2): 93-100.
[6]
Bassett LW, Hoyt AC, Poon C, Tran L. Breast imaging BT-management of breast diseases.In: Jatoi I, Kaufmann M, ed Springer, Berlin, Heidelberg 2010; 149-67.
[7]
Bronstein R, Reyes D, Kaufman T. Breast imaging InClinician’s guide to diagnostic imaging:. Springer New York, NY 2014; pp. 83-95.
[8]
Saha D, Bhowmik MK, De BK, Bhattacharjee D. A survey on imaging-based breast cancer detection. In Proceedings of fourth international conference on soft computing for problem solving Springer, New Delhi 2015; pp. 255-66.
[9]
Newell MS, Holbrook AI. Emerging technologies in breast imaging Inbreast cancer screening and diagnosis. Springer New York, NY 2015; pp. 427-48.
[10]
Katz VL, Dotters D. Breast diseases: Diagnosis and treatment of benign and malignant disease Comprehensive gynecology. 6th ed. Philadelphia, PA: Elsevier Mosby 2012.
[11]
Houssami N, Ciatto S. The evolving role of new imaging methods in breast screening. Prev Med 2011; 53(3): 123-6.
[12]
Chetlen A, Mack J, Chan T. Breast cancer screening controversies: Who, when, why, and how? Clin Imaging 2016; 40(2): 279-82.
[13]
Bansal GJ, Thomas KG. Imaging techniques in breast cancer Surgery (Oxford) 2010; 2 8(3): 117-24.
[14]
Eble JN, Tavassoli FA, Devilee P. Pathology and genetics of tumours of the breast and female genital organs. Iarc; 2003. Available from: http://apps.who.int/bookorders/anglais/detart1. jsp?codlan=1&codcol=70&codcch=4
[15]
Oliver A, Freixenet J, Marti J, et al. A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 2010; 14(2): 87-110.
[16]
Oussama M, Kh MA. Guidelines for the early detection and screening of breast cancer. World Health Organiz 2006: pp. 24-6. Available from: In: http://apps.who.int/iris/handle/10665/119811
[17]
Ozsaran Z, Alanyalı SD. Staging of breast cancer.In: Principles and practice of modern radiotherapy techniques in breast cancer. Springer, New York, NY: Springer 2013; pp. 13-9.
[18]
Edge S. Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A AJCC cancer staging manual. Springer, Newyork 2010.
[19]
D’Orsi CJ. ACR BI-RADS atlas: Breast imaging reporting and data system. American College of Radiology 2013.
[20]
Bargalló X, Santamaría G, Velasco M, et al. Mammographic features of screening detected pT1 (a–b) invasive breast cancer using BI-RADS lexicon. Eur J Radiol 2012; 81(10): 2620-6.
[21]
Gruber R, Jaromi S, Rudas M, et al. Histologic work-up of non-palpable breast lesions classified as probably benign at initial mammography and/or ultrasound (BI-RADS category 3). Eur J Radiol 2013; 82(3): 398-403.
[22]
Klompenhouwer EG, Weber RJ, Voogd AC, et al. Arbitration of discrepant BI-RADS 0 recalls by a third reader at screening mammography lowers recall rate but not the cancer detection rate and sensitivity at blinded and non-blinded double reading. Breast 2015; 24(5): 601-7.
[23]
Calas MJ, Almeida RM, Gutfilen B, Pereira WC. Intraobserver interpretation of breast ultrasonography following the BI-RADS classification. Eur J Radiol 2010; 74(3): 525-8.
[24]
Hsu HH, Yu JC, Lee HS, et al. Complex cystic lesions of the breast on ultrasonography: Feature analysis and BI-RADS assessment. Eur J Radiol 2011; 79(1): 73-9.
[25]
Kim SJ, Chang JM, Cho N, Chung SY, Han W, Moon WK. Outcome of breast lesions detected at screening ultrasonography. Eur J Radiol 2012; 81(11): 3229-33.
[26]
Ko KH, Hsu HH, Yu JC, et al. Non-mass-like breast lesions at ultrasonography: Feature analysis and BI-RADS assessment. Europ J Radiol 2015; 84(1): 77-85.
[27]
Yoon H, Yoon JH, Kim EK, Moon HJ, Park BW, Kim MJ. Adding ultrasound to the evaluation of patients with pathologic nipple discharge to diagnose additional breast cancers: Preliminary data. Ultrasound Med Biol 2015; 41(8): 2099-107.
[28]
El Khoury M, Lalonde L, David J, Labelle M, Mesurolle B, Trop I. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: Interobserver variability in the description and assignment of BI-RADS category. Eur J Radiol 2015; 84(1): 71-6.
[29]
Spick C, Szolar DH, Preidler KW, Tillich M, Reittner P, Baltzer PA. Breast MRI used as a problem-solving tool reliably excludes malignancy. Eur J Radiol 2015; 84(1): 61-4.
[30]
Spick C, Szolar DH, Tillich M, Reittner P, Preidler KW, Baltzer PA. Benign (BI-RADS 2) lesions in breast MRI. Clinic Radiol 2015; 70(4): 395-9.
[31]
Houssami N, Ciatto S. The evolving role of new imaging methods in breast screening. Prev Med 2011; 53(3): 123-6.
[32]
Kim WH, Moon WK, Kim SM, et al. Variability of breast density assessment in short-term reimaging with digital mammography. Eur J Radiol 2013; 82(10): 1724-30.
[33]
Mellado M, Osa AM, Murillo A, et al. Impact of digital mammography in the detection and management of microcalcifications. Radiolog 2013; 55(2): 142-7.
[34]
Sadaf A, Crystal P, Scaranelo A, Helbich T. Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers. Eur J Radiol 2011; 77(3): 457-61.
[35]
Engelken F, Bremme R, Bick U, Hammann-Kloss S, Fallenberg EM. Factors affecting the rate of false positive marks in CAD in full-field digital mammography. Eur J Radiol 2012; 81(8): e844-8.
[36]
Knox M, O’Brien A, Szabó E, et al. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers. Eur J Radiol 2015; 84(6): 1056-61.
[37]
De Gelder R, Fracheboud J, Heijnsdijk EA, et al. Digital mammography screening: Weighing reduced mortality against increased overdiagnosis. Prev Med 2011; 53(3): 134-40.
[38]
Van Ravesteyn NT, Van Lier L, Schechter CB, et al. Transition from film to digital mammography: Impact for breast cancer screening through the national breast and cervical cancer early detection program. Am J P Prevent Med 2015; 48(5): 535-42.
[39]
ElSaid NA, Farouk S, Shetat OM, Khalifa NM, Nada OM. Contrast enhanced digital mammography: Is it useful in detecting lesions in edematous breast? Egypt J Radiol Nucl Med 2015; 46(3): 811-9.
[40]
Diekmann F, Freyer M, Diekmann S, et al. Evaluation of contrast-enhanced digital mammography. Eur J Radiol 2011; 78(1): 112-21.
[41]
Francescone MA, Jochelson MS, Dershaw DD, et al. Low energy mammogram obtained in Contrast-Enhanced Digital Mammography (CEDM) is comparable to routine Full-Field Digital Mammography (FFDM). Eur J Radiol 2014; 83(8): 1350-5.
[42]
Tzamicha E, Yakoumakis E, Tsalafoutas IA, et al. Dual-energy contrast-enhanced digital mammography: Glandular dose estimation using a Monte Carlo code and voxel phantom. Phys Med 2015; 31(7): 785-91.
[43]
Mokhtar O, Mahmoud S. Can contrast enhanced mammography solve the problem of dense breast lesions? Egypt J Radiol Nucl Med 2014; 45(3): 1043-52.
[44]
Dromain C, Thibault F, Muller S, et al. Dual-energy contrast-enhanced digital mammography: Initial clinical results. Eur Radiol 2011; 21(3): 565-74.
[45]
Dromain C, Thibault F, Diekmann F, et al. Dual-energy contrast-enhanced digital mammography: Initial clinical results of a multireader, multicase study. Breast Cancer Res 2012; 14(3): R94.
[46]
Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: Feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiol 2013; 266(3): 743-51.
[47]
Kamal RM, Helal MH, Wessam R, Mansour SM, Godda I, Alieldin N. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions. Eur J Radiol 2015; 84(6): 1049-55.
[48]
Hobbs MM, Taylor DB, Buzynski S, Peake RE. Contrast‐enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): Patient preferences and tolerance. J Med Imaging Radiat Oncol 2015; 59(3): 300-5.
[49]
Blum KS, Antoch G, Mohrmann S, Obenauer S. Use of low-energy Contrast-Enhanced Spectral Mammography (CESM) as diagnostic mammography-proof of concept. Radiography 2015; 21(4): 352-8.
[50]
Cheung YC, Lin YC, Wan YL, et al. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: Interobserver blind-reading analysis. Eur Radiol 2014; 24(10): 2394-403.
[51]
Nishikawa N, Yanagisawa K, Naoi K, Ohnuma Y, Muramatsu Y. Possibility of exposure dose reduction in contrast enhanced spectral mammography using dual energy subtraction technique: A Phantom study. In: International workshop on digital mammography 2014: Springer, Cham; pp. 399-406.
[52]
Eltoukhy MM, Faye I, Samir BB. A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 2010; 40(4): 384-91.
[53]
Tahmasbi A, Saki F, Shokouhi SB. Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 2011; 41(8): 726-35.
[54]
Miranda GH, Felipe JC. Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput Biol Med 2015; 64: 334-46.
[55]
Korkmaz SA, Korkmaz MF. A new method based cancer detection in mammogram textures by finding feature weights and using Kullback–Leibler measure with kernel estimation. Optik-Inte J Lig Electr Opt 2015; 126(20): 2576-83.
[56]
Ma F, Yu L, Bajger M, Bottema MJ. Incorporation of fuzzy spatial relation in temporal mammogram registration. Fuzzy Sets Syst 2015; 279: 87-100.
[57]
Vállez N, Bueno G, Déniz O, et al. Breast density classification to reduce false positives in CADe systems. Comput Methods Programs Biomed 2014; 113(2): 569-84.
[58]
Llobet R, Pollán M, Antón J, et al. Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Comput Methods Programs Biomed 2014; 116(2): 105-15.
[59]
Marrocco C, Molinara M, D’Elia C, Tortorella F. A computer-aided detection system for clustered microcalcifications. Artif Intell Med 2010; 50(1): 23-32.
[60]
Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 2015; 42(3): 990-1002.
[61]
Al-Najdawi N, Biltawi M, Tedmori S. Mammogram image visual enhancement, mass segmentation and classification. Appl Soft Comput 2015; 35: 175-85.
[62]
Chakraborty J, Midya A, Mukhopadhyay S, et al. Detection of the nipple in mammograms with Gabor filters and the Radon transform. Biomed Signal Process Control 2015; 15: 80-9.
[63]
Dhahbi S, Barhoumi W, Zagrouba E. Breast cancer diagnosis in digitized mammograms using curvelet moments. Computers in biology and Med 2015; 64: 79-90.
[64]
Jen CC, Yu SS. Automatic detection of abnormal mammograms in mammographic images. Expert Syst Appl 2015; 42(6): 3048-55.
[65]
Beura S, Majhi B, Dash R. Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 2015; 154: 1-4.
[66]
Wang Z, Yu G, Kang Y, Zhao Y, Qu Q. Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 2014; 128: 175-84.
[67]
Pérez NP, López MA, Silva A, Ramos I. Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography. Artif Intell Med 2015; 63(1): 19-31.
[68]
Rahmati P, Adler A, Hamarneh G. Mammography segmentation with maximum likelihood active contours. Med Image Anal 2012; 16(6): 1167-86.
[69]
Mazurowski MA, Lo JY, Harrawood BP, Tourassi GD. Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis. J Biomed Inform 2011; 44(5): 815-23.
[70]
Wang H, Li JB, Wu L, Gao H. Mammography visual enhancement in CAD-based breast cancer diagnosis. Clin Imaging 2013; 37(2): 273-82.
[71]
Dheeba J, Singh NA, Selvi ST. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014; 49: 45-52.
[72]
Delakis I, Wise R, Morris L, Kulama E. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics. Phys Med 2015; 31(7): 741-6.
[73]
Carrasco RM, Benito MÁ, del Campo ER. Value of mammography and breast ultrasound in male patients with nipple discharge. Eur J Radiol 2013; 82(3): 478-84.
[74]
Alsharif S, Daghistani R, Kamberoğlu EA, Omeroglu A, Meterissian S, Mesurolle B. Mammographic, sonographic and MR imaging features of invasive micropapillary breast cancer. Eur J Radiol 2014; 83(8): 1375-80.
[75]
Zhao B, Zhang X, Cai W, Conover D, Ning R. Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography. Eur J Radiol 2015; 84(1): 48-53.
[76]
Saha S, Freyvogel M, Johnston G, et al. The prognostic value of additional malignant lesions detected by magnetic resonance imaging versus mammography. Am J Surg 2015; 209(2): 398-402.
[77]
Michell MJ, Iqbal A, Wasan RK, et al. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin Radiol 2012; 67(10): 976-81.
[78]
Hamisa M, Dabess N, Yosef R, Zakeria F, Hammed Q. Role of breast ultrasound, mammography, magnetic resonance imaging and diffusion weighted imaging in predicting pathologic response of breast cancer after neoadjuvant chemotherapy. Egypt J Radiol Nucl Med 2015; 46(1): 245-57.
[79]
Mohey N, Hassan TA. Value of mammography and combined grey scale ultrasound and ultrasound elastography in the differentiation of solid breast lesions. Egypt J Radiol Nucl Med 2014; 45(1): 253-61.
[80]
Tohno E, Umemoto T, Sasaki K, Morishima I, Ueno E. Effect of adding screening ultrasonography to screening mammography on patient recall and cancer detection rates: a retrospective study in Japan. Eur J Radiol 2013; 82(8): 1227-30.
[81]
D’Orsi CJ, Getty DJ, Pickett RM, et al. Stereoscopic digital mammography: Improved specificity and reduced rate of recall in a prospective clinical trial. Radiology 2013; 266(1): 81-8.
[82]
Qi J, Ye Z. CTLM as an adjunct to mammography in the diagnosis of patients with dense breast. Clin Imaging 2013; 37(2): 289-94.
[83]
Anton G, Bayer F, Beckmann MW, et al. Grating-based darkfield imaging of human breast tissue. Zeitschrift für Medizinische Physik 2013; 23(3): 228-35.
[84]
Grandl S, Scherer K, Sztrókay-Gaul A, et al. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study. Eur Radiol 2015; 25(12): 3659-68.
[85]
Wang HY, Jiang YX, Zhu QL, et al. Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur J Radiol 2012; 81(11): 3190-200.
[86]
Kelly KM, Richwald GA. Automated whole-breast ultrasound: advancing the performance of breast cancer screening. In: Seminars in ultrasound, CT and MRI 2011: WB Saunders; Vol. 32. pp. 273- 80.
[87]
Giuliano V, Giuliano C. Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts. Clin Imaging 2013; 37(3): 480-6.
[88]
Arleo EK, Saleh M, Ionescu D, Drotman M, Min RJ, Hentel K. Recall rate of screening ultrasound with Automated Breast Volumetric Scanning (ABVS) in women with dense breasts: A first quarter experience. Clin Imaging 2014; 38(4): 439-44.
[89]
Chen T, Gao H, Guo W, et al. A novel application of the Automated Breast Volume Scanner (ABVS) in the diagnosis of soft tissue tumors. Clin Imaging 2015; 39(3): 401-7.
[90]
Chen L, Chen Y, Diao XH, et al. Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses. Ultrasound Med Biol 2013; 39(10): 1735-42.
[91]
Kuzmiak CM, Ko EY, Tuttle LA, Steed D, Zeng D, Yoon SC. Whole breast ultrasound: Comparison of the visibility of suspicious lesions with automated breast volumetric scanning versus hand-held breast ultrasound. Acad Radiol 2015; 22(7): 870-9.
[92]
Wilson SR, Greenbaum LD, Goldberg BB. Contrast-enhanced ultrasound: What is the evidence and what are the obstacles? AJR Am J Roentgenol 2009; 193(1): 55-60.
[93]
Zhao H, Xu R, Ouyang Q, Chen L, Dong B, Huihua Y. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. Eur J Radiol 2010; 73(2): 288-93.
[94]
Cao XL, Bao W, Zhu SG, et al. Contrast-enhanced ultrasound characteristics of breast cancer: correlation with prognostic factors. Ultrasound Med Biol 2014; 40(1): 11-7.
[95]
Liu H, Jiang Y, Dai Q, Zhu Q, Wang L, Lu J. Peripheral enhancement of breast cancers on contrast-enhanced ultrasound: correlation with microvessel density and vascular endothelial growth factor expression. Ultrasound Med Biol 2014; 40(2): 293-9.
[96]
Bzyl J, Lederle W, Palmowski M, Kiessling F. Molecular and functional ultrasound imaging of breast tumors. Eur J Radiol 2012; 81: S11-2.
[97]
Su Y, Wang H, Wang Y, et al. Speckle reduction approach for breast ultrasound image and its application to breast cancer diagnosis. Eur J Radiol 2010; 75(1): e136-41.
[98]
Huang Q, Yang F, Liu L, Li X. Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf Sci 2015; 314: 293-310.
[99]
Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J. Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Patt Recogn 2010; 43(1): 280-98.
[100]
Flores WG, de Albuquerque Pereira WC, Infantosi AF. Improving classification performance of breast lesions on ultrasonography. Patt Recogn 2015; 48(4): 1125-36.
[101]
Xian M, Zhang Y, Cheng HD. Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Patt Recogn 2015; 48(2): 485-97.
[102]
Erol B, Kara T, Gürses C, et al. Gray scale histogram analysis of solid breast lesions with ultrasonography: Can lesion echogenicity ratio be used to differentiate the malignancy? Clin Imaging 2013; 37(5): 871-5.
[103]
Tadayyon H, Sadeghi-Naini A, Czarnota GJ. Noninvasive characterization of locally advanced breast cancer using textural analysis of quantitative ultrasound parametric images. Transl Oncol 2014; 7(6): 759-67.
[104]
Selvan S, Devi SS. Automatic seed point selection in ultrasound echography images of breast using texture features. Biocybern Biomed Eng 2015; 35(3): 157-68.
[105]
Shi X, Cheng HD, Hu L, Ju W, Tian J. Detection and classification of masses in breast ultrasound images. Digit Signal Process 2010; 20(3): 824-36.
[106]
Alvarenga AV, Infantosi AF, Pereira WC, Azevedo CM. Assessing the performance of morphological parameters in distinguishing breast tumors on ultrasound images. Med Eng Phys 2010; 32(1): 49-56.
[107]
Sannachi L, Tadayyon H, Sadeghi-Naini A, et al. Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters. Med Image Anal 2015; 20(1): 224-36.
[108]
Medina-Valdés L, Pérez-Liva M, Camacho J, Udías JM, Herraiz JL, González-Salido N. Multi-modal ultrasound imaging for breast cancer detection. Phys Procedia 2015; 63: 134-40.
[109]
Jumaat AK, Rahman WE, Ibrahim A, Mahmud R. Segmentation of masses from breast ultrasound images using parametric active contour algorithm. Procedia Soc Behav Sci 2010; 8: 640-7.
[110]
Singh BK, Verma K, Thoke AS. Adaptive gradient descent backpropagation for classification of breast tumors in ultrasound imaging. Procedia Comput Sci 2015; 46: 1601-9.
[111]
Rodrigues R, Braz R, Pereira M, Moutinho J, Pinheiro AM. A two-step segmentation method for breast ultrasound masses based on multi-resolution analysis. Ultrasound Med Biol 2015; 41(6): 1737-48.
[112]
Lai YC, Huang YS, Wang DW, Tiu CM, Chou YH, Chang RF. Computer-aided diagnosis for 3-d power Doppler breast ultrasound. Ultrasound Med Biol 2013; 39(4): 555-67.
[113]
Pons G, Martí R, Ganau S, Sentís M, Martí J. Computerized detection of breast lesions using deformable part models in ultrasound images. Ultrasound Med Biol 2014; 40(9): 2252-64.
[114]
Jia-Wei T, Chun-Ping N, Yan-Hui G, Heng-Da C, Xiang-Long T. Effect of a novel segmentation algorithm on radiologists’ diagnosis of breast masses using ultrasound imaging. Ultrasound Med Biol 2012; 38(1): 119-27.
[115]
Kashikura Y, Nakayama R, Hizukuri A, et al. Improved differential diagnosis of breast masses on ultrasonographic images with a computer-aided diagnosis scheme for determining histological classifications. Acad Radiol 2013; 20(4): 471-7.
[116]
Liu Y, Cheng HD, Huang J, et al. Computer-aided diagnosis system for breast cancer using B-mode and color Doppler flow images. Opt Eng 2012; 51(4): 043202.
[117]
Jiang WW, Li C, Li AH, Zheng YP. A novel breast ultrasound system for providing coronal images: System development and feasibility study. Ultrasonics 2015; 56: 427-34.
[118]
Yen PL, Chen DR, Yeh KT, Chu PY. Development of a stiffness measurement accessory for ultrasound in breast cancer diagnosis. Med Eng Phys 2011; 33(9): 1108-19.
[119]
Jiang WW, Li AH, Zheng YP. A semi-automated 3-D annotation method for breast ultrasound imaging: System development and feasibility study on phantoms. Ultrasound Med Biol 2014; 40(2): 434-46.
[120]
Jia WR, Chai WM, Tang L, et al. Three-dimensional contrast enhanced ultrasound score and dynamic contrast-enhanced magnetic resonance imaging score in evaluating breast tumor angiogenesis: correlation with biological factors. Eur J Radiol 2014; 83(7): 1098-105.
[121]
Du J, Wang L, Wan CF, et al. Differentiating benign from malignant solid breast lesions: Combined utility of conventional ultrasound and contrast-enhanced ultrasound in comparison with magnetic resonance imaging. Eur J Radiol 2012; 81(12): 3890-9.
[122]
Kim SJ, Chung SY, Chang JM, Cho N, Han W, Moon WK. Ultrasound screening of contralateral breast after surgery for breast cancer. Eur J Radiol 2015; 84(1): 54-60.
[123]
Keune JD, Jeffe DB, Schootman M, Hoffman A, Gillanders WE, Aft RL. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer. Am J Surg 2010; 199(4): 477-84.
[124]
Hyun SJ, Kim EK, Yoon JH, Moon HJ, Kim MJ. Adding MRI to ultrasound and ultrasound-guided fine-needle aspiration reduces the false-negative rate of axillary lymph node metastasis diagnosis in breast cancer patients. Clin Radiol 2015; 70(7): 716-22.
[125]
Tsai HW, Twu NF, Ko CC, et al. Compliance with screening mammography and breast sonography of young Asian women. Eur J Obstet Gynecol Reprod Biol 2011; 157(1): 89-93.
[126]
Akaike G, Tsunoda H, Hayashi N, et al. Ultrasonography mapping combined with mammography before breast-conserving surgery for primary breast cancer with microcalcifications: A novel approach. Clin Breast Cancer 2014; 14(5): 352-7.
[127]
Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol 2010; 20(3): 734-42.
[128]
Chikui T, Obara M, Simonetti AW, et al. The principal of dynamic contrast enhanced MRI, the method of pharmacokinetic analysis, and its application in the head and neck region. Inter J Dent 2012; 2012. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23118750
[129]
Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast‐enhanced magnetic resonance imaging. J Magn Reson Imaging 2003; 17(5): 509-20.
[130]
Abowarda MH, Hasan DI, Elteeh OA. Predictive value of ADC mapping in discriminating probably benign and suspicious breast lesions. Egypt J Radiol Nucl Med 2015; 46(2): 545-51.
[131]
Gokalp G, Topal U, Yildirim N, Tolunay S. Malignant spiculated breast masses: dynamic contrast enhanced MR (DCE-MR) imaging enhancement characteristics and histopathological correlation. Eur J Radiol 2012; 81(2): 203-8.
[132]
Choi HK, Cho N, Moon WK, Im SA, Han W, Noh DY. Magnetic resonance imaging evaluation of residual ductal carcinoma in situ following preoperative chemotherapy in breast cancer patients. Eur J Radiol 2012; 81(4): 737-43.
[133]
Tuncbilek N, Tokatli F, Altaner S, et al. Prognostic value DCE-MRI parameters in predicting factor disease free survival and overall survival for breast cancer patients. Eur J Radiol 2012; 81(5): 863-7.
[134]
Fausto A, Rizzatto G, Preziosa A, et al. A new method to combine contrast-enhanced magnetic resonance imaging during live ultrasound of the breast using volume navigation technique: A study for evaluating feasibility, accuracy and reproducibility in healthy volunteers. Eur J Radiol 2012; 81(3): e332-7.
[135]
Kim TY, Kim SH, Kang BJ, et al. Characterization of the enhancing lesions on dynamic contrast enhanced magnetic resonance imaging in patients with interstitial mammoplasty. Eur J Radiol 2013; 82(12): 2205-11.
[136]
Pons EP, Azcón FM, Casas MC, Meca SM, Espona JL. Real-time MRI navigated US: role in diagnosis and guided biopsy of incidental breast lesions and axillary lymph nodes detected on breast MRI but not on second look US. Eur J Radiol 2014; 83(6): 942-50.
[137]
Nadrljanski M, Maksimović R, Plešinac-Karapandžić V, Nikitović M, Marković-Vasiljković B, Milošević Z. Positive enhancement integral values in dynamic contrast enhanced magnetic resonance imaging of breast carcinoma: Ductal carcinoma in situ vs. invasive ductal carcinoma. Eur J Radiol 2014; 83(8): 1363-7.
[138]
Rahbar H, DeMartini WB, Lee AY, Partridge SC, Peacock S, Lehman CD. Accuracy of 3 T versus 1.5 T breast MRI for pre-operative assessment of extent of disease in newly diagnosed DCIS. Eur J Radiol 2015; 84(4): 611-6.
[139]
Etxano J, Valbuena AG, Ibáñez IA, et al. Evaluation of the reproducibility of a protocol for the pharmacokinetic study of breast tumors by dynamic magnetic resonance imaging. Radiologia 2015; 57(1): 44-9.
[140]
Mastanduno MA, El-Ghussein F, Jiang S, et al. Adaptable near-infrared spectroscopy fiber array for improved coupling to different breast sizes during clinical MRI. Acad Radiol 2014; 21(2): 141-50.
[141]
Razek NM, Azab AO, Omar OS, Soliman HO. Role of proton MR spectroscopy in the high field magnet (3T) in diagnosis of indeterminate breast masses (BIRDS 3 & 4). Egypt J Radiol Nucl Med 2012; 43(4): 657-62.
[142]
Dorrius MD, Pijnappel RM, Van Der Weide Jansen MC, et al. The added value of quantitative multi-voxel MR spectroscopy in breast magnetic resonance imaging. Eur Radiol 2012; 22(4): 915-22.
[143]
Tozaki M, Sakamoto M, Oyama Y, Maruyama K, Fukuma E. Predicting pathological response to neoadjuvant chemotherapy in breast cancer with quantitative 1H MR spectroscopy using the external standard method. J Magn Reson Imaging 2010; 31(4): 895-902.
[144]
Cho N, Kim SM, Park JS, et al. Contralateral lesions detected by preoperative MRI in patients with recently diagnosed breast cancer: application of MR CAD in differentiation of benign and malignant lesions. Eur J Radiol 2012; 81(7): 1520-6.
[145]
Takeda K, Kanao S, Okada T, et al. Assessment of CAD-generated tumor volumes measured using MRI in breast cancers before and after neoadjuvant chemotherapy. Eur J Radiol 2012; 81(10): 2627-31.
[146]
Yang Q, Li L, Zhang J, Shao G, Zheng B. A computerized global MR image feature analysis scheme to assist diagnosis of breast cancer: a preliminary assessment. Eur J Radiol 2014; 83(7): 1086-91.
[147]
Wang TC, Huang YH, Huang CS, et al. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis. Magn Reson Imaging 2014; 32(3): 197-205.
[148]
Chang YC, Huang YH, Huang CS, Chen JH, Chang RF. Computerized breast lesions detection using kinetic and morphologic analysis for dynamic contrast-enhanced MRI. Magn Reson Imaging 2014; 32(5): 514-22.
[149]
Sim KS, Chia FK, Nia ME, et al. Breast cancer detection from MR images through an auto-probing discrete Fourier transform system. Comput Biol Med 2014; 49: 46-59.
[150]
Milenković J, Chambers O, Mušič MM, Tasič JF. Automated breast-region segmentation in the axial breast MR images. Comput Biol Med 2015; 62: 55-64.
[151]
Huang YH, Chang YC, Huang CS, Wu TJ, Chen JH, Chang RF. Computer-aided diagnosis of mass-like lesion in breast MRI: Differential analysis of the 3-D morphology between benign and malignant tumors. Comput Methods Programs Biomed 2013; 112(3): 508-17.
[152]
Vignati A, Giannini V, Carbonaro LA, et al. A new algorithm for automatic vascular mapping of DCE-MRI of the breast: Clinical application of a potential new biomarker. Comput Methods Programs Biomed 2014; 117(3): 482-8.
[153]
Lo CS, Wang CM. Support vector machine for breast MR image classification. Comput Math Appl 2012; 64(5): 1153-62.
[154]
Wang Y, Morrell G, Heibrun ME, Payne A, Parker DL. 3D multi-parametric breast MRI segmentation using hierarchical support vector machine with coil sensitivity correction. Acad Radiol 2013; 20(2): 137-47.
[155]
Rosado-Toro JA, Barr T, Galons JP, et al. Automated breast segmentation of fat and water MR images using dynamic programming. Acad Radiol 2015; 22(2): 139-48.
[156]
Milenković J, Hertl K, Košir A, Žibert J, Tasič JF. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Artif Intell Med 2013; 58(2): 101-14.
[157]
Gubern-Mérida A, Martí R, Melendez J, et al. Automated localization of breast cancer in DCE-MRI. Med Image Anal 2015; 20(1): 265-74.
[158]
Lee AW, Rajagopal V, Gamage TP, Doyle AJ, Nielsen PM, Nash MP. Breast lesion co-localisation between X-ray and MR images using finite element modelling. Med Image Anal 2013; 17(8): 1256-64.
[159]
Bassiouny RH, Youssef T, Hassan O. Diagnostic performance of breast MRI with and without the addition of quantitative diffusion weighted imaging. Egypt J Radiol Nucl Med 2012; 43(2): 311-23.
[160]
Razek NM, Hassan MA, Fattah SA, Eshak SI. Dynamic MR-Mammography as the best method for diagnosis of invasive lobular breast carcinoma: A retrospective study. Egypt J Radiol Nucl Med 2013; 44(2): 405-9.
[161]
Mokhtar O, Mahmoud S. Does dynamic post contrast MRI of the breast have a role in screening of high risk patients? Egypt J Radiol Nucl Med 2014; 45(3): 1029-41.
[162]
Teama AH, Hassanien OA, Hashish AA, Shaarawy HA. The role of conventional and functional MRI in diagnosis of breast masses. Egypt J Radiol Nucl Med 2015; 46(4): 1215-30.
[163]
Marcotte-Bloch C, Balu-Maestro C, Chamorey E, et al. MRI for the size assessment of pure ductal carcinoma in situ (DCIS): A prospective study of 33 patients. Eur J Radiol 2011; 77(3): 462-7.
[164]
Ko ES, Lee BH, Choi HY, Kim RB, Noh WC. Background enhancement in breast MR: correlation with breast density in mammography and background echotexture in ultrasound. Eur J Radiol 2011; 80(3): 719-23.
[165]
Chang JM, Han W, Moon HG, et al. Evaluation of tumor extent in breast cancer patients using real-time MR navigated ultrasound: preliminary study. Eur J Radiol 2012; 81(11): 3208-15.
[166]
Krammer J, Wasser K, Schnitzer A, Henzler T, Schoenberg SO, Kaiser CG. Axillary lymph node characterization in breast cancer patients using magnetic resonance mammography: A prospective comparative study with FDG PET-CT and healthy women. Eur J Radiol 2013; 82(12): 2194-8.
[167]
Aracava MM, Chojniak R, Souza JA, Bitencourt AG, Marques EF. Identification of occult breast lesions detected by magnetic resonance imaging with targeted ultrasound: a prospective study. Eur J Radiol 2014; 83(3): 516-9.
[168]
Pickles MD, Gibbs P, Hubbard A, Rahman A, Wieczorek J, Turnbull LW. Comparison of 3.0 T magnetic resonance imaging and X-ray mammography in the measurement of ductal carcinoma in situ: A comparison with histopathology. Eur J Radiol 2015; 84(4): 603-10.
[169]
Cho GY, Moy L, Kim SG, et al. Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous breast tissue. Eur J Radiol 2015; 84(10): 1888-93.
[170]
Telegrafo M, Rella L, Ianora AA, Angelelli G, Moschetta M. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions. Magn Reson Imaging 2015; 33(8): 951-5.
[171]
Saha S, Sirop S, Korant A, et al. Nodal positivity in breast cancer correlated with the number of lesions detected by magnetic resonance imaging versus mammogram. Am J Surg 2011; 201(3): 390-5.
[172]
Kim MY, Choi N, Yang JH, Yoo YB, Park KS. Background parenchymal enhancement on breast MRI and mammographic breast density: correlation with tumour characteristics. Clin Radiol 2015; 70(7): 706-10.
[173]
Biglia N, Bounous VE, Martincich L, et al. Role of MRI (magnetic resonance imaging) versus conventional imaging for breast cancer presurgical staging in young women or with dense breast. Eur J Surg Oncol 2011; 37(3): 199-204.
[174]
Leung TK, Huang PJ, Chen CS, Lin YH, Wu CH, Lee CM. Is breast MRI screening more effective than digital mammography in Asian women? J Exp Clin Med 2010; 2(5): 245-50.
[175]
Gómez CC, Romero JZ, de Miguel AG, de Agustín MC, Farrás MP, González JM. Is the performance of MRI in preoperative staging of breast cancer independent of clinical and histological factors? A subgroup analysis. Radiologia 2015; 57(3): 229-38.
[176]
Rahbar H, Conlin JL, Parsian S, et al. Suspicious axillary lymph nodes identified on clinical breast MRI in patients newly diagnosed with breast cancer: can quantitative features improve discrimination of malignant from benign? Acad Radiol 2015; 22(4): 430-8.
[177]
Alakhras M, Bourne R, Rickard M, Ng KH, Pietrzyk M, Brennan PC. Digital tomosynthesis: A new future for breast imaging? Clin Radiol 2013; 68(5): e225-36.
[178]
Baptista M, Di Maria S, Oliveira N, et al. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study. Radiat Phys Chem 2014; 104: 158-62.
[179]
Bliznakova K, Russo P, Mettivier G, et al. A software platform for phase contrast x-ray breast imaging research. Comput Biol Med 2015; 61: 62-74.
[180]
Palma G, Bloch I, Muller S. Detection of masses and architectural distortions in digital breast tomosynthesis images using fuzzy and a contrario approaches. Patt Recogn 2014; 47(7): 2467-80.
[181]
Park HS, Kim YS, Kim HJ, Choi JG, Choi YW. Optimization of the key imaging parameters for detection of microcalcifications in a newly developed digital breast tomosynthesis system. Clin Imaging 2013; 37(6): 993-9.
[182]
Mazurowski MA, Lo JY, Harrawood BP, Tourassi GD. Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis. J Biomed Inform 2011; 44(5): 815-23.
[183]
Park HS, Kim YS, Choi YW, Choi J, Rhee YC, Kim HJ. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system. Nucl Instru Meth Phys Rese Sect A: Accel Spectr Detect Assoc Equip 2014; 763: 163-9.
[184]
Szafraniec MB, Konstantinidis AC, Tromba G, et al. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor. Phys Med 2015; 31(2): 192-8.
[185]
Mansour S, Adel L, Mokhtar O, Omar OS. Comparative study between breast tomosynthesis and classic digital mammography in the evaluation of different breast lesions. Egypt J Radiol Nucl Med 2014; 45(3): 1053-61.
[186]
Refaat R, Matar MM. Digital breast tomosynthesis compared to digital mammography in a series of Egyptian women with pathologically proven breast cancer. Egypt J Radiol Nucl Med 2015; 46(4): 1241-8.
[187]
Thomassin-Naggara I, Perrot N, Dechoux S, Ribeiro C, Chopier J, De Bazelaire C. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience. Eur J Radiol 2015; 84(2): 235-41.
[188]
Mun HS, Kim HH, Shin HJ, et al. Assessment of extent of breast cancer: comparison between digital breast tomosynthesis and full-field digital mammography. Clin Radiol 2013; 68(12): 1254-9.
[189]
Morel JC, Iqbal A, Wasan RK, et al. The accuracy of digital breast tomosynthesis compared with coned compression magnification mammography in the assessment of abnormalities found on mammography. Clin Radiol 2014; 69(11): 1112-6.
[190]
Houssami N, Macaskill P, Bernardi D, et al. Breast screening using 2D-mammography or integrating digital breast tomosynthesis (3D-mammography) for single-reading or double-reading–evidence to guide future screening strategies. Eur J Cancer 2014; 50(10): 1799-807.
[191]
Bernardi D, Caumo F, Macaskill P, et al. Effect of integrating 3D-mammography (digital breast tomosynthesis) with 2D-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial. Eur J Cancer 2014; 50(7): 1232-8.
[192]
Caumo F, Bernardi D, Ciatto S, et al. Incremental effect from integrating 3D-mammography (tomosynthesis) with 2D-mammography: Increased breast cancer detection evident for screening centres in a population-based trial. Breast 2014; 23(1): 76-80.
[193]
Mercier J, Kwiatkowski F, Abrial C, et al. The role of tomosynthesis in breast cancer staging in 75 patients. Diagn Interv Imaging 2015; 96(1): 27-35.
[194]
Meyblum E, Gardavaud F, Dao TH, et al. Breast tomosynthesis: Dosimetry and image quality assessment on phantom. Diagn Interv Imaging 2015; 96(9): 931-9.
[195]
Di Maria S, Baptista M, Felix M, et al. Optimal photon energy comparison between digital breast tomosynthesis and mammography: A case study. Phys Med 2014; 30(4): 482-8.
[196]
Abdulghaffar W, Tag-Aldeen MM. Role of diffusion-weighted imaging (DWI) and Apparent Diffusion Coefficient (ADC) in differentiating between benign and malignant breast lesions. Egypt J Radiol Nucl Med 2013; 44(4): 945-51.
[197]
Mansour SM, Behairy N. Residual breast cancer or post operative changes: Can Diffusion-weighted magnetic resonance imaging solve the case? Egypt J Radiol Nucl Med 2015; 46(1): 225-34.
[198]
Al Rashidi N, Waiter G, Redpath T, Gilbert FJ. Assessment of the apparent diffusion coefficient (ADC) of normal breast tissue during the menstrual cycle at 3T using image segmentation. Eur J Radiol 2012; 81: S1-3.
[199]
Giannotti E, Waugh S, Priba L, Davis Z, Crowe E, Vinnicombe S. Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging. European journal of Radiol 2015; 84(9): 1729-36.
[200]
Partridge SC, Singer L, Sun R, et al. Diffusion-weighted MRI: Influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Magn Reson Imaging 2011; 29(9): 1215-21.
[201]
Sharma U, Sah RG, Parshad R, Sharma R, Seenu V, Jagannathan NR. Role of apparent diffusion coefficient values for the differentiation of viable and necrotic areas of breast cancer and its potential utility to guide voxel positioning for MRS in the absence of dynamic contrast-enhanced MRI data. Magn Reson Imaging 2012; 30(5): 649-55.
[202]
Costantini M, Belli PA, Rinaldi P, et al. Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 2010; 65(12): 1005-12.
[203]
Ramírez-Galván YA, Cardona-Huerta S, Ibarra-Fombona E, Elizondo-Riojas G. Apparent Diffusion Coefficient (ADC) value to evaluate BI-RADS 4 breast lesions: correlation with pathological findings. Clin Imaging 2015; 39(1): 51-5.
[204]
Moschetta M, Telegrafo M, Rella L, Ianora AA, Angelelli G. Effect of gadolinium injection on Diffusion-Weighted Imaging With Background Body Signal Suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging 2014; 32(10): 1242-6.
[205]
Granlund KL, Staroswiecki E, Alley MT, Daniel BL, Hargreaves BA. High-resolution, three-dimensional diffusion-weighted breast imaging using DESS. Magn Reson Imaging 2014; 32(4): 330-41.
[206]
Moschetta M, Telegrafo M, Rella L, Capolongo A, Ianora AA, Angelelli G. MR evaluation of breast lesions obtained by diffusion-weighted imaging with background body signal suppression (DWIBS) and correlations with histological findings. Magn Reson Imaging 2014; 32(6): 605-9.
[207]
Wahab MA, Kareem HA, Hassan EE. The utility of diffusion weighted MRI and apparent diffusion coefficient in characterization of breast masses. Egypt J Radiol Nucl Med 2015; 46(4): 1257-65.
[208]
Iacconi C, Thakur SB, Dershaw DD, Brooks J, Fry CW, Morris EA. Impact of fibroglandular tissue and background parenchymal enhancement on diffusion weighted imaging of breast lesions. Eur J Radiol 2014; 83(12): 2137-43.
[209]
Rinaldi P, Giuliani M, Belli P, et al. DWI in breast MRI: role of ADC value to determine diagnosis between recurrent tumor and surgical scar in operated patients. Eur J Radiol 2010; 75(2): e114-23.
[210]
Nogueira L, Brandão S, Matos E, et al. Improving malignancy prediction in breast lesions with the combination of apparent diffusion coefficient and dynamic contrast-enhanced kinetic descriptors. Clin Radiol 2015; 70(9): 1016-25.
[211]
Gouhar GK, Zidan ES. Diffusion-weighted imaging of breast tumors: Differentiation of benign and malignant tumors. Egypt J Radiol Nucl Med 2011; 42(1): 93-9.
[212]
Gouhar GK, El-Hariri MA, Lotfy WE. Malignant breast tumours: Correlation of apparent diffusion coefficient values using diffusion-weighted images and dynamic contrast-enhancement ratio with histologic grading. Egypt J Radiol Nucl Med 2011; 42(3-4): 451-60.
[213]
Moukhtar FZ, El Maati AA. Apparent diffusion coefficient values as an adjunct to dynamic contrast enhanced MRI for discriminating benign and malignant breast lesions presenting as mass and non-mass like enhancement. Egypt J Radiol Nucl Med 2014; 45(2): 597-604.
[214]
Hetta W. Role of diffusion weighted images combined with breast MRI in improving the detection and differentiation of breast lesions. Egypt J Radiol Nucl Med 2015; 46(1): 259-70.
[215]
El Bakry MA, Sultan AA, El-Tokhy NA, Yossif TF, Ali CA. Role of diffusion weighted imaging and dynamic contrast enhanced magnetic resonance imaging in breast tumors. Egypt J Radiol Nucl Med 2015; 46(3): 791-804.
[216]
Ibrahim YA, Habib L, Deif A. Role of quantitative diffusion weighted imaging in characterization of breast masses. Egypt J Radiol Nucl Med 2015; 46(3): 805-10.
[217]
Jena A, Taneja S, Mehta SB. Integrated quantitative DCE-MRI and DW-MRI to characterize breast lesions. Eur J Radiol 2012; 81: S64-5.
[218]
Liu C, Liang C, Liu Z, Zhang S, Huang B. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol 2013; 82(12): e782-9.
[219]
Merz M, Seyler L, Bretschi M, Semmler W, Bäuerle T. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases–A correlation study with histology. Eur J Radiol 2015; 84(4): 623-30.
[220]
Yoo H, Shin HJ, Baek S, et al. Diagnostic performance of apparent diffusion coefficient and quantitative kinetic parameters for predicting additional malignancy in patients with newly diagnosed breast cancer. Magn Reson Imaging 2014; 32(7): 867-74.
[221]
Kim EJ, Kim SH, Kang BJ, Choi BG, Song BJ, Choi JJ. Diagnostic value of breast MRI for predicting metastatic axillary lymph nodes in breast cancer patients: Diffusion-weighted MRI and conventional MRI. Magn Reson Imaging 2014; 32(10): 1230-6.
[222]
Tan SL, Rahmat K, Rozalli FI, et al. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol 2014; 69(1): 63-71.
[223]
Ouyang Z, Ouyang Y, Zhu M, et al. Diffusion-weighted imaging with fat suppression using short-tau inversion recovery: Clinical utility for diagnosis of breast lesions. Clin Radiol 2014; 69(8): e337-44.
[224]
Hassan HH, Zahran MH, Hassan HE, Abdel-Hamid AM, Fadaly GA. Diffusion magnetic resonance imaging of breast lesions: Initial experience at Alexandria University. Alex J Med 2013; 49(1): 265-72.
[225]
Kuroki-Suzuki S, Kuroki Y, Ishikawa T, Takeo H, Moriyama N. Diagnosis of breast cancer with multidetector computed tomography: Analysis of optimal delay time after contrast media injection. Clin Imaging 2010; 34(1): 14-9.
[226]
Pani S, Cook EJ, Horrocks JA, Jones JL, Speller RD. Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography. Appl Radi Isot 2010; 68(10): 1980-7.
[227]
Betancourt-Benitez R, Ning R, Conover DL, Liu S. Composite modulation transfer function evaluation of a cone beam computed tomography breast imaging system. Opt Eng 2009; 48(11): 117002.
[228]
Kuo HC, Giger ML, Reiser I, et al. Segmentation of breast masses on dedicated breast computed tomography and three-dimensional breast ultrasound images. J Med Imaging 2014; 1(1): 014501.
[229]
Kontson K, Jennings RJ. Characterization of scatter magnitude and distribution in dedicated breast computed tomography with bowtie filters. J Med Imaging 2014; 1(3): 033505.
[230]
O’Connell A, Conover DL, Zhang Y, et al. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality. Am J Roentgenol 2010; 195(2): 496-509.
[231]
Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MC. High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Europ Radiol 2012; 22(1): 1-8.
[232]
McKinley RL, Tornai MP, Tuttle LA, Steed D, Kuzmiak CM. Development and initial demonstration of a low-dose dedicated fully 3d breast CT system. In: International workshop on digital mammography 2012: Springer, Berlin, Heidelberg; pp. 442-49.
[233]
Prionas ND, Lindfors KK, Ray S, et al. Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 2010; 256(3): 714-23.
[234]
Hopp T, Duric N, Ruiter NV. Image fusion of ultrasound computer tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration. Comput Med Imaging Graph 2015; 40: 170-81.
[235]
Opieliński KJ, Pruchnicki P, Gudra T, et al. Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis. Comput Med Imaging Graph 2015; 46: 83-94.
[236]
Marino MA, Helbich TH, Blandino A, Pinker K. The role of positron emission tomography in breast cancer: A short review. Memo Mag Europ Med Oncol 2015; 8(2): 130-5.
[237]
Abo-Sheisha DM, Badawy ME. The diagnostic value of PET/CT in recurrence and distant metastasis in breast cancer patients and impact on disease free survival. Egypt J Radiol Nucl Med 2014; 45(4): 1317-24.
[238]
Emad-Eldin S, Abdelaziz O, Harth M, Hussein M, Nour-Eldin NE, Vogl TJ. The clinical utility of FDG-PET/CT in follow up and restaging of breast cancer patients. Egypt J Radiol Nucl Med 2013; 44(4): 937-43.
[239]
Dirisamer A, Halpern BS, Flöry D, et al. Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 2010; 73(2): 294-9.
[240]
Grassetto G, Fornasiero A, Otello D, et al. 18F-FDG-PET/CT in patients with breast cancer and rising Ca 15-3 with negative conventional imaging: a multicentre study. Eur J Radiol 2011; 80(3): 828-33.
[241]
Piccardo A, Altrinetti V, Bacigalupo L, et al. Detection of metastatic bone lesions in breast cancer patients: Fused 18F-Fluoride-PET/MDCT has higher accuracy than MDCT. Preliminary experience. Eur J Radiol 2012; 81(10): 2632-8.
[242]
Koolen BB, Elshof LE, Loo CE, et al. Does the pretreatment tumor sampling location correspond with metabolic activity on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy? Eur J Radiol 2013; 82(12): 2353-8.
[243]
Groheux D, Hindié E, Marty M, et al. 18F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer. Eur J Radiol 2014; 83(10): 1925-33.
[244]
Yang Z, Sun Y, Zhang Y, et al. Can Fluorine-18 fluoroestradiol positron emission tomography–computed tomography demonstrate the heterogeneity of breast cancer in vivo? Clin Breast Cancer 2013; 13(5): 359-63.
[245]
Vidal-Sicart S, Aukema TS, Vogel WV, Hoefnagel CA, Valdés-Olmos RA. Added value of prone position technique for PET-TAC in breast cancer patients. Rev Españ De Med Nucl 2010; 29(5): 230-5.
[246]
Canevari C, Gallivanone F, Zuber V, et al. Prone 18F-FDG PET/CT changes diagnostic and surgical intervention in a breast cancer patient: some considerations about PET/CT imaging acquisition protocol. Clinic Imaging 2015; 39(3): 506-9.
[247]
Ohara M, Shigematsu H, Tsutani Y, et al. Role of FDG-PET/CT in evaluating surgical outcomes of operable breast cancer–usefulness for malignant grade of triple-negative breast cancer. Breast 2013; 22(5): 958-63.
[248]
Santos J, Chaudhari AJ, Joshi AA, et al. Non-rigid registration of serial dedicated breast CT, longitudinal dedicated breast CT and PET/CT images using the diffeomorphic demons method. Phys Med 2014; 30(6): 713-7.
[249]
Mghanga FP, Lan X, Bakari KH, Li C, Zhang Y. Fluorine-18 fluorodeoxyglucose positron emission tomography–computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: A meta–analysis. Clin Breast Cancer 2013; 13(4): 271-9.
[250]
Minamimoto R, Senda M, Jinnouchi S, Terauchi T, Yoshida T, Inoue T. Detection of breast cancer in an FDG-PET cancer screening program: results of a nationwide Japanese survey. Clin Breast Cancer 2015; 15(2): e139-46.
[251]
Vicente AG, Castrejón ÁS, Mora MC, et al. Dual time point 2-deoxy-2-[18F] fluoro-D-glucose PET/CT: nodal staging in locally advanced breast cancer. Rev Español Med Nucl Imag Molecul 2014; 33(1): 1-5.
[252]
Srinivas SM, Greene LR, Currie GM, et al. A dedicated breast positron emission tomography scanner: Proof of concept. J Med Imaging Radiat Sci 2014; 45(4): 435-9.
[253]
MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med 2009; 50(10): 1666.
[254]
Eo JS, Chun IK, Paeng JC, et al. Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast 2012; 21(1): 66-71.
[255]
Springer A, Mawlawi OR. Evaluation of the quantitative accuracy of a commercially available positron emission mammography scanner. Med Phys 2011; 38(4): 2132-9.
[256]
Berg WA, Madsen KS, Schilling K, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol 2012; 198(1): 219-32.
[257]
Ratib O, Beyer T. Whole-body hybrid PET/MRI: Ready for clinical use? Eur J Nucl Med Mol Imaging 2011; 38(6): 992-5.
[258]
Drzezga A, Souvatzoglou M, Eiber M, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53(6): 845.
[259]
Taneja S, Jena A, Goel R, Sarin R, Kaul S. Simultaneous whole-body 18F-FDG PET-MRI in primary staging of breast cancer: A pilot study. Eur J Radiol 2014; 83(12): 2231-9.
[260]
Hwang SO, Lee SW, Kim HJ, Kim WW, Park HY, Jung JH. The comparative study of ultrasonography, contrast-enhanced MRI, and 18F-FDG PET/CT for detecting axillary lymph node metastasis in T1 breast cancer. J Breast Cancer 2013; 16(3): 315-21.
[261]
Pace L, Nicolai E, Luongo A, et al. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 2014; 83(2): 289-96.
[262]
Bitencourt AG, Lima EN, Chojniak R, et al. Can 18F-FDG PET improve the evaluation of suspicious breast lesions on MRI? Eur J Radiol 2014; 83(8): 1381-6.
[263]
An YS, Kang DK, Jung YS, Han S, Kim TH. Tumor metabolism and perfusion ratio assessed by 18F-FDG PET/CT and DCE-MRI in breast cancer patients: correlation with tumor subtype and histologic prognostic factors. Eur J Radiol 2015; 84(7): 1365-70.
[264]
Pires AO, Borges US, Lopes-Costa PV, Gebrim LH, da Silva BB. Evaluation of bone metastases from breast cancer by bone scintigraphy and positron emission tomography/computed tomography imaging. Eur J Obstet Gynecol Reprod Biol 2014; 180: 138-41.
[265]
Aukema TS, Rutgers ET, Vogel WV, et al. The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol 2010; 36(4): 387-92.
[266]
Garami Z, Hascsi Z, Varga J, et al. The value of 18-FDG PET/CT in early-stage breast cancer compared to traditional diagnostic modalities with an emphasis on changes in disease stage designation and treatment plan. Eur J Surg Oncol 2012; 38(1): 31-7.
[267]
Machida Y, Kubota K, Katayama T, Toriihara A, Shibuya H. Diagnostic performance of fluorodeoxyglucose-positron emission tomography/computed tomography combined with ultrasonography-guided fine needle aspiration cytology for identifying axillary lymph node status in patients with breast cancer. Eur J Surg Oncol 2013; 39(1): 26-30.
[268]
Goddi A, Bonardi M, Alessi S. Breast elastography: A literature review. J Ultrason 2012; 15(3): 192-8.
[269]
Sayed A, Layne G, Abraham J, Mukdadi O. Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo. Ultras 2013; 53(5): 979-91.
[270]
Shaaban MA, Aly AE. Real-time ultrasound elastography: Does it improve B-mode ultrasound characterization of solid breast lesions? Egypt J Radiol Nucl Med 2012; 43(2): 301-9.
[271]
Mousa AE, Aboelatta M, Zalata K. Combined sonoelastographic scoring and strain ratio in evaluation of breast masses. Egypt J Radiol Nucl Med 2012; 43(4): 647-56.
[272]
Mohamed RE, Abo-Dewan KA. Incremental value of real-time ultrasound elastography in differentiating breast masses. Egyptian J Radiol Nucl Med 2014; 45(2): 605-18.
[273]
Moukhtar FZ, ElMaati AA. Real-time tissue elastography combined with BIRADS-US classification system for improving breast lesion evaluation. Egypt J Radiol Nucl Med 2014; 45(3): 1021-8.
[274]
Elkharbotly A, Farouk HM. Ultrasound elastography improves differentiation between benign and malignant breast lumps using B-mode ultrasound and color Doppler. Egypt J Radiol Nucl Med 2015; 46(4): 1231-9.
[275]
Zhi H, Xiao XY, Ou B, et al. Could ultrasonic elastography help the diagnosis of small (≤ 2 cm) breast cancer with the usage of sonographic BI-RADS classification? Eur J Radiol 2012; 81(11): 3216-21.
[276]
Schaefer FK, Heer I, Schaefer PJ, et al. Breast ultrasound elastography-results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 2011; 77(3): 450-6.
[277]
Mansour SM, Omar OS. Elastography ultrasound and questionable breast lesions: Does it count? Eur J Radiol 2012; 81(11): 3234-44.
[278]
Zhi H, Ou B, Xiao XY, et al. Ultrasound elastography of breast lesions in Chinese women: a multicenter study in China. Clin Breast Cancer 2013; 13(5): 392-400.
[279]
Demay ML, Monghal C, Bertrand P, Vildé A, Brunereau L. An assessment of the performance of elastography for the investigation of BI-RADS 4 and BI-RADS 5 breast lesions: Correlations with pathological anatomy findings. Diagn Interv Imaging 2012; 93(10): 757-66.
[280]
Sayed A, Layne G, Abraham J, Mukdadi OM. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo. Ultrasound Med Biol 2014; 40(7): 1490-502.
[281]
Farrokh A, Wojcinski S, Degenhardt F. Evaluation of real-time tissue sono-elastography in the assessment of 214 breast lesions: limitations of this method resulting from different histologic subtypes, tumor size and tumor localization. Ultrasound Med Biol 2013; 39(12): 2264-71.
[282]
Qiu W, Wang C, Li Y, et al. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography. UltrasonicA 2015; 62: 89-96.
[283]
Awad FM. Role of supersonic shear wave imaging quantitative elastography (SSI) in differentiating benign and malignant solid breast masses. Egypt J Radiol Nucl Med 2013; 44(3): 681-5.
[284]
Kim H, Youk JH, Gweon HM, Kim JA, Son EJ. Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses. Eur J Radiol 2013; 82(8): e326-31.
[285]
Gweon HM, Youk JH, Son EJ, Kim JA. Clinical application of qualitative assessment for breast masses in shear-wave elastography. Eur J Radiol 2013; 82(11): e680-5.
[286]
Yoon JH, Ko KH, Jung HK, Lee JT. Qualitative pattern classification of shear wave elastography for breast masses: How it correlates to quantitative measurements. Eur J Radiol 2013; 82(12): 2199-204.
[287]
Ganau S, Andreu FJ, Escribano F, et al. Shear-wave elastography and immunohistochemical profiles in invasive breast cancer: evaluation of maximum and mean elasticity values. Eur J Radiol 2015; 84(4): 617-22.
[288]
Lee BE, Chung J, Cha ES, Lee JE, Kim JH. Role of shear-wave elastography (SWE) in complex cystic and solid breast lesions in comparison with conventional ultrasound. Eur J Radiol 2015; 84(7): 1236-41.
[289]
Park J, Woo OH, Shin HS, Cho KR, Seo BK, Kang EY. Diagnostic performance and color overlay pattern in shear wave elastography (SWE) for palpable breast mass. Eur J Radiol 2015; 84(10): 1943-8.
[290]
Mullen R, Thompson JM, Moussa O, Vinnicombe S, Evans A. Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers. Clin Radiol 2014; 69(12): 1259-63.
[291]
Sim YT, Vinnicombe S, Whelehan P, Thomson K, Evans A. Value of shear-wave elastography in the diagnosis of symptomatic invasive lobular breast cancer. Clin Radiol 2015; 70(6): 604-9.
[292]
Park HY, Han KH, Yoon JH, Moon HJ, Kim MJ, Kim EK. Intra-observer reproducibility and diagnostic performance of breast shear-wave elastography in Asian women. Ultrasound Med Biol 2014; 40(6): 1058-64.
[293]
Choi WJ, Kim HH, Cha JHS, et al. Predicting prognostic factors of breast cancer using shear wave elastography. Ultrasound Med Biol 2014; 40(2): 269-74.
[294]
Au FW, Ghai S, Lu FI, Moshonov H, Crystal P. Quantitative shear wave elastography: correlation with prognostic histologic features and immunohistochemical biomarkers of breast cancer. Acad Radiol 2015; 22(3): 269-77.
[295]
Feldmann A, Langlois C, Dewailly M, et al. Shear wave elastography (SWE): An analysis of breast lesion characterization in 83 breast lesions. Ultrasound Med Biol 2015; 41(10): 2594-604.
[296]
Tozaki M, Isobe S, Fukuma E. Preliminary study of ultrasonographic tissue quantification of the breast using the Acoustic Radiation Force Impulse (ARFI) technology. Eur J Radiol 2011; 80(2): e182-7.
[297]
Ianculescu V, Ciolovan LM, Dunant A, et al. Added value of Virtual Touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol 2014; 83(5): 773-7.
[298]
Jin ZQ, Li XR, Zhou HL, et al. Acoustic radiation force impulse elastography of breast imaging reporting and data system category 4 breast lesions. Clin Breast Cancer 2012; 12(6): 420-7.
[299]
Golatta M, Schweitzer-Martin M, Harcos A, et al. Normal breast tissue stiffness measured by a new ultrasound technique: Virtual touch tissue imaging quantification (VTIQ). Eur J Radiol 2013; 82(11): e676-9.
[300]
Wang W, Hu D, Wang J, Zou W. Strain estimation by a Fourier Series-based extrema tracking algorithm for elastography. Ultrasonics 2015; 62: 278-91.
[301]
Kibria MG, Hasan MK. A class of kernel based real-time elastography algorithms. Ultrasonics 2015; 61: 88-102.
[302]
Landoni V, Francione V, Marzi S, et al. Quantitative analysis of elastography images in the detection of breast cancer. Eur J Radiol 2012; 81(7): 1527-31.
[303]
Moon WK, Chang SC, Huang CS, Chang RF. Breast tumor classification using fuzzy clustering for breast elastography. Ultrasound Med Biol 2011; 37(5): 700-8.
[304]
Zhang Q, Xiao Y, Chen S, Wang C, Zheng H. Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification. Ultrasound Med Biol 2015; 41(2): 588-600.
[305]
Lo CM, Chang YC, Yang YW, Huang CS, Chang RF. Quantitative breast mass classification based on the integration of B-mode features and strain features in elastography. Comput Biol Med 2015; 64: 91-100.
[306]
Zhang X, Xiao Y, Zeng J, et al. Computer-assisted assessment of ultrasound real-time elastography: Initial experience in 145 breast lesions. Eur J Radiol 2014; 83(1): e1-7.
[307]
Han Y, Kim DW, Kwon HJ. Application of digital image cross-correlation and smoothing function to the diagnosis of breast cancer. J Mech Behav Biomed Mater 2012; 14: 7-18.
[308]
ElSaid NA, Mohamed HG. Sonoelastography versus dynamic magnetic resonance imaging in evaluating BI-RADS III and IV breast masses. Egypt J Radiol Nucl Med 2012; 43(2): 293-300.
[309]
Leong LC, Sim LS, Lee YS, et al. A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin Radiol 2010; 65(11): 887-94.
[310]
Taylor K, O’Keeffe S, Britton PD, et al. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: a pilot study. Clin Radiol 2011; 66(11): 1064-71.
[311]
Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultras Med Bol 2014; 40(10): 2336-44.
[312]
Lee JH, Kim SH, Kang BJ, et al. Role and clinical usefulness of elastography in small breast masses. Acad Radiol 2011; 18(1): 74-80.
[313]
Engelken FJ, Sack I, Klatt D, et al. Evaluation of tomosynthesis elastography in a breast-mimicking phantom. Eur J Radiol 2012; 81(9): 2169-73.
[314]
Fernández-Cuevas I, Marins JC, et al. Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys Technol 2015; 71: 28-55.
[315]
Amri A, Saidane A, Pulko S. Thermal analysis of a three-dimensional breast model with embedded tumour using the transmission Line Matrix (TLM) method. Comput Biol Med 2011; 41(2): 76-86.
[316]
EtehadTavakol M. Ng EY, Lucas C, Sadri S, Ataei M. Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Phys Technol 2012; 55(4): 345-52.
[317]
Bezerra LA, Oliveira MM, Rolim TL, et al. Estimation of breast tumor thermal properties using infrared images. Signal Processing 2013; 93(10): 2851-63.
[318]
Araújo MC, Lima RC, De Souza RM. Interval symbolic feature extraction for thermography breast cancer detection. Exp Sys Appli 2014; 41(15): 6728-37.
[319]
EtehadTavakol M. Chandran V, Ng EY, Kafieh R. Breast cancer detection from thermal images using bispectral invariant features. Int J Therm Sci 2013; 69: 21-36.
[320]
Etehadtavakol M, Ng EY, Chandran V, Rabbani H. Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms. Infrared Phys Technol 2013; 61: 274-86.
[321]
Francis SV, Sasikala M, Bharathi GB, Jaipurkar SD. Breast cancer detection in rotational thermography images using texture features. Infrared Phys Technol 2014; 67: 490-6.
[322]
Mahmoudzadeh E, Montazeri MA, Zekri M, Sadri S. Extended hidden Markov model for optimized segmentation of breast thermography images. Infrared Phys Technol 2015; 72: 19-28.
[323]
Levy A, Dayan A, Ben-David M, Gannot I. A new thermography-based approach to early detection of cancer utilizing magnetic nanoparticles theory simulation and in vitro validation. Nanomedicine: Nanotechnology. Biol Med 2010; 6(6): 786-96.
[324]
Krawczyk B, Schaefer G. A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl Soft Comput 2014; 20: 112-8.
[325]
Suganthi SS, Ramakrishnan S. Anisotropic diffusion filter based edge enhancement for segmentation of breast thermogram using level sets. Biomed Signal Process Control 2014; 10: 128-36.
[326]
Raja NS, Sukanya SA, Nikita Y. Improved PSO based multi-level thresholding for cancer infected breast thermal images using Otsu. Procedia Comput Sci 2015; 48: 524-9.
[327]
Nicandro CR, Efrén MM, María Yaneli AA, et al. Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers. Comp Math Meth Med 2013; 2013.
[328]
Sella T, Sklair-Levy M, Cohen M, et al. A novel functional infrared imaging system coupled with multiparametric computerised analysis for risk assessment of breast cancer. Eur Radiol 2013; 23(5): 1191-8.
[329]
Boquete L, Ortega S, Miguel-Jiménez JM, Rodríguez-Ascariz JM, Blanco R. Automated detection of breast cancer in thermal infrared images, based on independent component analysis. J Med Syst 2012; 36(1): 103-11.
[330]
Acharya UR, Ng EY, Tan JH, Sree SV. Thermography based breast cancer detection using texture features and support vector machine. J Med Syst 2012; 36(3): 1503-10.
[331]
Villalobos-Montiel AJ, Chacon-Murguia MI, Calderon-Contreras JD, Ortega-Maynez L. Automatic segmentation of regions of interest in breast thermographic images. In: Mexican conference on pattern recognition Springer, Cham 2015; pp. 135-44.
[332]
Srinivasan SS, Swaminathan R. Segmentation of breast tissues in infrared images using modified phase based level sets.In: Biomedical informatics and technology. Springer Berlin, Heidelberg 2014; pp. 161-74.
[333]
Mookiah MR, Acharya UR, Ng EY. Data mining technique for breast cancer detection in thermograms using hybrid feature extraction strategy Quant nfra Therm J 2012; 9(2): 151-65.
[334]
Kontos M, Wilson R, Fentiman I. Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers. Clin Radiol 2011; 66(6): 536-9.
[335]
Wishart GC, Campisi M, Boswell M, et al. The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surg Oncol 2010; 36(6): 535-40.
[336]
Rassiwala M, Mathur P, Mathur R, et al. Evaluation of digital infra–red thermal imaging as an adjunctive screening method for breast carcinoma: A pilot study. Int J Surg 2014; 12(12): 1439-43.
[337]
Kolarić D, Herceg Ž, Nola IA, et al. Thermography–a feasible method for screening breast cancer? Coll Antropol 2013; 37(2): 583-8.
[338]
Morales ÁR, Martínez ÁH, Soto MC, et al. Improvement achieved in the optical quality of thermography by using a contrast medium to early diagnosis non-invasive of breast pathologies. Int J Mech Eng Autom 2015; 2(3): 150-8.
[339]
Wilson RA, Zavislan JM, Schiffhauer LM. Optical segmentation of unprocessed breast tissue for margin assessment. Breast 2014; 23(4): 413-22.
[340]
Zhu Q, Xiao M, You S, et al. Ultrasound-guided Diffuse Optical Tomography (DOT) of invasive breast carcinoma: Does tumour total haemoglobin concentration contribute to the prediction of axillary lymph node status? Eur J Radiol 2012; 81(11): 3185-9.
[341]
Falou O, Soliman H, Sadeghi-Naini A, et al. Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy. Transl Oncol 2012; 5(4): 238-46.
[342]
Ardeshirpour Y, Zhu Q. Optical tomography method that accounts for tilted chest wall in breast imaging. J Biomed Opt 2010; 15(4): 041515.
[343]
Taroni P, Pifferi A, Quarto G, et al. Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy. J Biomed Opt 15(6): 060501.
[344]
Bhattacharjee S, Jose I. Early detection of breast cancer: A molecular optical imaging approach using novel estrogen conjugate fluorescent dye. In: optical tomography and spectroscopy of tissue. Inter Soc Opt Phot 2011; 7896: 78961F.
[345]
Anderson PG, Sassaroli A, Kainerstorfer JM, Krishnamurthy N, Fantini S. Broadband optical mammography: Breast tissue thickness compensation algorithm. Inter Soc Opt Phot 2015; 9319: 93190L.
[346]
Kwong J, Nouizi F, Li Y, Chen J-H, Su M-Y, Gulsen G. Simulation of optical breast density measurements using structured light illumination. Proceedings of the SPIE 2014. California, Irvine, US. 893717-.
[347]
Flexman ML, Kim HK, Gunther JE, et al. Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography. J Biomed Opt 2013; 18(9): 096012.
[348]
Xu Y, Zhu Q. Estimation and imaging of breast lesions using a two-layer tissue structure by ultrasound-guided optical tomography. J Biomed Opt 2015; 20(6): 066002.
[349]
Cheng L, Li J, Liu M, Wang S, Jiang HC, Yang DQ. Comparison of Dynamic Optical Breast Imaging (DOBI) and mammography in sensitivity, specificity and safety of breast cancer diagnosis: A prospective analysis of 62 patients in two centers. Beijing da xue xue bao. Yi xue ban. J Peking Uni Health Sci 2011; 43(3): 467-71.
[350]
Sajjadi AY, Wanyo CM, Fang Q, Boas DA, Isakoff SJ, Carp SA. Dynamic optical breast imaging for neoadjuvant therapy monitoring. In: Optical tomography and spectroscopy of tissue x. Inter Soc Opt Phot. 2013; 8578: 85780I
[351]
D'Aiuto M, Frasci G, Barretta ML, et al. The dynamic optical breast imaging in the preoperative workflow of women with suspicious or malignant breast lesions: development of a new comprehensive score ISRN Oncology 2012; 2012.
[352]
Alzimami KS, Sassi SA, Alfuraih AA, Spyrou NM. Investigation of the potential use of LaBr3: Ce scintillators for scintimammography imaging. Nucl Inst Meth Phys Res Sect A: Accel Spectr Detect Assoc Equip 2011; 633: S282-5.
[353]
Uche CZ, Round WH, Cree MJ. Evaluation of two Compton camera models for scintimammography. Nucl Inst Meth Phys Res Sect A: Accel Spectr Detect Assoc Equip 2012; 662(1): 55-60.
[354]
Dickerscheid D, Lavalaye J, Romijn L, Habraken J. Contrast-noise-ratio (CNR) analysis and optimisation of breast-specific gamma imaging (BSGI) acquisition protocols. EJNMMI Res 2013; 3(1): 21.
[355]
Weigert JM, Bertrand ML, Lanzkowsky L, Stern LH, Kieper DA. Results of a multicenter patient registry to determine the clinical impact of breast-specific gamma imaging, a molecular breast imaging technique. Am J Roentgenol 2012; 198(1): W69-75.
[356]
Park KS, Chung HW, Yoo YB, Yang JH, Choi N, So Y. Complementary role of semiquantitative analysis of breast-specific gamma imaging in the diagnosis of breast cancer. Am J Roentgenol 2014; 202(3): 690-5.
[357]
Rechtman LR, Lenihan MJ, Lieberman JH, et al. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. Am J Roentgenol 2014; 202(2): 293-8.
[358]
Tadwalkar RV, Rapelyea JA, Torrente J, et al. Breast-specific gamma imaging as an adjunct modality for the diagnosis of invasive breast cancer with correlation to tumour size and grade. Br J Radiol 2012; 85(1014): e212-6.
[359]
Johnson N, Sorenson L, Bennetts L, et al. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am J Surg 2014; 207(5): 698-701.
[360]
Kim MY, Choi N, Ko SM, Chung HW. Background uptake of breast-specific gamma imaging: Correlation with mammographic breast density and background enhancement of breast MRI. Clin Imaging 2014; 38(3): 255-8.
[361]
Meissnitzer T, Seymer A, Keinrath P, et al. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. The Br J Radiol 2015; 88(1051): 20150147.
[362]
Park JY, Yi SY, Park HJ, et al. Breast-specific gamma imaging: correlations with mammographic and clinicopathologic characteristics of breast cancer. AJR Am J Roentgenol 2014; 203(1): 223-8.
[363]
Kim BS. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: a comparative study with MRI. Ann Nucl Med 2012; 26(2): 131-7.
[364]
Kim BS, Moon BI, Cha ES. A comparative study of breast-specific gamma imaging with the conventional imaging modality in breast cancer patients with dense breasts. Ann Nucl Med 2012; 26(10): 823-9.
[365]
Keto JL, Kirstein L, Sanchez DP, et al. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial. Ann Surg Oncol 2012; 19(1): 249-52.
[366]
Gong Z, Williams MB. Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms. Med Phys 2015; 42(7): 4250-9.
[367]
Tan H, Jiang L, Gu Y, et al. Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med 2014; 28(1): 17-24.
[368]
Park JS, Lee AY, Jung KP, Choi SJ, Lee SM. kyun Bae S. Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: Usefulness of dual-phase imaging with 99m Tc-sestamibi. Nucl Med Mol Imaging 2013; 47(1): 18-26.
[369]
Sergieva S, Alexandrova E, Baitchev G, Parvanova V. SPECT-CT in breast cancer. Arch Oncol 2012; 20(3-4): 127-31.
[370]
Mann SD, Perez KL, McCracken EK, Shah JP, Wong TZ, Tornai MP. Initial in vivo quantification of Tc-99m sestamibi uptake as a function of tissue type in healthy breasts using dedicated breast SPECT-CT. J Oncol 2012; 2012.
[371]
Tomiguchi M, Yamamoto-Ibusuki M, Yamamoto Y, et al. Prediction of sentinel lymph node status using Single-Photon Emission Computed Tomography (SPECT)/Computed Tomography (CT) imaging of breast cancer. Surg Today 2016; 46(2): 214-23.
[372]
Vercellino L, Ohnona J, Groheux D, et al. Role of SPECT/CT in sentinel lymph node detection in patients with breast cancer. Clin Nucl Med 2014; 39(5): 431-6.
[373]
Coffey JP, Hill JC. Breast sentinel node imaging with low-dose SPECT/CT. Nucl Med Commun 2010; 31(2): 107-11.
[374]
Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging 2010; 37(8): 1452-61.
[375]
Ibusuki M, Yamamoto Y, Kawasoe T, et al. Potential advantage of preoperative three-dimensional mapping of sentinel nodes in breast cancer by a hybrid Single Photon Emission CT (SPECT)/CT system. Surg Oncol 2010; 19(2): 88-94.
[376]
Conceição AL, Antoniassi M, Geraldelli W, Poletti ME. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and Small Angle X-Ray Scattering (SAXS). Radiat Phys Chem 2014; 95: 313-6.
[377]
Li J, Sun Y. Image reconstruction algorithm for diffraction enhanced imaging-based computed tomography. Opt Commun 2012; 285(12): 2972-5.
[378]
Faulconer LS, Parham CA, Connor DM, et al. Effect of breast compression on lesion characteristic visibility with diffraction-enhanced imaging. Acad Radiol 2010; 17(4): 433-40.
[379]
Bravin A, Keyriläinen J, Fernández M, et al. High-resolution CT by diffraction-enhanced X-ray imaging: Mapping of breast tissue samples and comparison with their histo-pathology. Phys Med Biol 2009; 52(8): 2197.
[380]
Kao T, Connor D, Dilmanian FA, et al. Characterization of diffraction-enhanced imaging contrast in breast cancer. Phys Med Biol 2009; 54(10): 3247.
[381]
Faulconer L, Parham C, Connor DM, et al. Radiologist evaluation of an x-ray tube-based diffraction-enhanced imaging prototype using full-thickness breast specimens. Acad Radiol 2009; 16(11): 1329-37.
[382]
Raneta O, Ondruš D, Bella V. Utilisation of electrical impedance tomography in breast cancer diagnosis. Klin Onkol 2012; 25(1): 36-41.
[383]
Zain NM, Chelliah KK. Breast imaging using electrical impedance tomography: correlation of quantitative assessment with visual interpretation As Pacif J Canc Prevent 2014; 15(3): 1327-31.
[384]
Hong S, Lee K, Ha U, et al. A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE J Sol-St Circ 2015; 50(1): 245-57.
[385]
Zhang X, Chatwin C, Barber DC. A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom. Physiol Meas 2015; 36(6): 1311.
[386]
Balasundaram G, Ho CJ, Li K, et al. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer. Int J Nanomedicine 2015; 10: 387.
[387]
Antoniassi M, Conceição AL, Poletti ME. Rayleigh to Compton ratio scatter tomography applied to breast cancer diagnosis: A preliminary computational study. Radiat Phys Chem 2014; 95: 288-91.
[388]
Xu M, Thulasiraman P, Noghanian S. Microwave tomography for breast cancer detection on cell broadband engine processors. J Parallel Distrib Comput 2012; 72(9): 1106-16.
[389]
Sadleir RJ, Sajib SZ, Kim HJ, Kwon OI, Woo EJ. Simulations and phantom evaluations of Magnetic Resonance Electrical Impedance Tomography (MREIT) for breast cancer detection. J Magn Reson 2013; 230: 40-9.
[390]
Xu X, Gifford-Hollingsworth C, Sensenig R, Shih WH, Shih WY, Brooks AD. Breast tumor detection using piezoelectric fingers: First clinical report. J Am Coll Surg 2013; 216(6): 1168-73.
[391]
Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska J, Kordek R. The label-free Raman imaging of human breast cancer. J Mol Liq 2011; 164(1-2): 123-31.
[392]
Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R. Raman ‘optical biopsy’of human breast cancer. Prog Biophys Mol Biol 2012; 108(1-2): 74-81.
[393]
Marro M, Nieva C, Sanz-Pamplona R, Sierra A. Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy. Bioch Biophys Acta (BBA)-. Mol Cell Res 2014; 1843(9): 1785-95.
[394]
James VJ. A place for fiber diffraction in the detection of breast cancer? Cancer Detect Prev 2006; 30(3): 233-8.
[395]
Corino GL, French PW. Diagnosis of breast cancer by X‐ray diffraction of hair. Int J Cancer 2008; 122(4): 847-56.
[396]
Phillips M, Cataneo RN, Ditkoff BA, et al. Volatile markers of breast cancer in the breath. Breast J 2003; 9(3): 184-91.
[397]
McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early-and late-stage lung and breast cancers. Integr Cancer Ther 2006; 5(1): 30-9.
[398]
Gordon RT, Schatz CB, Myers LJ, et al. The use of canines in the detection of human cancers. J Altern Complement Med 2008; 14(1): 61-7.
[399]
Lin H, Weizhi Q, Jinyu X, et al. Thermoacoustic tomography: A novel method for early breast tumor detection. X-Acoust. Imaging Sens 2015; 1: 36-47.
[400]
Yngvesson SK, Peter BS, Siqueira P, et al. Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination. International society for optics and photonics. In: Optic Interact Tiss Cell XXIII 2012; 8221: 82210N.
[401]
Babaie G, Abolbashari M, Farahi F. Dynamics range enhancement in digital fringe projection technique. Precis Eng 2015; 39: 243-51.
[402]
Genovese K, Montes A, Martínez A, Evans SL. Full-surface deformation measurement of anisotropic tissues under indentation. Med Eng Phys 2015; 37(5): 484-93.
[403]
Liu P, Zhang S, Xu R. 3D topography of biologic tissue by multiview imaging and structured light illumination. International society for optics and photonics. In: Advanced biomedical and clinical diagnostic systems XII 2014; 8935: 89350H.
[404]
Jiang C, Jia S, Xu Y, Bao Q, Dong J, Lian Q. The application of multi-frequency fringe projection profilometry on the measurement of biological tissues. Biomed Mater Eng 2015; 26(s1): S395-403.
[405]
Ahn B, Kim J. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations. Med Image Anal 2010; 14(2): 138-48.
[406]
Martinez-Torres C, Berguiga L, Streppa L, et al. Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis. J Biomed Opt 2014; 19(3): 036007.
[407]
Genovese K, Humphrey JD. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch. J Biomed Opt 2015; 20(4): 046005.
[408]
Artopoulos A, Buytaert JA, Dirckx JJ, Coward TJ. Comparison of the accuracy of digital stereophotogrammetry and projection moire profilometry for three-dimensional imaging of the face. Int J Oral Maxillofac Surg 2014; 43(5): 654-62.
[409]
Avilaq AJ, Rezaie AH. Accuracy enhancement of 3D face reconstruction using undecimated wavelet transform. J Am Sci 2013; 9: 28-34.
[410]
Harding K, Abramovich G, Paruchura V, Manickam S, Vemury A. 3D imaging system for biometric applications. In: Threedimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV. Inter Soc Opt Phot 2010; 7690: 76900J.
[411]
Chen X, Sun J, Xi J, Xiong Y, Qiu J, Gu X. Development of a 3D optical measurement system based on fringe projection for facial prosthesis.In: Instrumentation and Measurement Technology Conference (I2MTC). 2011; IEEE: pp. 1-5.
[412]
Ouji K, Ardabilian M, Chen L, Ghorbel F. 3D deformable super-resolution for multi-camera 3D face scanning. J Math Imaging Vis 2013; 47(1-2): 124-37.
[413]
Bae YJ, Ha BW, Park JA, Cho CS. 3-D reconstruction of human face using the derivative moiré topography. J Opt Soc Korea 2014; 18(5): 500-6.
[414]
Luebberding S, Krueger N, Kerscher M. Quantification of age-related facial wrinkles in men and women using a three-dimensional fringe projection method and validated assessment scales. Dermatol Surg 2014; 40(1): 22-32.
[415]
Luebberding S, Krueger N, Kerscher M. Comparison of validated assessment scales and 3D digital fringe projection method to assess lifetime development of wrinkles in men. Skin Res Technol 2014; 20(1): 30-6.
[416]
Villafuerte-Nuñez AE, Téllez-Anguiano AC, Hernández-Díaz O, Rodríguez-Vera R, Gutiérrez-Gnecchi JA, Salazar-Martínez JL. Facial edema evaluation using digital image processing. Dis Dynam Nat Soc 2013.
[417]
Huang S, Zhang Z, Zhao Y, et al. 3D fingerprint imaging system based on full-field fringe projection profilometry. Opt Eng 2014; 52: 123-30.
[418]
Feng H, Wang Z, Kuang D, Zhang Z, Zhang S. 3D hand and palmprint acquisition using full-field composite color fringe projection. In: International symposium on photoelectronic detection and imaging: Advances in imaging detectors and applications 2011 international society for optics and photonics 2011; Vol. 8194: pp. 819426.
[419]
Olesen OV, Wilm J, Paulsen RR, Højgaard L, Larsen R. DLP technology application: 3D head tracking and motion correction in medical brain imaging. In: Emerging digital micromirror device based systems and applications VI 2014, Vol. 8979; pp. 897904.
[420]
Kokaj J, Marafi M. Deformation measurement of a human back using Moirإ technique Kuw J Sci 2014; 41(1).
[421]
Ares M, Royo S, Vidal J, et al. 3D scanning system for in-vivo imaging of human body. In: Fringe: Springer, Berlin, Heidelberg; pp. 899-902.
[422]
Lilley F, Lalor MJ, Burton DR. Robust fringe analysis system for human body shape measurement. Opt Eng 2000; 39(1): 187-96.
[423]
Pavlovčič U, Diaci J, Možina J, Jezeršek M. Characterization of the head-to-trunk orientation with handheld optical 3D apparatus based on the fringe projection technique. Biomed Eng Online 2013; 12(1): 96.
[424]
Glinkowski W, Michonski J, Sitnik R, Witkowski M. 3D diagnostic system for anatomical structures detection based on a parameterized method of body surface analysis InInformation Technologies in Biomedicine. 153-64.
[425]
Leandry I, Breque C, Valle V. Determination of human body segment inertial parameters using a fringe projection method Comp meth Biomech Biomed Eng 2013; 16(sup1): 54-6.
[426]
Wei B, Liang J, Li J, Ren M. Rapid three-dimensional chromoscan system of body surface based on digital fringe projection. In: Applied advanced optical metrology solutions 2015; International Society for Optics and Photonics, Vol. 9576; pp. 95760P.
[427]
Del Vecchio S, De Araújo PA, Rubio JC, Pinotti M, Sesselmann M. 3D measurement of human plantar foot by projection moiré technique. Inter J Mechatron Manufactur Sys 2012; 5(1): 3-16.
[428]
Rohr M, Schrader A. FOITS (Fast Optical In Vivo Topometry of Human Skin).In: Non invasive diagnostic techniques in clinical dermatology 2014. Springer; Berlin, Heidelberg; pp. 55-64.
[429]
Ares Rodríguez M, Royo Royo S, Vilaseca Ricart M, Herrera Ramírez JA, Delpueyo Español X, Sanàbria Ortega F. Handheld 3D scanning system for in-vivo imaging of skin cancer. In: 3DBST 2014-5th international conference and exhibition on 3D body scanning technologies 2014. Hometrica Consulting; pp. 231-6.
[430]
Tchvialeva L, Zeng H, Markhvida I, McLean DI, Lui H, Lee TK. Skin roughness assessment.In: New developments in biomedical engineering. In: New developments in biomedical engineering 2010. InTech.
[431]
Bleve M, Capra P, Pavanetto F, Perugini P. Ultrasound and 3D skin imaging: methods to evaluate efficacy of striae distensae treatment. Dermatol Res Pract 2012; 2012.
[432]
Hani AF, Fitriyah H, Prakasa E, Asirvadam VS, Hussein SH, Azura MA. IEEE EMBS conference on In vivo 3D thickness measurement of skin lesion. In: Biomedical Engineering and Sciences (IECBES), 2010: IEEE; pp. 155-160.
[433]
Coutts LV, Miller NR, Harland CC, Bamber JC. Feasibility of skin surface elastography by tracking skin surface topography. J Biomed Opt 2013; 18(12): 121513.
[434]
Pierrat B, Millot C, Molimard J, et al. Characterisation of knee brace migration and associated skin deformation during flexion by full-field measurements. Exp Mech 2015; 55(2): 349-60.
[435]
Wang RZ, Weiner S. Strain–structure relations in human teeth using Moiré fringes. J Biomech 1997; 31(2): 135-41.
[436]
Munera N, Lora GJ, Garcia-Sucerquia J. Evaluation of fringe projection and laser scanning for 3d reconstruction of dental pieces. Dyna 2012; 79(171): 65-73.
[437]
John C, Schwanecke U, Brüllmann D. Contact-free volumetric measurement and documentation of facial turgors during the healing period after dental surgery. Comp Sci-Res Develop 2011; 26(1-2): 135-42.
[438]
Barone S, Paoli A, Razionale AV. Computer-aided modelling of three-dimensional maxillofacial tissues through multi-modal imaging. Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng Med 2013; 227(2): 89-104.
[439]
Trentadue B. Novel optical method for high precision measurements of dental structures. Mater Technol 2014; 29(1): 25-8.
[440]
Kishen A, Tan KB, Asundi A. Digital moiré interferometric investigations on the deformation gradients of enamel and dentine: an insight into non-carious cervical lesions. J Dent 2006; 34(1): 12-8.
[441]
Wood JD, Sobolewski P, Thakur V, et al. Measurement of microstrains across loaded resin–dentin interfaces using microscopic moiré interferometry. Dent Mater 2008; 24(7): 859-66.
[442]
Wood JD, Wang R, Weiner S, Pashley DH. Mapping of tooth deformation caused by moisture change using moire interferometry. Dent Mater 2003; 19(3): 159-66.
[443]
Wang RZ, Weiner S. Strain–structure relations in human teeth using Moiré fringes. J Biomech 1997; 31(2): 135-41.
[444]
Palousek D, Rosicky J, Koutny D. Use of digital technologies for nasal prosthesis manufacturing. Prosthet Orthot Int 2014; 38(2): 171-5.
[445]
Glinkowski W, Sitnik R, Witkowski M, Kocon H, Bolewicki P, Górecki A. Method of pectus excavatum measurement based on structured light technique. J Biomed Opt 2009; 14(4): 044041.
[446]
Fadzil MH, Prakasa E, Asirvadam VS, Nugroho H, Affandi AM, Hussein SH. 3D surface roughness measurement for scaliness scoring of psoriasis lesions. Comput Biol Med 2013; 43(11): 1987-2000.
[447]
Wakayama T, Hiratsuka S, Kamakura Y, Nakamura K, Yoshizawa T. Compact camera for 3D position registration of cancer in radiation treatment. In: Optical metrology and inspection for industrial applications III 2014 Nov 13 International society for optics and photonics; pp. 92760G.
[448]
Moore C, Lilley F, Sauret V, Lalor M, Burton D. Opto-electronic sensing of body surface topology changes during radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 2003; 56(1): 248-58.
[449]
Assi KC, Grenier S, Parent S, Labelle H, Cheriet F. A physically based trunk soft tissue modeling for scoliosis surgery planning systems. Comput Med Imaging Graph 2015; 40: 217-28.
[450]
Seoud L, Adankon MM, Labelle H, Dansereau J, Cheriet F. Prediction of scoliosis curve type based on the analysis of trunk surface topography. In: Biomedical imaging: From nano to macro, 2010 IEEE International Symposium on 2010: IEEE; pp. 408-11.
[451]
Pazos V, Cheriet F, Song L, Labelle H, Dansereau J. Accuracy assessment of human trunk surface 3D reconstructions from an optical digitising system. Med Biol Eng Comput 2005; 43(1): 11-5.
[452]
Rodríguez-Quiñonez JC, Sergiyenko OY, Preciado LC, et al. Optical monitoring of scoliosis by 3D medical laser scanner. Opt Las Eng 2014; 54: 175-86.
[453]
Seoud L, Adankon MM, Labelle H, Dansereau J, Cheriet F. Towards non invasive diagnosis of scoliosis using semi-supervised learning approach. International conference image analysis and recognition 2010. Springer: Berlin, Heidelberg; pp. 10-19.
[454]
Assi KC, Labelle H, Cheriet F. Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning. Comput Biol Med 2014; 48: 85-93.
[455]
Saito MT, Yoshimura EM, Palácios FF, Lino AC, Palácios GF, Sousa MV. Utilization of fringe projection technique for evaluation of wound dimensions and of healing progress. In: Advanced biomedical and clinical diagnostic systems XI 2013; pp. 857213.
[456]
Halioua M, Liu HC. Optical three-dimensional sensing by phase measuring profilometry. Opt Las Eng 1989; 11(3): 185-215.
[457]
Sheffer DB, Herron RE, Morek WM, et al. Stereophotogrammetric method for breast cancer detection. In: Biostereometrics' 82. International society for optics and photonics 1983; pp. 120-5.
[458]
Sheffer DB, Price TE, Loughry CW. Reliability of a photogrammetric determination of the breast-thorax boundary. In: Biostereometrics' 85 1986. International society for optics and photonics pp. 196-204.
[459]
Loughry CW, Sheffer DB, Price JT, et al. Right and left breast volume and volume distribution comparisons in normal and tumor-containing breasts. Cancer Detect Prev 1987; 10(3-4): 215-21.
[460]
Hong H, Sheffer DB, Loughry CW. Holographic interferometry for detection of breast lesions. In: Practical holography XI and holographic materials III 1997. International society for optics and Photonics; pp. 121-31).
[461]
Woisetschlaeger J, Sheffer DB, Mikati H, et al. Breast cancer detection by holographic interferometry. In: Interferometry: Applications 1993. International society for optics and photonics; pp. 176- 84.
[462]
Hong H, Sheffer DB, Loughry CW. Detection of breast lesions by holographic interferometry. J Biomed Opt 1999; 4(3): 368-76.
[463]
Hong HD, Sheffer DB, Loughry CW. Holographic interferometry for early detection of breast cancer. In: Proceedings of the 18th annual international conference of the engineering in medicine and biology society. Bridging disciplines for biomedicine1996. IEEE; pp. 189-90.
[464]
Woisetschläger J, Sheffer DB, Loughry CW, Somasundaram K, Chawla SK, Wesolowski PJ. Phase-shifting holographic interferometry for breast cancer detection. Appl Opt 1994; 33(22): 5011-5.
[465]
Jones PR, West GM, Harris DH, Read JB. The Loughborough Anthropometric Shadow Scanner (LASS). Endeavour 1989; 13(4): 162-8.
[466]
Moore CJ, Burton DR, Skydan O, Sharrock PJ, Lalor M. 3D body surface measurement and display in radiotherapy part I: Technology of structured light surface sensing. In: International conference on medical information visualisation-biomedical visualization, MediVis 2006: IEEE; pp. 97-102.
[467]
Moore CJ, Sharrock PJ, Lilley F, Burton D. 3D body surface measurement and display in radiotherapy part III: Respiration and deformation in post-surgical breast cancer patients. In: International conference on medical information visualisation-biomedical visualisation. MediVis 2006: IEEE; pp. 109-14.
[468]
Galdino GM, Nahabedian M, Chiaramonte M, Geng JZ, Klatsky S, Manson P. Clinical applications of three-dimensional photography in breast surgery. Plast Reconstr Surg 2002; 110(1): 58-70.
[469]
Kovacs L, Yassouridis A, Zimmermann A, et al. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. Ann Plast Surg 2006; 56(3): 229-36.
[470]
Isogai N, Sai K, Kamiishi H, Watatani M, Inui H, Shiozaki H. Quantitative analysis of the reconstructed breast using a 3-dimensional laser light scanner. Ann Plast Surg 2006; 56(3): 237-42.
[471]
Kovacs L, Yassouridis A, Zimmermann A, et al. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. Ann Plast Surg 2006; 56(3): 229-36.
[472]
Bert C, Metheany KG, Doppke KP, Taghian AG, Powell SN, Chen GT. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys 2006; 64(4): 1265-74.
[473]
Kovacs L, Eder M, Hollweck R, et al. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast 2007; 16(2): 137-45.
[474]
Loughry CW, Sheffer DB, Price JT, Lackney MJ, Bartfai RG, Morek WM. Breast volume measurement of 248 women using biostereometric analysis. Plast Reconstr Surg 1987; 80(4): 553-8.
[475]
Loughry CW, Sheffer DB, Price TE. Breast volume measurement of 598 women using biostereometric analysis. Ann Plast Surg 1989; 22(5): 380-5.
[476]
Eder M, Waldenfels FV, Swobodnik A, et al. Objective breast symmetry evaluation using 3-D surface imaging. Breast 2012; 21(2): 152-8.
[477]
Lee HY, Hong K, Kim EA. Measurement protocol of women’s nude breasts using a 3D scanning technique. Appl Ergon 2004; 35(4): 353-9.
[478]
Malata CM, Boot JC, Bradbury ET, Ramli AR, Sharpe DT. Congenital breast asymmetry: Subjective and objective assessment. Br J Plast Surg 1994; 47(2): 95-102.
[479]
Gorthi SS, Rastogi P. Fringe projection techniques: Whither we are? Opt Las Eng 2010; 48(2): 133-40.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy