Generic placeholder image

Current Cardiology Reviews


ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Minimally-invasive LVAD Implantation: State of the Art

Author(s): Jasmin S. Hanke, Sebastian V. Rojas, Murat Avsar, Axel Haverich and Jan D. Schmitto

Volume 11 , Issue 3 , 2015

Page: [246 - 251] Pages: 6

DOI: 10.2174/1573403X1103150514151750

Price: $65


Nowadays, the worldwide number of left ventricular assist devices (LVADs) being implanted per year is higher than the number of cardiac transplantations. The rapid developments in the field of mechanical support are characterized by continuous miniaturization and enhanced performance of the pumps, providing increased device durability and a prolonged survival of the patients. The miniaturization process enabled minimally-invasive implantation methods, which are associated with generally benefitting the overall outcome of patients. Therefore, these new implantation strategies are considered the novel state of the art in LVAD surgery.

In this paper we provide a comprehensive review on the existing literature on minimally-invasive techniques with an emphasis on the different implantation approaches and their individual surgical challenges.

Keywords: Ventricular Assist Device, VAD, Left Ventricular Assist Device, LVAD, Minimal-invasive surgery, cardiac surgery, implantation techniques.

Graphical Abstract
Liotta D, Hall CW, Henly WS, et al. Prolonged assisted circulation during and after cardiac or aortic surgery. Prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol 1963; 12: 399-405.
Liotta D, Hall CW, Maness JH, DeBakey ME. The implantable intrathoracic circulatory pump: surgical technique. Cardiovasc Res Cent Bull 1964; 92: 54-61.
DeBakey M. Research in the Service of Man: Biomedical Knowledge Development and Use Committee of Government Operations United States Senate, USA. Government Printing Office, Washington, DC.,. 1967.
Liotta D. Artificial Heart Left Ventricular Assist Devices (LVADs): A Bridge-to-Recovery- The Novel LVAD III-intrathoracic small blood pump with atriostomy drainage for combination therapies. Editorial Ann Thorac Cardiovasc Surg 2008; 14(5): 271-3.
Cooley DA, Liotta D, Hallman GL, et al. Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am J Cardiol 1969; 24(5): 723-30.
Cooley DA. 100,000 hearts: a surgeon’s memoir. Austin, (TX):: Dolph Briscoe Center for American History 2012; p. xi.
Cooley DA. Some thoughts about the historic events that led to the first clinical implantation of a total artificial heart. Tex Heart Inst J 2013; 40(2): 117-9.
Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J 1967; 41: 1271-4.
Strueber M, Schmitto JD, Kutschka I, Haverich A. Placement of 2 implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J Thorac Cardiovasc Surg 2012; 143(2): 507-9.
Strueber M, O’Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM. Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System. J Am Coll Cardiol 2011; 57: 1375-82.
Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009; 361: 2241-51.
Mazzucotelli J-P, Leprince P, Litzler P-Y, et al. Results of mechanical circulatory support in France. Eur J Cardiothorac Surg 2011; 40: e112-7.
Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 345: 1435-43.
Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report—2011. J Heart Lung Transplant 2011; 30: 1078-94.
Schmid C, Schmitto JD, Scheld HH. Herztransplantation in Deutschland Steinkopf Darmstadt; . 2003. ISBN No. 3-7985-1390- 2.
Schima H, Schlöglhofer T, Zu Dohna R, et al. Usability of ventricular assist devices in daily experience: a multicenter study. Artif Organs 2014; 38(9): 751-60.
Strueber M, Larbalestier R, Jansz P, et al. J Results of the post-market Registry to Evaluate the HeartWare Left Ventricular Assist System (ReVOLVE). Heart Lung Transplant 2014; 33(5): 486-91.
Schmitto JD, Molitoris U, Haverich A, Strueber M. Implantation of a centrifugal pump as a left ventricular assist device through a novel, minimized approach: Upper hemisternotomy combined with anterolateral thoracotomy. J Thorac Cardiovasc Surg 2012; 143(2): 511-3.
Schmitto JD, Rojas SV, Hanke JS, Avsar M, Haverich A. Minimally Invasive Left Ventricular Assist Device Explantation After Cardiac Recovery: Surgical Technical Considerations. Artif Organs 2013; 38(6): 507-10.
Rojas SV, Avsar M, Khalpey Z, Hanke JS, Haverich A, Schmitto JD. Minimally invasive off-pump left ventricular assist device exchange: anterolateral thoracotomy. Artif Organs 2014; 38(7): 539-42.
Schmitto JD, Mohr FW, Cohn LH. Minimally invasive aortic valve replacement: how does this perform in high-risk patients? Curr Opin Cardiol 2011; 26(2): 118-22.
Schmitto JD, Mokashi SA, Cohn LH. Minimally-Invasive Valve Operations. J Am Coll Cardiol 2010; 56(6): 455-62.
Schmitto JD, Mokashi SA, Cohn LH. Past, present, and future of minimally invasive mitral valve surgery. J Heart Valve Dis 2011; 20(5): 493-8.
Haberl T, Riebandt J, Mahr S, et al. Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur J Cardiothorac Surg 2014; 46(6): 991-6.
Popov AF, Hosseini MT, Zych B, Simon AR, Bahrami T. HeartWare left ventricular assist device implantation through bilateral anterior thoracotomy. Ann Thorac Surg 2012; 93(2): 674-6.
Hill JD, Avery GJ, Egrie G, Turley K, Reichenbach S. Less invasive Thoratec LVAD insertion: a surgical technique. Heart Surg Forum 2000; 3: 218-23.
Gregoric ID, La Francesca S, Myers T, et al. A less invasive approach to axial flow pump insertion. J Heart Lung Transplant 2008; 27: 423-6.
Gregoric ID, Bruckner BA, Jacob L, et al. Clinical experience with sternotomy versus subcostal approach for exchange of the HeartMate XVE to the HeartMate II ventricular assist device. Ann Thorac Surg 2008; 85(5): 1646-9.
Anyanwu AC. Technique for less invasive implantation of Heartmate II left ventricular assist device without median sternotomy. Semin Thorac Cardiovasc Surg 2011; 23(3): 241-4.
Samuels LE, Casanova-Ghosh E, Rodriguez R, Droogan C. Left ventricular assist device implantation in high risk destination therapy patients: an alternative surgical approach. J Cardiothorac Surg 2012; 7: 21.
Kar B, Delgado RM 3rd, Frazier OH, et al. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J 2005; 32(3): 294-8.
Benk C, Mauch A, Beyersdorf F, et al. Effect of cannula position in the thoracic aorta with continuous left ventricular support: four-dimensional flow-sensitive magnetic resonance imaging in an in vitro model. Eur J Cardiothorac Surg 2013; 44(3): 551-8.
Schmitto JD, Avsar M, Haverich A. Increase in left ventricular assist device thrombosis. N Engl J Med 2014; 370(15): 1463-4.
Strueber M, Meyer AL, Feussner M, Ender J, Correia JC, Mohr FW. A minimally invasive off-pump implantation technique for continuous-flow left ventricular assist devices: early experience. J Heart Lung Transplant 2014; 33(8): 851-6.
Hanke JS, Rojas SV, Martens A, Schmitto JD. Minimally invasive left ventricular assist device implantation with outflow graft anastomosis to the innominate artery. J Thorac Cardiovasc Surg 2015; •••: S0022-5223.
Riebandt J, Sandner S, Mahr S, et al. Minimally invasive thoratec Heartmate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg 2013; 96(3): 1094-6.
Khalpey Z, Riaz IB, Marsh KM, et al. Robotic Left Ventricular Assist Device (LVAD). Implantation Using Left Thoracotomy Approach In Patients With Previous Sternotomies. ASAIO J 2015. [Epub ahead of print]
Nawata K, Nishimura T, Kyo S, et al. Outcomes of midterm circulatory support by left ventricular assist device implantation with descending aortic anastomosis. J Artif Organs 2010; 13(4): 197-201.
Tuzun E, Narin C, Gregoric ID, Cohn WE, Frazier OH. Ventricular assist device outflow-graft site: effect on myocardial blood flow. J Surg Res 2011; 171(1): 71-5.
Kar B, Delgado RM 3rd, et al. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: Implantation technique and computer flow modeling. Tex Heart Inst J 2005; 32(3): 294-8.
Mokashi SA, Schmitto JD, Lee LS, Rawn JD, Bolman RM 3rd, Shekar PS. Couper Ventricular assist device in patients with prosthetic heart valves. Artif Organs 2010; 34(11): 1030-4.
Schlensak C, Schibilsky D, Siepe M, et al. Biventricular cannulation is superior regarding hemodynamics and organ recovery in patients on biventricular assist device support. J Heart Lung Transplant 2011; 30(9): 1011-7.
Cohn WE, Frazier OH. Off-pump insertion of an extracorporeal LVAD through a left upper-quadrant incision. Tex Heart Inst J 2006; 33: 48-50.
Strueber M, Meyer AL, Feussner M, et al. A minimally invasive off-pump implantation technique for continuous-flow left ventricular assist devices: early experience. J Heart Lung Transplant 2014; 33(8): 851-6.
Cohn WE, Mallidi HR, Frazier OH. Safe, effective off-pump sternal sparing approach for HeartMate II exchange. Ann Thorac Surg 2013; 96(6): 2259-61.
Cheung A, Bashir J, Kaan A, Kealy J, Moss R, Shayan H. Minimally invasive, off-pump explant of a continuous-flow left ventricular assist device. J Heart Lung Transplant 2010; 29(7): 808-10.
Rojas SV, Avsar M, Hanke JS, et al. Minimally Invasive Ventricular Assist Device Surgery. Artif Organs 2015. Mar 4[Epub ahead of print].
Rojas SV, Haverich A, Schmitto JD. Off-Pump Versus On-Pump Left Ventricular Assist Device Exchange. Artif Organs 2014; 38(11): 992.
Rojas SV, Avsar M, Uribarri A, et al. A new era of ventricular assist device surgery: less invasive procedures. Minerva Chir 2015; 70(1): 63-8.
Collart F, Feier H, Metras D, Mesana TG. A safe, alternative technique for off-pump left ventricular assist device implantation in high-risk reoperative cases. Interact Cardiovasc Thorac Surg 2004; 3: 286-8.
Robertson JO, Grau-Sepulveda MV, Okada S, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant 2014; 33(6): 609-17.
Fujita T, Kobayashi J, Hata H, et al. Right heart failure and benefits of adjuvant tricuspid valve repair in patients undergoing left ventricular assist device implantation†. Eur J Cardiothorac Surg 2014; 46(5): 802-7.
Walter V, Stock UA, Soriano-Romero M, et al. Eradication of a chronic wound and driveline infection after redo-LVAD implantation. J Cardiothorac Surg 2014; 9: 63.
Baronetto A, Centofanti P, Attisani M, et al. A simple device to secure ventricular assist device driveline and prevent exit-site infection. Interact Cardiovasc Thorac Surg 2014; 18(4): 415-7.
Nienaber JJ, Kusne S, Riaz T, et al. Mayo Cardiovascular Infections Study Group. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis 2013; 57(10): 1438-48.
Goldstein DJ, Naftel D, Holman W, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant 2012; 31(11): 1151-7.
Schibilsky D, Benk C, Haller C, et al. Double tunnel technique for the LVAD driveline: improved management regarding driveline infections. J Artif Organs 2012; 15(1): 44-8.
Fleissner F, Avsar M, Malehsa D, et al. Reduction of driveline infections through doubled driveline tunneling of left ventricular assist devices. Artif Organs 2013; 37(1): 102-7.
Singh A, Russo MJ, Valeroso TB, et al. Modified HeartMate II Driveline Externalization Technique Significantly Decreases Incidence of Infection and Improves Long-Term Survival. ASAIO J 2014.
Schmitto JD, Hanke JS, Rojas SV, Avsar M, Haverich A. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III). J Heart Lung Transplant 2015. [Epub ahead of print].

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy