Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems

Author(s): Esteban F. Durán-Lara*, Diana Rafael, Fernanda Andrade, Olga Lobos G. and Sekar Vijayakumar

Volume 31, Issue 36, 2024

Published on: 11 October, 2023

Page: [5884 - 5897] Pages: 14

DOI: 10.2174/0109298673268775231003111540

Price: $65

Abstract

Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.

Keywords: Bacterial biopolymers, polyhydroxyalkanoate, advanced materials, biomaterials, drug delivery system, nanoparticles, film.

[1]
Coelho, J.F.; Ferreira, P.C.; Alves, P.; Cordeiro, R.; Fonseca, A.C.; Góis, J.R.; Gil, M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J., 2010, 1(1), 164-209.
[http://dx.doi.org/10.1007/s13167-010-0001-x] [PMID: 23199049]
[2]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[3]
Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules, 2021, 26(19), 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[4]
Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77.
[http://dx.doi.org/10.1016/j.addr.2019.07.010] [PMID: 31400350]
[5]
Kenchegowda, M.; Rahamathulla, M.; Hani, U.; Begum, M.Y.; Guruswamy, S.; Osmani, R.A.M.; Gowrav, M.P.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowda, D.V. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules, 2021, 27(1), 146.
[http://dx.doi.org/10.3390/molecules27010146] [PMID: 35011376]
[6]
Sugumaran, A.; Mathialagan, V. Colloidal nanocarriers as versatile targeted delivery systems for cervical cancer. Curr. Pharm. Des., 2020, 26(40), 5174-5187.
[http://dx.doi.org/10.2174/1381612826666200625110950] [PMID: 32586249]
[7]
Alves, V.D.; Torres, C.A.V.; Freitas, F. Bacterial polymers as materials for the development of micro/nanoparticles. Int. J. Polym. Mater., 2016, 65(5), 211-224.
[http://dx.doi.org/10.1080/00914037.2015.1103239]
[8]
Li, Z.; Loh, X.J. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(3), e1429.
[http://dx.doi.org/10.1002/wnan.1429] [PMID: 27595635]
[9]
Ige, O.O.; Umoru, L.E.; Aribo, S. Natural products: A minefield of biomaterials. ISRN Mat. Sci., 2012, 2012, 1-20.
[http://dx.doi.org/10.5402/2012/983062]
[10]
Chuah, J.A.; Yamada, M.; Taguchi, S.; Sudesh, K.; Doi, Y.; Numata, K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stabil., 2013, 98(1), 331-338.
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.09.008]
[11]
Castro-Mayorga, J.L.; Martínez-Abad, A.; Fabra, M.J.; Olivera, C.; Reis, M.; Lagarón, J.M. Stabilization of antimicrobial silver nanoparticles by a polyhydroxyalkanoate obtained from mixed bacterial culture. Int. J. Biol. Macromol., 2014, 71, 103-110.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.059] [PMID: 25043131]
[12]
Jesus, S.; Schmutz, M.; Som, C.; Borchard, G.; Wick, P.; Borges, O. Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Front. Bioeng. Biotechnol., 2019, 7, 261.
[http://dx.doi.org/10.3389/fbioe.2019.00261] [PMID: 31709243]
[13]
Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 2022, 14(11), 2141.
[http://dx.doi.org/10.3390/polym14112141] [PMID: 35683815]
[14]
Ponjavic, M.; Malagurski, I.; Lazic, J.; Jeremic, S.; Pavlovic, V.; Prlainovic, N.; Maksimovic, V.; Cosovic, V.; Atanase, L.I.; Freitas, F.; Matos, M.; Nikodinovic-Runic, J. Advancing PHBV biomedical potential with the incorporation of bacterial biopigment prodigiosin. Int. J. Mol. Sci., 2023, 24(3), 1906.
[http://dx.doi.org/10.3390/ijms24031906] [PMID: 36768226]
[15]
Dinjaski, N.; Prieto, M.A. Smart polyhydroxyalkanoate nanobeads by protein based functionalization. Nanomedicine, 2015, 11(4), 885-899.
[http://dx.doi.org/10.1016/j.nano.2015.01.018] [PMID: 25720989]
[16]
Dhania, S.; Bernela, M.; Rani, R.; Parsad, M.; Grewal, S.; Kumari, S.; Thakur, R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int. J. Biol. Macromol., 2022, 208, 243-259.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.030] [PMID: 35278518]
[17]
Rivero-Buceta, V.; Aguilar, M.R.; Hernández-Arriaga, A.M.; Blanco, F.G.; Rojas, A.; Tortajada, M.; Ramírez-Jiménez, R.A.; Vázquez-Lasa, B.; Prieto, A. Anti-staphylococcal hydrogels based on bacterial cellulose and the antimicrobial biopolyester poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate). Int. J. Biol. Macromol., 2020, 162, 1869-1879.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.289] [PMID: 32777414]
[18]
Evangeline, S.; Sridharan, T.B. Biosynthesis and statistical optimization of polyhydroxyalkanoate (PHA) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer films for sustained drug release. Int. J. Biol. Macromol., 2019, 135, 945-958.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.163] [PMID: 31128180]
[19]
Ang, S.L.; Sivashankari, R.; Shaharuddin, B.; Chuah, J.A.; Tsuge, T.; Abe, H.; Sudesh, K. Potential applications of polyhydroxyalkanoates as a biomaterial for the aging population. Polym. Degrad. Stabil., 2020, 181, 109371.
[http://dx.doi.org/10.1016/j.polymdegradstab.2020.109371]
[20]
Ansari, S.; Sami, N.; Yasin, D.; Ahmad, N.; Fatma, T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int. J. Biol. Macromol., 2021, 183, 549-563.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.171] [PMID: 33932421]
[21]
Gonzalez-Miro, M.; Chen, S.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as antigen carrier toward particulate vaccines. Biomacromolecules, 2019, 20(9), 3213-3232.
[http://dx.doi.org/10.1021/acs.biomac.9b00509] [PMID: 31122016]
[22]
Parlane, N.A.; Gupta, S.K.; Rubio-Reyes, P.; Chen, S.; Gonzalez-Miro, M.; Wedlock, D.N.; Rehm, B.H.A. Self-assembled protein-coated polyhydroxyalkanoate beads: Properties and biomedical applications. ACS Biomater. Sci. Eng., 2017, 3(12), 3043-3057.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00355] [PMID: 33445349]
[23]
Ke, Y.; Zhang, X.Y.; Ramakrishna, S.; He, L.M.; Wu, G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Mater. Sci. Eng. C, 2017, 70(Pt 2), 1107-1119.
[http://dx.doi.org/10.1016/j.msec.2016.03.114] [PMID: 27772711]
[24]
Pryadko, A.; Surmeneva, M.A.; Surmenev, R.A. Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers, 2021, 13(11), 1738.
[http://dx.doi.org/10.3390/polym13111738] [PMID: 34073335]
[25]
Vigneswari, S.; Abdul Khalil, H.P.S.; Amirul, A.A. Designing of collagen based poly(3-hydroxybutyrate- co -4-hydroxybutyrate) scaffolds for tissue engineering. Int. J. Polym. Sci., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/731690]
[26]
Wei, D.X.; Dao, J.W.; Liu, H.W.; Chen, G.Q. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 473-483.
[http://dx.doi.org/10.1080/21691401.2018.1459635] [PMID: 29653500]
[27]
Rekhi, P.; Goswami, M.; Ramakrishna, S.; Debnath, M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit. Rev. Biotechnol., 2022, 42(5), 668-692.
[http://dx.doi.org/10.1080/07388551.2021.1960265] [PMID: 34645360]
[28]
Barouti, G.; Khalil, A.; Orione, C.; Jarnouen, K.; Cammas-Marion, S.; Loyer, P.; Guillaume, S.M. Poly(trimethylene carbonate)/poly(malic acid) amphiphilic diblock copolymers as biocompatible nanoparticles. Chemistry, 2016, 22(8), 2819-2830.
[http://dx.doi.org/10.1002/chem.201504824] [PMID: 26791328]
[29]
Brelle, L.; Faÿ, F.; Ozturk, T.; Didier, N.; Renard, E.; Langlois, V. Hydrogel based on polyhydroxyalkanoate sulfonate: Control of the swelling rate by the ionic group content. Biomacromolecules, 2023, 24(4), 1871-1880.
[http://dx.doi.org/10.1021/acs.biomac.3c00059] [PMID: 36967640]
[30]
Lukasiewicz, B.; Basnett, P.; Nigmatullin, R.; Matharu, R.; Knowles, J.C.; Roy, I. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater., 2018, 71, 225-234.
[http://dx.doi.org/10.1016/j.actbio.2018.02.027] [PMID: 29501818]
[31]
Moroni, S.; Khorshid, S.; Aluigi, A.; Tiboni, M.; Casettari, L. Poly(3-hydroxybutyrate): A potential biodegradable excipient for direct 3D printing of pharmaceuticals. Int. J. Pharm., 2022, 623, 121960.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121960] [PMID: 35753539]
[32]
Sachin, K.; Karn, S.K. Microbial fabricated nanosystems: Applications in drug delivery and targeting. Front Chem., 2021, 9, 617353.
[http://dx.doi.org/10.3389/fchem.2021.617353] [PMID: 33959586]
[33]
Fernandez-Bunster, G.; Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules, 2022, 27(23), 8351.
[http://dx.doi.org/10.3390/molecules27238351] [PMID: 36500442]
[34]
Kwon, H.S.; Jung, S.G.; Kim, H.Y.; Parker, S.A.; Batt, C.A.; Kim, Y.R. A multi-functional polyhydroxybutyrate nanoparticle for theranostic applications. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 3965-3971.
[http://dx.doi.org/10.1039/C4TB00304G] [PMID: 32261648]
[35]
Ma, Y.M.; Wei, D.X.; Yao, H.; Wu, L.P.; Chen, G.Q. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate- graft -Poly( N -isopropylacrylamide). Biomacromolecules, 2016, 17(8), 2680-2690.
[http://dx.doi.org/10.1021/acs.biomac.6b00724] [PMID: 27350125]
[36]
Insomphun, C.; Chuah, J.A.; Kobayashi, S.; Fujiki, T.; Numata, K. Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater. Sci. Eng., 2017, 3(12), 3064-3075.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00279] [PMID: 33445351]
[37]
Michalak, M.; Kurcok, P.; Hakkarainen, M. Polyhydroxyalkanoate-based drug delivery systems. Polym. Int., 2017, 66(5), 617-622.
[http://dx.doi.org/10.1002/pi.5282]
[38]
Wei, D.X.; Dao, J.W.; Chen, G.Q. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 2018, 30(31), 1802273.
[http://dx.doi.org/10.1002/adma.201802273] [PMID: 29920804]
[39]
Zhang, J.; Cran, M.J. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J. Appl. Polym. Sci., 2022, 139(23), 52319.
[http://dx.doi.org/10.1002/app.52319]
[40]
Zhang, X.; Li, Z.; Che, X.; Yu, L.; Jia, W.; Shen, R.; Chen, J.; Ma, Y.; Chen, G.Q. Synthesis and characterization of polyhydroxyalkanoate organo/hydrogels. Biomacromolecules, 2019, 20(9), 3303-3312.
[http://dx.doi.org/10.1021/acs.biomac.9b00479] [PMID: 31094501]
[41]
Soleymani Eil Bakhtiari, S.; Karbasi, S.; Toloue, E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol., 2021, 166, 986-998.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.255] [PMID: 33152357]
[42]
Prakash, P.; Lee, W.H.; Loo, C.Y.; Wong, H.S.J.; Parumasivam, T. Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials, 2022, 12(1), 175.
[http://dx.doi.org/10.3390/nano12010175] [PMID: 35010124]
[43]
Li, M.C.; Liu, Q.Q.; Lu, X.Y.; Zhang, Y.L.; Wang, L.L. Heterologous expression of human costimulatory molecule B7-2 and construction of B7-2 immobilized polyhydroxyalkanoate nanoparticles for use as an immune activation agent. BMC Biotechnol., 2012, 12(1), 43.
[http://dx.doi.org/10.1186/1472-6750-12-43] [PMID: 22846711]
[44]
Cañadas, O.; García-García, A.; Prieto, M.; Pérez-Gil, J. Polyhydroxyalkanoate nanoparticles for pulmonary drug delivery: Interaction with lung surfactant. Nanomaterials, 2021, 11(6), 1482.
[http://dx.doi.org/10.3390/nano11061482] [PMID: 34204969]
[45]
Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices, 2019, 16(6), 467-482.
[http://dx.doi.org/10.1080/17434440.2019.1615439] [PMID: 31058550]
[46]
Parhiz, H.; Khoshnejad, M.; Myerson, J.W.; Hood, E.; Patel, P.N.; Brenner, J.S.; Muzykantov, V.R. Unintended effects of drug carriers: Big issues of small particles. Adv. Drug Deliv. Rev., 2018, 130, 90-112.
[http://dx.doi.org/10.1016/j.addr.2018.06.023] [PMID: 30149885]
[47]
Mukheem, A.; Shahabuddin, S.; Akbar, N.; Ahmad, I.; Sudesh, K.; Sridewi, N. Development of biocompatible polyhydroxyalkanoate/chitosan-tungsten disulphide nanocomposite for antibacterial and biological applications. Polymers, 2022, 14(11), 2224.
[http://dx.doi.org/10.3390/polym14112224] [PMID: 35683897]
[48]
Fan, F.; Wu, X.; Zhao, J.; Ran, G.; Shang, S.; Li, M.; Lu, X. A specific drug delivery system for targeted accumulation and tissue penetration in prostate tumors based on microbially synthesized PHBHHx biopolyester and iRGD peptide fused PhaP. ACS Appl. Bio Mater., 2018, 1(6), 2041-2053.
[http://dx.doi.org/10.1021/acsabm.8b00524] [PMID: 34996266]
[49]
Samrot, A.V.; Sean, T.C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H.H.; Angalene, J.L.A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.104] [PMID: 33098896]
[50]
Aguilar-Rabiela, A.E.; Leal-Egaña, A.; Nawaz, Q.; Boccaccini, A.R. Integration of mesoporous bioactive glass nanoparticles and curcumin into PHBV microspheres as biocompatible composite for drug delivery applications. Molecules, 2021, 26(11), 3177.
[http://dx.doi.org/10.3390/molecules26113177] [PMID: 34073377]
[51]
Shah, M.; Ullah, N.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: Nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur. J. Pharm. Biopharm., 2012, 80(3), 518-527.
[http://dx.doi.org/10.1016/j.ejpb.2011.11.014] [PMID: 22178562]
[52]
Zhang, C.; Zhao, L.; Dong, Y.; Zhang, X.; Lin, J.; Chen, Z. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur. J. Pharm. Biopharm., 2010, 76(1), 10-16.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.005] [PMID: 20472060]
[53]
Babos, G.; Rydz, J.; Kawalec, M.; Klim, M.; Fodor-Kardos, A.; Trif, L.; Feczkó, T. Poly(3-Hydroxybutyrate)-based nanoparticles for sorafenib and doxorubicin anticancer drug delivery. Int. J. Mol. Sci., 2020, 21(19), 7312.
[http://dx.doi.org/10.3390/ijms21197312] [PMID: 33022990]
[54]
Lee, S.Y.; Kim, S.Y.; Ku, S.H.; Park, E.J.; Jang, D.J.; Kim, S.T.; Kim, S.B. Polyhydroxyalkanoate decelerates the release of paclitaxel from poly(lactic-co-glycolic acid) nanoparticles. Pharmaceutics, 2022, 14(8), 1618.
[http://dx.doi.org/10.3390/pharmaceutics14081618] [PMID: 36015244]
[55]
Faisalina, A.F.; Sonvico, F.; Colombo, P.; Amirul, A.A.; Wahab, H.A.; Majid, M.I.A. Docetaxel-Loaded Poly(3HB-co-4HB) biodegradable nanoparticles: Impact of copolymer composition. Nanomaterials, 2020, 10(11), 2123.
[http://dx.doi.org/10.3390/nano10112123] [PMID: 33114572]
[56]
Masood, F.; Chen, P.; Yasin, T.; Fatima, N.; Hasan, F.; Hameed, A. Encapsulation of ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater. Sci. Eng. C, 2013, 33(3), 1054-1060.
[http://dx.doi.org/10.1016/j.msec.2012.11.025] [PMID: 23827542]
[57]
Shah, M.; Naseer, M.I.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. Int. J. Pharm., 2010, 400(1-2), 165-175.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.008] [PMID: 20713137]
[58]
Kılıçay, E.; Demirbilek, M.; Türk, M.; Güven, E.; Hazer, B.; Denkbas, E.B. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur. J. Pharm. Sci., 2011, 44(3), 310-320.
[http://dx.doi.org/10.1016/j.ejps.2011.08.013] [PMID: 21884788]
[59]
Lu, X.Y.; Ciraolo, E.; Stefenia, R.; Chen, G.Q.; Zhang, Y.; Hirsch, E. Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl. Microbiol. Biotechnol., 2011, 89(5), 1423-1433.
[http://dx.doi.org/10.1007/s00253-011-3101-1] [PMID: 21286711]
[60]
Erdal, E.; Kavaz, D.; Şam, M.; Demirbilek, M.; Demirbilek, M.E.; Sağlam, N.; Denkbaş, E.B. Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J. Biomed. Nanotechnol., 2012, 8(5), 800-808.
[http://dx.doi.org/10.1166/jbn.2012.1431] [PMID: 22888751]
[61]
Kapoor, S.; Gupta, D.; Kumar, M.; Sharma, S.; Gupta, A.K.; Misro, M.M.; Singh, H. Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: Studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. Int. J. Pharm., 2016, 511(2), 876-889.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.077] [PMID: 27492021]
[62]
Pramual, S.; Assavanig, A.; Bergkvist, M.; Batt, C.A.; Sunintaboon, P.; Lirdprapamongkol, K.; Svasti, J.; Niamsiri, N. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J. Mater. Sci. Mater. Med., 2016, 27(2), 40.
[http://dx.doi.org/10.1007/s10856-015-5655-4] [PMID: 26712706]
[63]
Radu, I.C.; Hudita, A.; Zaharia, C.; Galateanu, B.; Iovu, H.; Tanasa, E.V.; Georgiana Nitu, S.; Ginghina, O.; Negrei, C.; Tsatsakis, A.; Velonia, K.; Shtilman, M.; Costache, M. Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) PHBHV biocompatible nanocarriers for 5-FU delivery targeting colorectal cancer. Drug Deliv., 2019, 26(1), 318-327.
[http://dx.doi.org/10.1080/10717544.2019.1582729] [PMID: 30896267]
[64]
Lu, X.Y.; Li, M.C.; Zhu, X.L.; Fan, F.; Wang, L.L.; Ma, J.G. Microbial synthesized biodegradable PHBHHxPEG hybrid copolymer as an efficient intracellular delivery nanocarrier for kinase inhibitor. BMC Biotechnol., 2014, 14(1), 4.
[http://dx.doi.org/10.1186/1472-6750-14-4] [PMID: 24438107]
[65]
Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog., 2023, 182, 106221.
[http://dx.doi.org/10.1016/j.micpath.2023.106221]
[66]
Gregory, D.A.; Taylor, C.S.; Fricker, A.T.R.; Asare, E.; Tetali, S.S.V.; Haycock, J.W.; Roy, I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol. Med., 2022, 28(4), 331-342.
[http://dx.doi.org/10.1016/j.molmed.2022.01.007] [PMID: 35232669]
[67]
Li, H.; Chang, J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J. Control. Release, 2005, 107(3), 463-473.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.019] [PMID: 16154657]
[68]
Perveen, K.; Masood, F.; Hameed, A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol., 2020, 144, 259-266.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.049] [PMID: 31821825]
[69]
Ojha, N.; Das, N. Green formulation of microbial biopolyesteric nanocarriers toward in vitro drug delivery and its characterization. Curr. Microbiol., 2021, 78(5), 2061-2070.
[http://dx.doi.org/10.1007/s00284-021-02464-2] [PMID: 33787978]
[70]
Pavic, A.; Stojanovic, Z.; Pekmezovic, M.; Veljović, Đ.; O’Connor, K.; Malagurski, I.; Nikodinovic-Runic, J. Polyenes in medium chain length polyhydroxyalkanoate (mcl-PHA) biopolymer microspheres with reduced toxicity and improved therapeutic effect against Candida infection in zebrafish model. Pharmaceutics, 2022, 14(4), 696.
[http://dx.doi.org/10.3390/pharmaceutics14040696] [PMID: 35456530]
[71]
Pekmezovic, M.; Kalagasidis Krusic, M.; Malagurski, I.; Milovanovic, J.; Stępień, K.; Guzik, M.; Charifou, R.; Babu, R.; O’Connor, K.; Nikodinovic-Runic, J. Polyhydroxyalkanoate/antifungal polyene formulations with monomeric hydroxyalkanoic acids for improved antifungal efficiency. Antibiotics, 2021, 10(6), 737.
[http://dx.doi.org/10.3390/antibiotics10060737] [PMID: 34207011]
[72]
Umesh, M.; Priyanka, K.; Thazeem, B.; Preethi, K. Biogenic PHA nanoparticle synthesis and characterization from Bacillus subtilis NCDC0671 using orange peel medium. Int. J. Polym. Mater., 2018, 67(17), 996-1004.
[http://dx.doi.org/10.1080/00914037.2017.1417284]
[73]
Hu, J.; Wang, M.; Xiao, X.; Zhang, B.; Xie, Q.; Xu, X.; Li, S.; Zheng, Z.; Wei, D.; Zhang, X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale, 2020, 12(19), 10799-10808.
[http://dx.doi.org/10.1039/D0NR01308K] [PMID: 32391836]
[74]
Rezaie Shirmard, L.; Bahari Javan, N.; Khoshayand, M.R.; Kebriaee-zadeh, A.; Dinarvand, R.; Dorkoosh, F.A. Nanoparticulate fingolimod delivery system based on biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Design, optimization, characterization and in-vitro evaluation. Pharm. Dev. Technol., 2017, 22(7), 860-870.
[http://dx.doi.org/10.3109/10837450.2015.1108982] [PMID: 26555615]
[75]
Dourado, L.F.N.; Pierucci, A.; Roa, J.P.B.; Carvalho Júnior, Á.D.d. Assessment of implantable drug delivery technology: poly (3-hydroxybutyrate)/polypropylene glycol films containing simvastatin. Matéria, 2022, 26(4)
[76]
Vijayendra, S. Microbial biopolymers: The exopolysaccharides; Springer: New Delhi, 2015, pp. 113-125.
[http://dx.doi.org/10.1007/978-81-322-2595-9_8]
[77]
Urtuvia, V.; Villegas, P.; González, M.; Seeger, M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol., 2014, 70, 208-213.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.001] [PMID: 24974981]
[78]
Pacheco-Leyva, I.; Guevara Pezoa, F.; Díaz-Barrera, A. Alginate biosynthesis in Azotobacter vinelandii : Overview of molecular mechanisms in connection with the oxygen availability. Int. J. Polym. Sci., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/2062360]
[79]
Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, 18(4), 195-210.
[http://dx.doi.org/10.1038/s41579-019-0313-3] [PMID: 31992873]
[80]
Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Ezzati Nazhad Dolatabadi, J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt. Chem., 2016, 82, 367-384.
[http://dx.doi.org/10.1016/j.trac.2016.06.013]
[81]
Usurelu, C.D.; Badila, S.; Frone, A.N.; Panaitescu, D.M. Poly(3-hydroxybutyrate) nanocomposites with cellulose nanocrystals. Polymers, 2022, 14(10), 1974.
[http://dx.doi.org/10.3390/polym14101974] [PMID: 35631856]
[82]
Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes. Biotechnol. Biofuels, 2017, 10(1), 113.
[http://dx.doi.org/10.1186/s13068-017-0802-4] [PMID: 28469708]
[83]
Muneer, F.; Rasul, I.; Qasim, M.; Sajid, A.; Nadeem, H. Optimization, production and characterization of polyhydroxyalkanoate (PHA) from indigenously isolated novel bacteria. J. Polym. Environ., 2022, 30(8), 3523-3533.
[http://dx.doi.org/10.1007/s10924-022-02444-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy