Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Novel Applications for Invasive and Non-invasive Tools in the Era of Contemporary Percutaneous Coronary Revascularisation

Author(s): Mohammad Alkhalil*

Volume 18, Issue 1, 2022

Published on: 02 February, 2021

Article ID: e190122191004 Pages: 9

DOI: 10.2174/1573403X17666210202102549

Price: $65

Abstract

Percutaneous coronary intervention (PCI) is an expanding treatment option for patients with coronary artery disease (CAD). It is considered the default strategy for the unstable presentation of CAD. PCI techniques have evolved over the last 4 decades with significant improvements in stent design, an increase in functional assessment of coronary lesions, and the use of intra-vascular imaging. Nonetheless, the morbidity and mortality related to CAD remain significant. Advances in technology have allowed a better understanding of the nature and progression of CAD. New tools are now available that reflect the pathophysiological changes at the level of the myocardium and coronary atherosclerotic plaque. Certain changes within the plaque would render it more prone to rupture leading to acute vascular events. These changes are potentially detected using novel tools invasively, such as near infra-red spectroscopy, or non-invasively using T2 mapping cardiovascular magnetic resonance imaging (CMR) and 18F-Sodium Fluoride positron emission tomography/ computed tomography. Similarly, changes at the level of the injured myocardium are feasibly assessed invasively using index microcirculatory resistance or non-invasively using T1 mapping CMR. Importantly, these changes could be detected immediately with the opportunity to tailor treatment to those considered at high risk. Concurrently, novel therapeutic options have demonstrated promising results in reducing future cardiovascular risks in patients with CAD. This Review article will discuss the role of these novel tools and their applicability in employing a mechanical and pharmacological treatment to mitigate cardiovascular risk in patients with CAD.

Keywords: PCI, NIRs, IMR, CMR, CAD, mapping, CFR.

Graphical Abstract
[1]
Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2018; 39(42): 3759.
[http://dx.doi.org/10.1093/eurheartj/ehy658] [PMID: 30403801]
[2]
Maron DJ, Hochman JS, Reynolds HR, et al. ISCHEMIA Research Group. Initial Invasive or Conservative Strategy for Stable Coronary Disease. N Engl J Med 2020; 382(15): 1395-407.
[http://dx.doi.org/10.1056/NEJMoa1915922] [PMID: 32227755]
[3]
Escaned J, Collet C, Ryan N, et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur Heart J 2017; 38(42): 3124-34.
[http://dx.doi.org/10.1093/eurheartj/ehx512] [PMID: 29020367]
[4]
Stone GW, Sabik JF, Serruys PW, et al. EXCEL Trial Investigators. Everolimus-Eluting Stents or Bypass Surgery for Left Main Coronary Artery Disease. N Engl J Med 2016; 375(23): 2223-35.
[http://dx.doi.org/10.1056/NEJMoa1610227] [PMID: 27797291]
[5]
The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2018; 39: 119-77.
[http://dx.doi.org/10.1093/eurheartj/ehx393] [PMID: 28886621]
[6]
Serruys PW, Morice MC, Kappetein AP, et al. SYNTAX Investigators. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009; 360(10): 961-72.
[http://dx.doi.org/10.1056/NEJMoa0804626] [PMID: 19228612]
[7]
Alkhalil M, Kearney A, MacElhatton D, Fergie R, Dixon L. The prognostic role of mid-range ejection fraction in ST-segment elevation myocardial infarction. Int J Cardiol 2020; 321: 12-7.
[http://dx.doi.org/10.1016/j.ijcard.2020.07.001] [PMID: 32682009]
[8]
Waxman S, Dixon SR, L’Allier P, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2009; 2(7): 858-68.
[http://dx.doi.org/10.1016/j.jcmg.2009.05.001] [PMID: 19608137]
[9]
Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006; 47(8)(Suppl.): C92-6.
[http://dx.doi.org/10.1016/j.jacc.2005.12.045] [PMID: 16631516]
[10]
Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 2008; 1(5): 638-48.
[http://dx.doi.org/10.1016/j.jcmg.2008.06.001] [PMID: 19356494]
[11]
De Maria GL, Lee R, Alkhalil M, et al. Reflectance spectral analysis for novel characterization and clinical assessment of aspirated coronary thrombi in patients with ST elevation myocardial infarction. Physiol Meas 2020; 41(4): 045001.
[http://dx.doi.org/10.1088/1361-6579/ab81de] [PMID: 32197256]
[12]
Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol 2013; 62(1): 21-9.
[http://dx.doi.org/10.1016/j.jacc.2013.03.058] [PMID: 23644090]
[13]
Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2013; 6(8): 838-46.
[http://dx.doi.org/10.1016/j.jcin.2013.04.012] [PMID: 23871513]
[14]
Madder RD, Husaini M, Davis AT, et al. Detection by near-infrared spectroscopy of large lipid cores at culprit sites in patients with non-ST-segment elevation myocardial infarction and unstable angina. Catheter Cardiovasc Interv 2015; 86(6): 1014-21.
[http://dx.doi.org/10.1002/ccd.25754] [PMID: 25418711]
[15]
Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J 2018; 39(4): 295-302.
[http://dx.doi.org/10.1093/eurheartj/ehx247] [PMID: 28531282]
[16]
Waksman R, Di Mario C, Torguson R, et al. LRP Investigators. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019; 394(10209): 1629-37.
[http://dx.doi.org/10.1016/S0140-6736(19)31794-5] [PMID: 31570255]
[17]
Negi SI, Didier R, Ota H, et al. Role of near-infrared spectroscopy in intravascular coronary imaging. Cardiovasc Revasc Med 2015; 16(5): 299-305.
[http://dx.doi.org/10.1016/j.carrev.2015.06.001] [PMID: 26242984]
[18]
Alkhalil M, Biasiolli L, Akbar N, et al. T2 mapping MRI technique quantifies carotid plaque lipid, and its depletion after statin initiation, following acute myocardial infarction. Atherosclerosis 2018; 279: 100-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.033] [PMID: 30227984]
[19]
Alkhalil M. Mechanistic Insights to Target Atherosclerosis Residual Risk. Curr Probl Cardiol 2019 Jun; 24S0146-2806(19): 30105-7. [Epub ahead of print].
[http://dx.doi.org/10.1016/j.cpcardiol.2019.06.004]
[20]
Alkhalil M, Chai JT, Choudhury RP. Plaque imaging to refine indications for emerging lipid-lowering drugs. Eur Heart J Cardiovasc Pharmacother 2017; 3(1): 58-67.
[http://dx.doi.org/10.1093/ehjcvp/pvw034] [PMID: 27816944]
[21]
Alkhalil M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reality or dream in managing patients with cardiovascular disease. Curr Drug Metab 2019; 20(1): 72-82.
[http://dx.doi.org/10.2174/1389200219666180816141827] [PMID: 30112987]
[22]
Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation. Circulation 2003; 107(25): 3129-32.
[http://dx.doi.org/10.1161/01.CIR.0000080700.98607.D1] [PMID: 12821539]
[23]
De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation 2001; 104(17): 2003-6.
[http://dx.doi.org/10.1161/hc4201.099223] [PMID: 11673336]
[24]
Pijls NH, De Bruyne B, Smith L, et al. Coronary thermodilution to assess flow reserve: validation in humans. Circulation 2002; 105(21): 2482-6.
[http://dx.doi.org/10.1161/01.CIR.0000017199.09457.3D] [PMID: 12034653]
[25]
Layland J, MacIsaac AI, Burns AT, et al. When collateral supply is accounted for epicardial stenosis does not increase microvascular resistance. Circ Cardiovasc Interv 2012; 5(1): 97-102.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.964718] [PMID: 22319068]
[26]
Yong AS, Layland J, Fearon WF, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv 2013; 6(1): 53-8.
[http://dx.doi.org/10.1016/j.jcin.2012.08.019] [PMID: 23347861]
[27]
Fearon WF, Shah M, Ng M, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 2008; 51(5): 560-5.
[http://dx.doi.org/10.1016/j.jacc.2007.08.062] [PMID: 18237685]
[28]
Lim HS, Yoon MH, Tahk SJ, et al. Usefulness of the index of microcirculatory resistance for invasively assessing myocardial viability immediately after primary angioplasty for anterior myocardial infarction. Eur Heart J 2009; 30(23): 2854-60.
[http://dx.doi.org/10.1093/eurheartj/ehp313] [PMID: 19684025]
[29]
McGeoch R, Watkins S, Berry C, et al. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2010; 3(7): 715-22.
[http://dx.doi.org/10.1016/j.jcin.2010.04.009] [PMID: 20650433]
[30]
De Maria GL, Alkhalil M, Wolfrum M, et al. Index of Microcirculatory Resistance as a Tool to Characterize Microvascular Obstruction and to Predict Infarct Size Regression in Patients With STEMI Undergoing Primary PCI. JACC Cardiovasc Imaging 2019; 12(5): 837-48.
[http://dx.doi.org/10.1016/j.jcmg.2018.02.018] [PMID: 29680355]
[31]
Fearon WF, Low AF, Yong AS, et al. Prognostic value of the Index of Microcirculatory Resistance measured after primary percutaneous coronary intervention. Circulation 2013; 127(24): 2436-41.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000298] [PMID: 23681066]
[32]
Fahrni G, Wolfrum M, De Maria G, et al. Index of Microcirculatory Resistance at the Time of Primary Percutaneous Coronary Intervention Predicts Early Cardiac Complications: Insights from the Oxford Study In Acute Myocardial Infarction (OxAMI) Cohort.Journal of the American Heart Association. 2017; 6: p. e005409..
[http://dx.doi.org/10.1161/JAHA.116.]
[33]
Carrick D, Haig C, Ahmed N, et al. Comparative Prognostic Utility of Indexes of Microvascular Function Alone or in Combination in Patients With an Acute ST-Segment-Elevation Myocardial Infarction. Circulation 2016; 134(23): 1833-47.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022603] [PMID: 27803036]
[34]
Ito N, Nanto S, Doi Y, et al. Beneficial effects of intracoronary nicorandil on microvascular dysfunction after primary percutaneous coronary intervention: demonstration of its superiority to nitroglycerin in a cross-over study. Cardiovasc Drugs Ther 2013; 27(4): 279-87.
[http://dx.doi.org/10.1007/s10557-013-6456-y] [PMID: 23722418]
[35]
Ito N, Nanto S, Doi Y, et al. High index of microcirculatory resistance level after successful primary percutaneous coronary intervention can be improved by intracoronary administration of nicorandil. Circ J 2010; 74(5): 909-15.
[http://dx.doi.org/10.1253/circj.CJ-09-0943] [PMID: 20234097]
[36]
van Leeuwen MAH, van der Hoeven NW, Janssens GN, et al. Evaluation of Microvascular Injury in Revascularized Patients With ST-Segment-Elevation Myocardial Infarction Treated With Ticagrelor Versus Prasugrel. Circulation 2019; 139(5): 636-46.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035931] [PMID: 30586720]
[37]
Park SD, Lee MJ, Baek YS, et al. Randomised trial to compare a protective effect of Clopidogrel Versus TIcagrelor on coronary Microvascular injury in ST-segment Elevation myocardial infarction (CV-TIME trial). EuroIntervention 2016; 12(8): e964-71.
[http://dx.doi.org/10.4244/EIJV12I8A159] [PMID: 27721212]
[38]
Ubaid S, Ford TJ, Berry C, et al. Cangrelor versus Ticagrelor in Patients Treated with Primary Percutaneous Coronary Intervention: Impact on Platelet Activity, Myocardial Microvascular Function and Infarct Size: A Randomized Controlled Trial. Thromb Haemost 2019; 119(7): 1171-81.
[http://dx.doi.org/10.1055/s-0039-1688789] [PMID: 31129911]
[39]
Lee BK, Koo BK, Nam CW, et al. Does Pre-Treatment with High Dose Atorvastatin Prevent Microvascular Dysfunction after Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome? Korean Circ J 2016; 46(4): 472-80.
[http://dx.doi.org/10.4070/kcj.2016.46.4.472] [PMID: 27482255]
[40]
Schwartz RS, Burke A, Farb A, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 2009; 54(23): 2167-73.
[http://dx.doi.org/10.1016/j.jacc.2009.07.042] [PMID: 19942088]
[41]
Sezer M, Cimen A, Aslanger E, et al. Effect of intracoronary streptokinase administered immediately after primary percutaneous coronary intervention on long-term left ventricular infarct size, volumes, and function. J Am Coll Cardiol 2009; 54(12): 1065-71.
[http://dx.doi.org/10.1016/j.jacc.2009.04.083] [PMID: 19744615]
[42]
Sezer M, Oflaz H, Gören T, et al. Intracoronary streptokinase after primary percutaneous coronary intervention. N Engl J Med 2007; 356(18): 1823-34.
[http://dx.doi.org/10.1056/NEJMoa054374] [PMID: 17476008]
[43]
Maznyczka AM, McCartney PJ, Oldroyd KG, et al. Effects of Intracoronary Alteplase on Microvascular Function in Acute Myocardial Infarction. J Am Heart Assoc 2020; 9(3): e014066.
[http://dx.doi.org/10.1161/JAHA.119.014066] [PMID: 31986989]
[44]
van Geuns RJ, Sideris G, Van Royen N, et al. Bivalirudin infusion to reduce ventricular infarction: the open-label, randomised Bivalirudin Infusion for Ventricular InfArction Limitation (BIVAL) study. EuroIntervention 2017; 13(5): e540-8.
[http://dx.doi.org/10.4244/EIJ-D-17-00307] [PMID: 28506937]
[45]
Woo SI, Park SD, Kim DH, et al. Thrombus aspiration during primary percutaneous coronary intervention for preserving the index of microcirculatory resistance: a randomised study. EuroIntervention 2014; 9(9): 1057-62.
[http://dx.doi.org/10.4244/EIJV9I9A179] [PMID: 24457277]
[46]
Ito N, Nanto S, Doi Y, et al. Distal protection during primary coronary intervention can preserve the index of microcirculatory resistance in patients with acute anterior ST-segment elevation myocardial infarction. Circ J 2011; 75(1): 94-8.
[http://dx.doi.org/10.1253/circj.CJ-10-0133] [PMID: 21116072]
[47]
De Maria GL, Alkhalil M, Oikonomou EK, Wolfrum M, Choudhury RP, Banning AP. Role of deferred stenting in patients with ST elevation myocardial infarction treated with primary percutaneous coronary intervention: A systematic review and meta-analysis. J Interv Cardiol 2017; 30(3): 264-73.
[http://dx.doi.org/10.1111/joic.12380] [PMID: 28370496]
[48]
De Maria GL, Alkhalil M, Wolfrum M, et al. The ATI score (age-thrombus burden-index of microcirculatory resistance) determined during primary percutaneous coronary intervention predicts final infarct size in patients with ST-elevation myocardial infarction: a cardiac magnetic resonance validation study. EuroIntervention 2017; 13(8): 935-43.
[http://dx.doi.org/10.4244/EIJ-D-17-00367] [PMID: 28649956]
[49]
De Maria GL, Fahrni G, Alkhalil M, et al. A tool for predicting the outcome of reperfusion in ST-elevation myocardial infarction using age, thrombotic burden and index of microcirculatory resistance (ATI score). EuroIntervention 2016; 12(10): 1223-30.
[http://dx.doi.org/10.4244/EIJV12I10A202] [PMID: 27866132]
[50]
De Maria GL, Alkhalil M, Borlotti A, et al. Index of microcirculatory resistance-guided therapy with pressure-controlled intermittent coronary sinus occlusion improves coronary microvascular function and reduces infarct size in patients with ST-elevation myocardial infarction: the Oxford Acute Myocardial Infarction - Pressure-controlled Intermittent Coronary Sinus Occlusion study (OxAMI-PICSO study). EuroIntervention 2018; 14(3): e352-9.
[http://dx.doi.org/10.4244/EIJ-D-18-00378] [PMID: 29792403]
[51]
Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014; 383(9918): 705-13.
[http://dx.doi.org/10.1016/S0140-6736(13)61754-7] [PMID: 24224999]
[52]
Kwiecinski J, Tzolos E, Adamson PD, et al. Coronary 18F-Sodium Fluoride Uptake Predicts Outcomes in Patients With Coronary Artery Disease. J Am Coll Cardiol 2020; 75(24): 3061-74.
[http://dx.doi.org/10.1016/j.jacc.2020.04.046] [PMID: 32553260]
[53]
Dall’Armellina E, Karamitsos TD, Neubauer S, Choudhury RP. CMR for characterization of the myocardium in acute coronary syndromes. Nat Rev Cardiol 2010; 7(11): 624-36.
[http://dx.doi.org/10.1038/nrcardio.2010.140] [PMID: 20856263]
[54]
Liu D, Borlotti A, Viliani D, et al. CMR Native T1 Mapping Allows Differentiation of Reversible Versus Irreversible Myocardial Damage in ST-Segment-Elevation Myocardial Infarction: An OxAMI Study (Oxford Acute Myocardial Infarction). Circ Cardiovasc Imaging 2017; 10(8): e005986.
[http://dx.doi.org/10.1161/CIRCIMAGING.116.005986] [PMID: 28798137]
[55]
Wamil M, Borlotti A, Liu D, et al. Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study. Int J Cardiovasc Imaging 2019; 35(7): 1297-308.
[http://dx.doi.org/10.1007/s10554-019-01542-8] [PMID: 30778713]
[56]
Alkhalil M, Borlotti A, De Maria GL, et al. Oxford Acute Myocardial Infarction (OxAMI) Study. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction. J Cardiovasc Magn Reson 2020; 22(1): 3.
[http://dx.doi.org/10.1186/s12968-019-0593-9] [PMID: 31915031]
[57]
Alkhalil M, Borlotti A, De Maria GL, et al. Dynamic changes in injured myocardium, very early after acute myocardial infarction, quantified using T1 mapping cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2018; 20(1): 82.
[http://dx.doi.org/10.1186/s12968-018-0506-3] [PMID: 30567572]
[58]
Fernández-Jiménez R, Barreiro-Pérez M, Martin-García A, et al. Dynamic Edematous Response of the Human Heart to Myocardial Infarction: Implications for Assessing Myocardial Area at Risk and Salvage. Circulation 2017; 136(14): 1288-300.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025582] [PMID: 28687712]
[59]
Reinstadler SJ, Stiermaier T, Liebetrau J, et al. Prognostic Significance of Remote Myocardium Alterations Assessed by Quantitative Noncontrast T1 Mapping in ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Imaging 2018; 11(3): 411-9.
[http://dx.doi.org/10.1016/j.jcmg.2017.03.015] [PMID: 28624398]
[60]
Lønborg J, Vejlstrup N, Kelbæk H, et al. Final infarct size measured by cardiovascular magnetic resonance in patients with ST elevation myocardial infarction predicts long-term clinical outcome: an observational study. Eur Heart J Cardiovasc Imaging 2013; 14(4): 387-95.
[http://dx.doi.org/10.1093/ehjci/jes271] [PMID: 23178864]
[61]
Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53(1): 31-47.
[http://dx.doi.org/10.1016/S0008-6363(01)00434-5] [PMID: 11744011]
[62]
Alkhalil M, Kearney A, Hegarty M, et al. Eosinopenia as an Adverse Marker of Clinical Outcomes in Patients Presenting with Acute Myocardial Infarction. Am J Med 2019; 132(12): e827-34.
[http://dx.doi.org/10.1016/j.amjmed.2019.05.021] [PMID: 31152721]
[63]
Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[64]
Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low- Dose Colchicine after Myocardial Infarction. N Engl J Med 2019; 381(26): 2497-505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[65]
Chai JT, Biasiolli L, Li L, et al. Quantification of Lipid-Rich Core in Carotid Atherosclerosis Using Magnetic Resonance T2 Mapping: Relation to Clinical Presentation. JACC Cardiovasc Imaging 2017; 10(7): 747-56.
[http://dx.doi.org/10.1016/j.jcmg.2016.06.013] [PMID: 27743954]
[66]
Alkhalil M. A promising tool to tackle the risk of cerebral vascular disease, the emergence of novel carotid wall imaging. Brain Circ 2020; 6(2): 81-6.
[http://dx.doi.org/10.4103/bc.bc_65_19] [PMID: 33033777]
[67]
Alkhalil M, Biasiolli L, Chai JT, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy. PLoS One 2017; 12(7): e0181668.
[http://dx.doi.org/10.1371/journal.pone.0181668] [PMID: 28746385]
[68]
Alkhalil M, Edmond E, Edgar L, et al. The relationship of perivascular adipose tissue and atherosclerosis in the aorta and carotid arteries, determined by magnetic resonance imaging. Diab Vasc Dis Res 2018; 15(4): 286-93.
[http://dx.doi.org/10.1177/1479164118757923] [PMID: 29446645]
[69]
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 2018; 392(10151): 929-39.
[http://dx.doi.org/10.1016/S0140-6736(18)31114-0] [PMID: 30170852]
[70]
Schwartz GG, Steg PG, Szarek M, et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018; 379(22): 2097-107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[71]
Alkhalil M. Effects of intensive lipid-lowering therapy on mortality after coronary bypass surgery: A meta-analysis of 7 randomised trials. Atherosclerosis 2020; 293: 75-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.12.006] [PMID: 31865057]
[72]
Sabatine MS, Giugliano RP, Keech AC, et al. FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[73]
Ko DT, Khan AM, Kotrri G, et al. Eligibility, Clinical Outcomes, and Budget Impact of PCSK9 Inhibitor Adoption: The CANHEART PCSK9 Study. J Am Heart Assoc 2018; 7(21): e010007.
[http://dx.doi.org/10.1161/JAHA.118.010007] [PMID: 30571382]
[74]
De Maria GL, Cuculi F, Patel N, et al. How does coronary stent implantation impact on the status of the microcirculation during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction? Eur Heart J 2015; 36(45): 3165-77.
[http://dx.doi.org/10.1093/eurheartj/ehv353] [PMID: 26254178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy