Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Elucidating the Risk Factors for Progression from Amyloid-Negative Amnestic Mild Cognitive Impairment to Dementia

Author(s): Hyung-Ji Kim, Jae-Hong Lee*, E-nae Cheong, Sung-Eun Chung, Sungyang Jo, Woo-Hyun Shim and Yun J. Hong

Volume 17 , Issue 10 , 2020

Page: [893 - 903] Pages: 11

DOI: 10.2174/1567205017666201130094259

Price: $65

Abstract

Background: Amyloid PET allows for the assessment of amyloid β status in the brain, distinguishing true Alzheimer’s disease from Alzheimer’s disease-mimicking conditions. Around 15-20% of patients with clinically probable Alzheimer’s disease have been found to have no significant Alzheimer’s pathology on amyloid PET. However, a limited number of studies had been conducted on this subpopulation in terms of clinical progression.

Objective: We investigated the risk factors that could affect the progression to dementia in patients with amyloid-negative amnestic mild cognitive impairment (MCI).

Methods: This study was a single-institutional, retrospective cohort study of patients over the age of 50 with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center with a follow-up period of more than 36 months. All participants underwent brain magnetic resonance imaging (MRI), detailed neuropsychological testing, and fluorine-18[F18]-florbetaben amyloid PET.

Results: During the follow-up period, 39 of 107 patients progressed to dementia from amnestic MCI. In comparison with the stationary group, the progressed group had a more severe impairment in verbal and visual episodic memory function and hippocampal atrophy, which showed an Alzheimer’s diseaselike pattern despite the lack of evidence for significant Alzheimer’s disease pathology. Voxel-based morphometric MRI analysis revealed that the progressed group had a reduced gray matter volume in the bilateral cerebellar cortices, right temporal cortex, and bilateral insular cortices.

Conclusion: Considering the lack of evidence of amyloid pathology, clinical progression of these subpopulation may be caused by other neuropathologies such as TDP-43, abnormal tau or alpha synuclein that lead to neurodegeneration independent of amyloid-driven pathway. Further prospective studies incorporating biomarkers of Alzheimer’s disease-mimicking dementia are warranted.

Keywords: Mild cognitive impairment, amyloid deposit, Alzheimer’s disease, image processing, disease progression, neuropsychological test, risk factor, cerebellum.

[1]
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004; 256(3): 183-94.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x ] [PMID: 15324362]
[2]
Petersen RC, Aisen P, Boeve BF, et al. Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol 2013; 74(2): 199-208.
[http://dx.doi.org/10.1002/ana.23931 ] [PMID: 23686697]
[3]
Arnáiz E, Almkvist O, Ivnik RJ, et al. Mild cognitive impairment: a cross-national comparison. J Neurol Neurosurg Psychiatry 2004; 75(9): 1275-80.
[http://dx.doi.org/10.1136/jnnp.2003.015032 ] [PMID: 15314114]
[4]
Tabert MH, Manly JJ, Liu X, et al. Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry 2006; 63(8): 916-24.
[http://dx.doi.org/10.1001/archpsyc.63.8.916 ] [PMID: 16894068]
[5]
Grundman M, Petersen RC, Ferris SH, et al. Alzheimer’s Disease Cooperative Study. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004; 61(1): 59-66.
[http://dx.doi.org/10.1001/archneur.61.1.59 ] [PMID: 14732621]
[6]
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256(3): 240-6.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x ] [PMID: 15324367]
[7]
Han JW, Kim TH, Lee SB, et al. Predictive validity and diagnostic stability of mild cognitive impairment subtypes Alzheimers Dement 2012; 8(6): 553-9.
[http://dx.doi.org/10.1016/j.jalz.2011.08.007] [PMID: 23102125]
[8]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[9]
Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56(9): 1133-42.
[http://dx.doi.org/10.1212/WNL.56.9.1133] [PMID: 11342677]
[10]
Bischkopf J, Busse A, Angermeyer MC. Mild cognitive impairment--a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand 2002; 106(6): 403-14.
[http://dx.doi.org/10.1034/j.1600-0447.2002.01417.x] [PMID: 12392483]
[11]
Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: Mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology 2018; 90(3): 126-35.
[http://dx.doi.org/10.1212/WNL.0000000000004826] [PMID: 29282327]
[12]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[13]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[14]
Katzman R, Saitoh T. Advances in Alzheimer’s disease. FASEB J 1991; 5(3): 278-86.
[http://dx.doi.org/10.1096/fasebj.5.3.2001787] [PMID: 2001787]
[15]
Katzman R, Jackson JE. Alzheimer disease: basic and clinical advances. J Am Geriatr Soc 1991; 39(5): 516-25.
[http://dx.doi.org/10.1111/j.1532-5415.1991.tb02500.x] [PMID: 1673693]
[16]
Ong K, Villemagne VL, Bahar-Fuchs A, et al. (18)F-florbetaben Aβ imaging in mild cognitive impairment. Alzheimers Res Ther 2013; 5(1): 4.
[http://dx.doi.org/10.1186/alzrt158] [PMID: 23324163]
[17]
Sabri O, Seibyl J, Rowe C, Barthel H. Beta-amyloid imaging with florbetaben. Clin Transl Imaging 2015; 3(1): 13-26.
[http://dx.doi.org/10.1007/s40336-015-0102-6] [PMID: 25741488]
[18]
Bullich S, Seibyl J, Catafau AM, et al. Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment. Neuroimage Clin 2017; 15: 325-32.
[http://dx.doi.org/10.1016/j.nicl.2017.04.025] [PMID: 28560157]
[19]
Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Amyloid PET Study Group. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015; 313(19): 1939-49.
[http://dx.doi.org/10.1001/jama.2015.4669] [PMID: 25988463]
[20]
Pike KE, Savage G, Villemagne VL, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 2007; 130(Pt 11): 2837-44.
[http://dx.doi.org/10.1093/brain/awm238] [PMID: 17928318]
[21]
Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68(20): 1718-25.
[http://dx.doi.org/10.1212/01.wnl.0000261919.22630.ea] [PMID: 17502554]
[22]
Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 2009; 65(5): 557-68.
[http://dx.doi.org/10.1002/ana.21598] [PMID: 19475670]
[23]
Jack CR Jr, Lowe VJ, Weigand SD, et al. Alzheimer’s Disease Neuroimaging Initiative. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 2009; 132(Pt 5): 1355-65.
[http://dx.doi.org/10.1093/brain/awp062] [PMID: 19339253]
[24]
Landau SM, Horng A, Fero A, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 2016; 86(15): 1377-85.
[http://dx.doi.org/10.1212/WNL.0000000000002576] [PMID: 26968515]
[25]
Maillard P, Seshadri S, Beiser A, et al. Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: a cross-sectional study. Lancet Neurol 2012; 11(12): 1039-47.
[http://dx.doi.org/10.1016/S1474-4422(12)70241-7] [PMID: 23122892]
[26]
Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 2006; 63(5): 665-72.
[http://dx.doi.org/10.1001/archneur.63.5.665] [PMID: 16682536]
[27]
Bullich S, Villemagne VL, Catafau AM, et al. Optimal reference region to measure longitudinal amyloid-β change with 18F-florbetaben PET. J Nucl Med 2017; 58(8): 1300-6.
[http://dx.doi.org/10.2967/jnumed.116.187351] [PMID: 28183994]
[28]
Taki Y, Goto R, Evans A, et al. Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging 2004; 25(4): 455-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.09.002] [PMID: 15013566]
[29]
Jack CR Jr, Petersen RC, Xu YC, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997; 49(3): 786-94.
[http://dx.doi.org/10.1212/WNL.49.3.786] [PMID: 9305341]
[30]
Kim GH, Kwon HJ, Go SA, Kim JE, Park KD, Choi KG, et al. T1-axial medial temporal atrophy visual rating: a comparable study with Schelten’s T1-coronal visual rating. Dement Neurocognitive Disord 2009; 8(1): 37-44.
[http://dx.doi.org/10.12779/dnd.2018.17.1.37]
[31]
Scheltens P, Launer LJ, Barkhof F, Weinstein HC, van Gool WA. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995; 242(9): 557-60.
[http://dx.doi.org/10.1007/BF00868807] [PMID: 8551316]
[32]
Kim JE, Park SH, Hong YJ, et al. Qualitative comparison of semantic memory impairment in patients with amnestic mild cognitive impairment based on β-amyloid status. J Clin Neurol 2019; 15(1): 27-37.
[http://dx.doi.org/10.3988/jcn.2019.15.1.27] [PMID: 30375759]
[33]
Tulving E. Multiple memory systems and consciousness. Hum Neurobiol 1987; 6(2): 67-80.
[PMID: 3305441]
[34]
Alzheimer’s A. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[35]
Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 2013; 15(4): 445-54.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/hjahn] [PMID: 24459411]
[36]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 2018; 7: 7.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[37]
Choi H, Kim JH, Lee CM, Kim JI. Features of semantic language impairment in patients with amnestic mild cognitive impairment. Dement Neurocognitive Disord 2013; 12(2): 33-40.
[http://dx.doi.org/10.12779/dnd.2013.12.2.33]
[38]
Daum I, Riesch G, Sartori G, Birbaumer N. Semantic memory impairment in Alzheimer’s disease. J Clin Exp Neuropsychol 1996; 18(5): 648-65.
[http://dx.doi.org/10.1080/01688639608408289] [PMID: 8941851]
[39]
Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7(5): 631-9.
[http://dx.doi.org/10.1017/S1355617701755105] [PMID: 11459114]
[40]
Seo EH, Lee DY, Choo IH, et al. Performance on the Benton Visual Retention Test in an educationally diverse elderly population. J Gerontol B Psychol Sci Soc Sci 2007; 62(3): 191-3.
[http://dx.doi.org/10.1093/geronb/62.3.P191] [PMID: 17507588]
[41]
Coman E, Moses JA Jr, Kraemer HC, Friedman L, Benton AL, Yesavage J. Geriatric performance on the Benton Visual Retention Test: demographic and diagnostic considerations. Clin Neuropsychol 1999; 13(1): 66-77.
[http://dx.doi.org/10.1076/clin.13.1.66.1972] [PMID: 10937649]
[42]
Kawas CH, Corrada MM, Brookmeyer R, et al. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 2003; 60(7): 1089-93.
[http://dx.doi.org/10.1212/01.WNL.0000055813.36504.BF] [PMID: 12682311]
[43]
Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 2008; 9(3): 182-94.
[http://dx.doi.org/10.1038/nrn2335] [PMID: 18270514]
[44]
Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 1957; 20(1): 11-21.
[http://dx.doi.org/10.1136/jnnp.20.1.11] [PMID: 13406589]
[45]
Iachini I, Iavarone A, Senese VP, Ruotolo F, Ruggiero G. Visuospatial memory in healthy elderly, AD and MCI: a review. Curr Aging Sci 2009; 2(1): 43-59.
[http://dx.doi.org/10.2174/1874609810902010043] [PMID: 20021398]
[46]
Trojano L, Grossi D, Linden DE, et al. Coordinate and categorical judgements in spatial imagery. An fMRI study. Neuropsychologia 2002; 40(10): 1666-74.
[http://dx.doi.org/10.1016/S0028-3932(02)00021-0] [PMID: 11992655]
[47]
Trojano L, Conson M, Maffei R, Grossi D. Categorical and coordinate spatial processing in the imagery domain investigated by rTMS. Neuropsychologia 2006; 44(9): 1569-74.
[http://dx.doi.org/10.1016/j.neuropsychologia.2006.01.017] [PMID: 16529780]
[48]
Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain 2016; 139(Pt 5): 1527-38.
[http://dx.doi.org/10.1093/brain/aww003] [PMID: 26912642]
[49]
Gellersen HM, Guo CC, O’Callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry 2017; 88(9): 780-8.
[http://dx.doi.org/10.1136/jnnp-2017-315607] [PMID: 28501823]
[50]
Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413-34.
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125606] [PMID: 19555291]
[51]
Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar gray matter atrophy across Alzheimer’s disease progression. Front Cell Neurosci 2018; 12: 430.
[http://dx.doi.org/10.3389/fncel.2018.00430] [PMID: 30515080]
[52]
Tanaka H, Harada M, Arai M, Hirata K. Cognitive dysfunction in cortical cerebellar atrophy correlates with impairment of the inhibitory system. Neuropsychobiology 2003; 47(4): 206-11.
[http://dx.doi.org/10.1159/000071216] [PMID: 12824744]
[53]
Chételat G, Ossenkoppele R, Villemagne VL, et al. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer’s disease. Brain 2016; 139(Pt 9): 2528-39.
[http://dx.doi.org/10.1093/brain/aww159] [PMID: 27357349]
[54]
Ten Kate M, Barkhof F, Visser PJ, et al. Amyloid-independent atrophy patterns predict time to progression to dementia in mild cognitive impairment. Alzheimers Res Ther 2017; 9(1): 73.
[http://dx.doi.org/10.1186/s13195-017-0299-x] [PMID: 28899429]
[55]
Karas G, Sluimer J, Goekoop R, et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 2008; 29(5): 944-9.
[http://dx.doi.org/10.3174/ajnr.A0949] [PMID: 18296551]
[56]
Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009; 44(2): 489-501.
[http://dx.doi.org/10.1016/j.neuroimage.2008.08.039] [PMID: 18835452]
[57]
Guo W, Liu F, Zhang Z, et al. Increased cerebellar functional connectivity with the default-mode network in unaffected siblings of schizophrenia patients at rest. Schizophr Bull 2015; 41(6): 1317-25.
[http://dx.doi.org/10.1093/schbul/sbv062] [PMID: 25956897]
[58]
Guo W, Liu F, Liu J, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine 2015; 94(9)e560
[http://dx.doi.org/10.1097/MD.0000000000000560] [PMID: 25738471]
[59]
Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2012; 11(2): 352-65.
[http://dx.doi.org/10.1007/s12311-011-0260-7] [PMID: 21373864]
[60]
Jack CR Jr, Knopman DS, Chételat G, et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol 2016; 12(2): 117-24.
[http://dx.doi.org/10.1038/nrneurol.2015.251] [PMID: 26782335]
[61]
Dani M, Brooks DJ, Edison P. Suspected non-Alzheimer’s pathology - Is it non-Alzheimer’s or non-amyloid? Ageing Res Rev 2017; 36: 20-31.
[http://dx.doi.org/10.1016/j.arr.2017.02.003] [PMID: 28235659]
[62]
Chung JK, Plitman E, Nakajima S, et al. Alzheimer’s Disease Neuroimaging Initiative. Hippocampal and clinical trajectories of mild cognitive impairment with suspected non-Alzheimer’s disease pathology. J Alzheimers Dis 2017; 58(3): 747-62.
[http://dx.doi.org/10.3233/JAD-170201] [PMID: 28505977]
[63]
Jack CR Jr, Bennett DA, Blennow K, et al. Contributors. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[64]
Wennberg AM, Whitwell JL, Tosakulwong N, et al. The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiol Aging 2019; 77: 26-36.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.008] [PMID: 30776649]
[65]
Mufson EJ, Binder L, Counts SE, et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol 2012; 123(1): 13-30.
[http://dx.doi.org/10.1007/s00401-011-0884-1] [PMID: 22101321]
[66]
Maass A, Lockhart SN, Harrison TM, et al. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 2018; 38(3): 530-43.
[http://dx.doi.org/10.1523/JNEUROSCI.2028-17.2017] [PMID: 29192126]
[67]
Tanninen SE, Nouriziabari B, Morrissey MD, et al. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol Aging 2017; 58: 151-62.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.024] [PMID: 28735144]
[68]
Beach TG, Sue L, Scott S, et al. Hippocampal sclerosis dementia with tauopathy. Brain Pathol 2003; 13(3): 263-78.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00027.x] [PMID: 12946017]
[69]
Zhang X, Sun B, Wang X, et al. Phosphorylated TDP-43 staging of primary age-related tauopathy. Neurosci Bull 2019; 35(2): 183-92.
[http://dx.doi.org/10.1007/s12264-018-0300-0] [PMID: 30382507]
[70]
Gregory JM, McDade K, Bak TH, et al. Executive, language and fluency dysfunction are markers of localised TDP-43 cerebral pathology in non-demented ALS. J Neurol Neurosurg Psychiatry 2020; 91(2): 149-57.
[http://dx.doi.org/10.1136/jnnp-2019-320807] [PMID: 31515300]
[71]
Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142(6): 1503-27.
[http://dx.doi.org/10.1093/brain/awz099] [PMID: 31039256]
[72]
Rauramaa T, Pikkarainen M, Englund E, et al. TAR-DNA binding protein-43 and alterations in the hippocampus. J Neural Transm (Vienna) 2011; 118(5): 683-9.
[http://dx.doi.org/10.1007/s00702-010-0574-5] [PMID: 21210283]
[73]
Botha H, Mantyh WG, Murray ME, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 2018; 141(4): 1201-17.
[http://dx.doi.org/10.1093/brain/awy049] [PMID: 29538658]
[74]
Probst A, Taylor KI, Tolnay M. Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathol 2007; 114(4): 335-45.
[http://dx.doi.org/10.1007/s00401-007-0262-1] [PMID: 17639426]
[75]
Karas GB, Scheltens P, Rombouts SA, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004; 23(2): 708-16.
[http://dx.doi.org/10.1016/j.neuroimage.2004.07.006] [PMID: 15488420]
[76]
Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 2004; 23(1): 17-20.
[http://dx.doi.org/10.1016/j.neuroimage.2004.05.010] [PMID: 15325347]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy