Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Review Article

Natural Products as Anti-Cancerous Therapeutic Molecules Targeted towards Topoisomerases

Author(s): Swati Singh, Veda P. Pandey, Kusum Yadav, Anurag Yadav and U. N. Dwivedi*

Volume 21 , Issue 11 , 2020

Page: [1103 - 1142] Pages: 40

DOI: 10.2174/1389203721666200918152511

Price: $65

Abstract

Topoisomerases are reported to resolve the topological problems of DNA during several cellular processes, such as DNA replication, transcription, recombination, and chromatin remodeling. Two types of topoisomerases (Topo I and II) accomplish their designated tasks by introducing single- or double-strand breaks within the duplex DNA molecules, and thus maintain the proper structural conditions of DNA to release the topological torsions, which is generated by unwinding of DNA to access coded information, in the course of replication, transcription, and other processes. Both the topoisomerases have been looked at as crucial targets against various types of cancers such as lung, melanoma, breast, and prostate cancers. Conceptually, targeting topoisomerases will disrupt both DNA replication and transcription, thereby leading to inhibition of cell division and consequently stopping the growth of actively dividing cancerous cells. Since the discovery of camptothecin (an alkaloid) as an inhibitor of Topo I in 1958, a number of derivatives of camptothecin were developed as potent inhibitors of Topo I. Two such derivatives of camptothecin, namely, topotecan and irinotecan, have been commonly used as US Food and Drug Administration (FDA) approved drugs against Topo I. Similarly, the first Topo II inhibitor, namely, etoposide, an analogue of podophyllotoxin, was developed in 1966 and got FDA approval as an anti-cancer drug in 1983. Subsequently, several other inhibitors of Topo II, such as doxorubicin, mitoxantrone, and teniposide, were developed. These drugs have been reported to cause accumulation of cytotoxic non-reversible DNA double-strand breaks (cleavable complex). Thus, the present review describes the anticancer potential of plant-derived secondary metabolites belonging to alkaloids, flavonoids and terpenoids directed against topoisomerases. Furthermore, in view of the recent advances made in the field of computer-aided drug design, the present review also discusses the use of computational approaches such as ADMET, molecular docking, molecular dynamics simulation and QSAR to assess and predict the safety, efficacy, potency and identification of these potent anti-cancerous therapeutic molecules.

Keywords: Topoisomerase, topos inhibitors, cancer, alkaloids, flavonoids, terpenoids, molecular docking, molecular dynamics simulation, pharmacophore, QSAR, virtual screening.

Graphical Abstract
[1]
Liu, L.F. DNA Topoisomerases: Biochemistry and Molecular Biology. Adv. Pharmacol., 1994, 29, 1-310.
[2]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[3]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[4]
Kellner, U.; Sehested, M.; Jensen, P.B.; Gieseler, F.; Rudolph, P. Culprit and victim DNA topoisomerase II. Lancet Oncol., 2002, 3(4), 235-243.
[http://dx.doi.org/10.1016/S1470-2045(02)00715-5] [PMID: 12067686]
[5]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-33.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012]
[6]
Greaves, L.C.; Reeve, A.K.; Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA and disease. J. Pathol., 2012, 226(2), 274-286.
[http://dx.doi.org/10.1002/path.3028] [PMID: 21989606]
[7]
Liang, X.; Wu, Q.; Luan, S.; Yin, Z.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; He, M.; Lv, C.; Zhang, W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur. J. Med. Chem., 2019, 171, 129-168.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.034] [PMID: 30917303]
[8]
Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[http://dx.doi.org/10.4236/pp.2013.43A003]
[9]
Leppard, J.B.; Champoux, J.J. Human DNA topoisomerase I: Relaxation, roles, and damage control. Chromosoma, 2005, 114(2), 75-85.
[http://dx.doi.org/10.1007/s00412-005-0345-5] [PMID: 15830206]
[10]
Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[11]
Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[12]
Stewart, L.; Ireton, G.C.; Champoux, J. J. The Domain Organization of Human Topoisomerase I. J. Biol. Chem., 1996, 271(13), 7602-8.
[http://dx.doi.org/10.1074/jbc.271.13.7602]
[13]
Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 1998, 279(5356), 1504-1513.
[http://dx.doi.org/10.1126/science.279.5356.1504] [PMID: 9488644]
[14]
Austin, C.A.; Patel, S.; Ono, K.; Nakane, H.; Fisher, L.M. Site-specific DNA cleavage by mammalian DNA topoisomerase II induced by novel flavone and catechin derivatives. Biochem. J., 1992, 282(Pt 3), 883-889.
[http://dx.doi.org/10.1042/bj2820883] [PMID: 1313232]
[15]
Jenkins, J.R.; Ayton, P.; Jones, T.; Davies, S.L.; Simmons, D.L.; Harris, A.L.; Sheer, D.; Hickson, I.D. Isolation of cDNA clones encoding the β isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic Acids Res., 1992, 20(21), 5587-5592.
[http://dx.doi.org/10.1093/nar/20.21.5587] [PMID: 1333583]
[16]
Tan, K.B.; Dorman, T.E.; Falls, K.M.; Chung, T.D.Y.; Mirabelli, C.K.; Crooke, S.T.; Mao, J. Topoisomerase II α and topoisomerase II β genes: Characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res., 1992, 52(1), 231-234.
[PMID: 1309226]
[17]
Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. Proc. Natl. Acad. Sci. USA, 1988, 85(19), 7177-7181.
[http://dx.doi.org/10.1073/pnas.85.19.7177] [PMID: 2845399]
[18]
Corbett, K.D.; Berger, J.M. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 95-118.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.140357] [PMID: 15139806]
[19]
Chen, S.H.; Chan, N.L.; Hsieh, T.S. New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem., 2013, 82, 139-170.
[http://dx.doi.org/10.1146/annurev-biochem-061809-100002] [PMID: 23495937]
[20]
Dutta, R.; Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci., 2000, 25(1), 24-28.
[http://dx.doi.org/10.1016/S0968-0004(99)01503-0] [PMID: 10637609]
[21]
Classen, S.; Olland, S.; Berger, J.M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10629-10634.
[http://dx.doi.org/10.1073/pnas.1832879100] [PMID: 12963818]
[22]
Wigley, D.B.; Davies, G.J.; Dodson, E.J.; Maxwell, A.; Dodson, G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature, 1991, 351(6328), 624-629.
[http://dx.doi.org/10.1038/351624a0] [PMID: 1646964]
[23]
Roca, J.; Wang, J.C. The capture of a DNA double helix by an ATP-dependent protein clamp: A key step in DNA transport by type II DNA topoisomerases. Cell, 1992, 71(5), 833-840.
[http://dx.doi.org/10.1016/0092-8674(92)90558-T] [PMID: 1330327]
[24]
Wendorff, T.J.; Schmidt, B.H.; Heslop, P.; Austin, C.A.; Berger, J.M. The structure of DNA-bound human topoisomerase II alpha: Conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol., 2012, 424(3-4), 109-124.
[http://dx.doi.org/10.1016/j.jmb.2012.07.014] [PMID: 22841979]
[25]
Aravind, L.; Leipe, D.D.; Koonin, E.V. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res., 1998, 26(18), 4205-4213.
[http://dx.doi.org/10.1093/nar/26.18.4205] [PMID: 9722641]
[26]
Harrison, S.C.; Aggarwal, A.K. DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem., 1990, 59, 933-969.
[http://dx.doi.org/10.1146/annurev.bi.59.070190.004441] [PMID: 2197994]
[27]
Berger, J.M.; Gamblin, S.J.; Harrison, S.C.; Wang, J.C. Structure and mechanism of DNA topoisomerase II. Nature, 1996, 379(6562), 225-232.
[http://dx.doi.org/10.1038/379225a0] [PMID: 8538787]
[28]
Dong, K.C.; Berger, J.M. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature, 2007, 450(7173), 1201-1205.
[http://dx.doi.org/10.1038/nature06396] [PMID: 18097402]
[29]
Fass, D.; Bogden, C.E.; Berger, J.M. Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat. Struct. Biol., 1999, 6(4), 322-326.
[http://dx.doi.org/10.1038/7556] [PMID: 10201398]
[30]
Schmidt, B.H.; Osheroff, N.; Berger, J.M. Structure of a topoisomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat. Struct. Mol. Biol., 2012, 19(11), 1147-1154.
[http://dx.doi.org/10.1038/nsmb.2388] [PMID: 23022727]
[31]
Laponogov, I.; Veselkov, D.A.; Crevel, I.M.; Pan, X.S.; Fisher, L.M.; Sanderson, M.R. Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res., 2013, 41(21), 9911-9923.
[http://dx.doi.org/10.1093/nar/gkt749] [PMID: 23965305]
[32]
Heck, M.M.; Earnshaw, W.C. Topoisomerase II: A specific marker for cell proliferation. J. Cell Biol., 1986, 103(6 Pt 2), 2569-2581.
[http://dx.doi.org/10.1083/jcb.103.6.2569] [PMID: 3025219]
[33]
Chhatriwala, H.; Jafri, N.; Salgia, R. A review of topoisomerase inhibition in lung cancer. Cancer Biol. Ther., 2006, 5(12), 1600-1607.
[http://dx.doi.org/10.4161/cbt.5.12.3546] [PMID: 17224634]
[34]
Kim, Y.M.; Lee, S.W.; Kim, D.Y.; Kim, J.H.; Nam, J.H.; Kim, Y.T. The efficacy and toxicity of belotecan (CKD-602), a camptothericin analogue topoisomerase I inhibitor, in patients with recurrent or refractory epithelial ovarian cancer. J. Chemother., 2010, 22(3), 197-200.
[http://dx.doi.org/10.1179/joc.2010.22.3.197] [PMID: 20566426]
[35]
Munster, P.N.; Daud, A.I. Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opin. Investig. Drugs, 2011, 20(11), 1565-1574.
[http://dx.doi.org/10.1517/13543784.2011.617740] [PMID: 21985236]
[36]
Liu, Y.; Gao, F.; Jiang, H.; Niu, L.; Bi, Y.; Young, C.Y.; Yuan, H.; Lou, H. Induction of DNA damage and ATF3 by retigeric acid B, a novel topoisomerase II inhibitor, promotes apoptosis in prostate cancer cells. Cancer Lett., 2013, 337(1), 66-76.
[http://dx.doi.org/10.1016/j.canlet.2013.05.022] [PMID: 23693077]
[37]
Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: How cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol., 2011, 12(12), 827-841.
[http://dx.doi.org/10.1038/nrm3228] [PMID: 22108601]
[38]
Forterre, P.; Gribaldo, S.; Gadelle, D.; Serre, M.C. Origin and evolution of DNA topoisomerases. Biochimie, 2007, 89(4), 427-446.
[http://dx.doi.org/10.1016/j.biochi.2006.12.009] [PMID: 17293019]
[39]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[40]
Garcia-Carbonero, R.; Supko, J.G. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin. Cancer Res., 2002, 8(3), 641-661.
[PMID: 11895891]
[41]
Pommier, Y. Topoisomerase I Inhibitors: Molecular and Cellular Determinants of Activity http://discover.nci.nih.gov/pommier/top1.htm2003.
[42]
Jain, C.K.; Majumder, H.K.; Roychoudhury, S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr. Genomics, 2017, 18(1), 75-92.
[http://dx.doi.org/10.2174/1389202917666160808125213] [PMID: 28503091]
[43]
Pommier, Y.; Cushman, M. The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: Update and perspectives. Mol. Cancer Ther., 2009, 8(5), 1008-1014.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0706] [PMID: 19383846]
[44]
Teicher, B.A. Next generation topoisomerase I inhibitors: Rationale and biomarker strategies. Biochem. Pharmacol., 2008, 75(6), 1262-1271.
[http://dx.doi.org/10.1016/j.bcp.2007.10.016] [PMID: 18061144]
[45]
Li, T.K.; Liu, L.F. Tumor cell death induced by topoisomerase-targeting drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 53-77.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.53] [PMID: 11264450]
[46]
Sordet, O.; Khan, Q.A.; Kohn, K.W.; Pommier, Y. Apoptosis induced by topoisomerase inhibitors. Curr. Med. Chem. Anticancer Agents, 2003, 3(4), 271-290.
[http://dx.doi.org/10.2174/1568011033482378] [PMID: 12769773]
[47]
Giovanella, B.C.; Hinz, H.R.; Kozielski, A.J.; Stehlin, J.S., Jr; Silber, R.; Potmesil, M. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin. Cancer Res., 1991, 51(11), 3052-3055.
[PMID: 2032244]
[48]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[49]
Gigliotti, C.L.; Minelli, R.; Cavalli, R.; Occhipinti, S.; Barrera, G.; Pizzimenti, S.; Cappellano, G.; Boggio, E.; Conti, L.; Fantozzi, R.; Giovarelli, M.; Trotta, F.; Dianzani, U.; Dianzani, C. In Vitro and In Vivo Therapeutic Evaluation of Camptothecin-Encapsulated β-Cyclodextrin Nanosponges in Prostate Cancer. J. Biomed. Nanotechnol., 2016, 12(1), 114-127.
[http://dx.doi.org/10.1166/jbn.2016.2144] [PMID: 27301177]
[50]
Gigliotti, C.L.; Ferrara, B.; Occhipinti, S.; Boggio, E.; Barrera, G.; Pizzimenti, S.; Giovarelli, M.; Fantozzi, R.; Chiocchetti, A.; Argenziano, M.; Clemente, N.; Trotta, F.; Marchio, C.; Annaratone, L.; Boldorini, R. Dianzani, U.; Cavalli, R.; Dianzani, C. . Enhanced cytotoxic effect of camptothecinnanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv., 2017, 24(1), 670-680.
[http://dx.doi.org/10.1080/10717544.2017.1303856] [PMID: 28368209]
[51]
Chou, H.L.; Fong, Y.; Lin, H.H.; Tsai, E. M.; Chen, J.Y.F.; Chang, W.T.; Wu, C.Y; Wang, H.M. D.; Huang, H.W.; Chiu, C.C. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid. Med. Cell. Longev, 2016, 9128102.
[http://dx.doi.org/10.1155/2016/9128102]
[52]
Sparreboom, A.; Zamboni, W.C. Topoisomerase I-Targeting Drugs.Chabner BA, Longo DL, editors. Cancer Chemotherapy and Biotherapy; Fourth ed: Lippincott Williams Wilkins, 2006, pp. 371-413.
[53]
Riemsma, R.; Simons, J.P.; Bashir, Z.; Gooch, C.L.; Kleijnen, J. Systematic Review of topotecan (Hycamtin) in relapsed small cell lung cancer. BMC Cancer, 2010, 10, 436.
[http://dx.doi.org/10.1186/1471-2407-10-436] [PMID: 20716361]
[54]
Kummar, S.; Chen, A.; Ji, J.; Zhang, Y.; Reid, J.M.; Ames, M.; Jia, L.; Weil, M.; Speranza, G.; Murgo, A.J.; Kinders, R.; Wang, L.; Parchment, R.E.; Carter, J.; Stotler, H.; Rubinstein, L.; Hollingshead, M.; Melillo, G.; Pommier, Y.; Bonner, W.; Tomaszewski, J.E.; Doroshow, J.H. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res., 2011, 71(17), 5626-5634.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1227] [PMID: 21795476]
[55]
Wahner Hendrickson, A.E.; Menefee, M.E.; Hartmann, L.C.; Long, H.J.; Northfelt, D.W.; Reid, J.M.; Boakye-Agyeman, F.; Kayode, O.; Flatten, K.S.; Harrell, M.I.; Swisher, E.M.; Poirer, G.G.; Satele, D.; Allred, J.; Lensing, J.L.; Chen, A.; Ji, J.; Zang, Y.; Erlichman, C.; Haluska, P.; Kaufmann, S.H. A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors. Clin. Cancer Res., 2018, 24(4), 744-752.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1590] [PMID: 29138343]
[56]
Samol, J.; Ranson, M.; Scott, E.; Macpherson, E.; Carmichael, J.; Thomas, A.; Cassidy, J. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: A phase I study. Invest. New Drugs, 2012, 30(4), 1493-1500.
[http://dx.doi.org/10.1007/s10637-011-9682-9] [PMID: 21590367]
[57]
Thomas, A.; Redon, C.E.; Sciuto, L.; Padiernos, E.; Ji, J.; Lee, M.J.; Yuno, A.; Lee, S.; Zhang, Y.; Tran, L.; Yutzy, W.; Rajan, A.; Guha, U.; Chen, H.; Hassan, R.; Alewine, C.C.; Szabo, E.; Bates, S.E.; Kinders, R.J.; Steinberg, S.M.; Doroshow, J.H.; Aladjem, M.I.; Trepel, J.B.; Pommier, Y.; Phase, I. Phase I Study of ATR Inhibitor M6620 in Combination With Topotecan in Patients With Advanced Solid Tumors. J. Clin. Oncol., 2018, 36(16), 1594-1602.
[http://dx.doi.org/10.1200/JCO.2017.76.6915] [PMID: 29252124]
[58]
Huntoon, C.J.; Flatten, K.S.; Wahner Hendrickson, A.E.; Huehls, A.M.; Sutor, S.L.; Kaufmann, S.H.; Karnitz, L.M. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res., 2013, 73(12), 3683-3691.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0110] [PMID: 23548269]
[59]
Patel, A.G.; Flatten, K.S.; Schneider, P.A.; Dai, N.T.; McDonald, J.S.; Poirier, G.G.; Kaufmann, S.H. Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J. Biol. Chem., 2012, 287(6), 4198-4210.
[http://dx.doi.org/10.1074/jbc.M111.296475] [PMID: 22158865]
[60]
Gilbert, D.C.; Chalmers, A.J.; El-Khamisy, S.F. Topoisomerase I inhibition in colorectal cancer: Biomarkers and therapeutic targets. Br. J. Cancer, 2012, 106(1), 18-24.
[http://dx.doi.org/10.1038/bjc.2011.498] [PMID: 22108516]
[61]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S.; Bins, S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[62]
LoRusso, P.M.; Li, J.; Burger, A.; Heilbrun, L.K.; Sausville, E.A.; Boerner, S.A.; Smith, D.; Pilat, M.J.; Zhang, J.; Tolaney, S.M.; Cleary, J.M.; Chen, A.P.; Rubinstein, L.; Boerner, J.L.; Bowditch, A.; Cai, D.; Bell, T.; Wolanski, A.; Marrero, A.M.; Zhang, Y.; Ji, J.; Ferry-Galow, K.; Kinders, R.J.; Parchment, R.E.; Shapiro, G.I.; Phase, I. Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of the Poly(ADP-ribose) Polymerase (PARP) Inhibitor Veliparib (ABT-888) in Combination with Irinotecan in Patients with Advanced Solid Tumors. Clin. Cancer Res., 2016, 22(13), 3227-3237.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0652] [PMID: 26842236]
[63]
Chen, E.X.; Jonker, D.J.; Siu, L.L.; McKeever, K.; Keller, D.; Wells, J.; Hagerman, L.; Seymour, L. A Phase I study of olaparib and irinotecan in patients with colorectal cancer: Canadian Cancer Trials Group IND 187. Invest. New Drugs, 2016, 34(4), 450-457.
[http://dx.doi.org/10.1007/s10637-016-0351-x] [PMID: 27075016]
[64]
Ho, A.L.; Bendell, J.C.; Cleary, J.M.; Schwartz, G.K.; Burris, H.A.; Oakes, P.; Agbo, F.; Barker, P.N.; Senderowicz, A.M.; Shapiro, G. Phase I, open-label, dose-escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. J. Clin. Oncol., 2011, 29, 3033.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.3033]
[65]
Ma, C.X.; Cai, S.; Li, S.; Ryan, C.E.; Guo, Z.; Schaiff, W.T.; Lin, L.; Hoog, J.; Goiffon, R.J.; Prat, A.; Aft, R.L.; Ellis, M.J.; Piwnica-Worms, H. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J. Clin. Invest., 2012, 122(4), 1541-1552.
[http://dx.doi.org/10.1172/JCI58765] [PMID: 22446188]
[66]
Zhang, J.; Zhou, L.; Zhao, S.; Dicker, D.T.; El-Deiry, W.S. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle, 2017, 16(12), 1193-1200.
[http://dx.doi.org/10.1080/15384101.2017.1320005] [PMID: 28486050]
[67]
Iwai, T.; Sugimoto, M.; Wakita, D.; Yorozu, K.; Kurasawa, M.; Yamamoto, K. Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies. Oncotarget, 2018, 9(59), 31411-31421.
[http://dx.doi.org/10.18632/oncotarget.25830] [PMID: 30140379]
[68]
Jossé, R.; Martin, S.E.; Guha, R.; Ormanoglu, P.; Pfister, T.D.; Reaper, P.M.; Barnes, C.S.; Jones, J.; Charlton, P.; Pollard, J.R.; Morris, J.; Doroshow, J.H.; Pommier, Y. ATR inhibitors VE-821 and VX-970 sensitize cancer cells to topoisomerase i inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res., 2014, 74(23), 6968-6979.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3369] [PMID: 25269479]
[69]
Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; Hubner, R.A.; Chiu, C.F.; Schwartsmann, G.; Siveke, J.T.; Braiteh, F.; Moyo, V.; Belanger, B.; Dhindsa, N.; Bayever, E.; Von Hoff, D.D.; Chen, L.T. NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet, 2016, 387(10018), 545-557.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]
[70]
Chibaudel, B.; Maindrault-Gœbel, F.; Bachet, J.B.; Louvet, C.; Khalil, A.; Dupuis, O.; Hammel, P.; Garcia, M.L.; Bennamoun, M.; Brusquant, D.; Tournigand, C.; André, T.; Arbaud, C.; Larsen, A.K.; Wang, Y.W.; Yeh, C.G.; Bonnetain, F.; de Gramont, A. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP02 (MM-398) or irinotecan with leucovorin/5-fluorouracil as second-line therapy in metastatic colorectal cancer. Cancer Med., 2016, 5(4), 676-683.
[http://dx.doi.org/10.1002/cam4.635] [PMID: 26806397]
[71]
Gaponova, A.V.; Nikonova, A.S.; Deneka, A.; Kopp, M.C.; Kudinov, A.E.; Skobeleva, N.; Khazak, V.; Ogawa, L.S.; Cai, K.Q.; Duncan, K.E.; Duncan, J.S.; Egleston, B.L.; Proia, D.A.; Boumber, Y.; Golemis, E.A. A Novel HSP90 Inhibitor-Drug Conjugate to SN38 Is Highly Effective in Small Cell Lung Cancer. Clin. Cancer Res., 2016, 22(20), 5120-5129.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-3068] [PMID: 27267850]
[72]
Heske, C.M.; Mendoza, A.; Edessa, L.D.; Baumgart, J.T.; Lee, S.; Trepel, J.; Proia, D.A.; Neckers, L.; Helman, L.J. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget, 2016, 7(40), 65540-65552.
[http://dx.doi.org/10.18632/oncotarget.11869] [PMID: 27608846]
[73]
Gokduman, K. Strategies Targeting DNA Topoisomerase I in Cancer Chemotherapy: Camptothecins, Nanocarriers for Camptothecins, Organic Non-Camptothecin Compounds and Metal Complexes. Curr. Drug Targets, 2016, 17(16), 1928-1939.
[http://dx.doi.org/10.2174/1389450117666160502151707] [PMID: 27138759]
[74]
Pommier, Y.; Cushman, M.; Doroshow, J.H. Novel clinical indenoisoquinoline topoisomerase I inhibitors: A twist around the camptothecins. Oncotarget, 2018, 9(99), 37286-37288.
[http://dx.doi.org/10.18632/oncotarget.26466] [PMID: 30647868]
[75]
Beck, D.E.; Lv, W.; Abdelmalak, M.; Plescia, C.B.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of new fluorinated and chlorinated indenoisoquinoline topoisomerase I poisons. Bioorg. Med. Chem., 2016, 24(7), 1469-1479.
[http://dx.doi.org/10.1016/j.bmc.2016.02.015] [PMID: 26906474]
[76]
Marzi, L.; Agama, K.; Murai, J.; Difilippantonio, S.; James, A.; Peer, C.J.; Figg, W.D.; Beck, D.; Elsayed, M.S.A.; Cushman, M.; Pommier, Y. Novel Fluoroindenoisoquinoline Non-Camptothecin Topoisomerase I Inhibitors. Mol. Cancer Ther., 2018, 17(8), 1694-1704.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0028] [PMID: 29748210]
[77]
Elsayed, M.S.A.; Su, Y.; Wang, P.; Sethi, T.; Agama, K.; Ravji, A.; Redon, C.E.; Kiselev, E.; Horzmann, K.A.; Freeman, J.L.; Pommier, Y.; Cushman, M. Design and Synthesis of Chlorinated and Fluorinated 7-Azaindenoisoquinolines as Potent Cytotoxic Anticancer Agents That Inhibit Topoisomerase I. J. Med. Chem., 2017, 60(13), 5364-5376.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01870] [PMID: 28657311]
[78]
Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; Hirai, T.; Atsumi, R.; Nakada, T.; Hayakawa, I.; Abe, Y.; Agatsuma, T. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res., 2016, 22(20), 5097-5108.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2822] [PMID: 27026201]
[79]
Nakada, T.; Sugihara, K.; Jikoh, T.; Abe, Y.; Agatsuma, T. The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 173-185.
[http://dx.doi.org/10.1248/cpb.c18-00744] [PMID: 30827997]
[80]
Shitara, K.; Iwata, H.; Takahashi, S.; Tamura, K.; Park, H.; Modi, S.; Tsurutani, J.; Kadowaki, S.; Yamaguchi, K.; Iwasa, S.; Saito, K.; Fujisaki, Y.; Sugihara, M.; Shahidi, J.; Doi, T. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: A dose-expansion, phase 1 study. Lancet Oncol., 2019, 20(6), 827-836.
[http://dx.doi.org/10.1016/S1470-2045(19)30088-9] [PMID: 31047804]
[81]
Tamura, K.; Tsurutani, J.; Takahashi, S.; Iwata, H.; Krop, I.E.; Redfern, C.; Sagara, Y.; Doi, T.; Park, H.; Murthy, R.K.; Redman, R.A.; Jikoh, T.; Lee, C.; Sugihara, M.; Shahidi, J.; Yver, A.; Modi, S. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: A dose-expansion, phase 1 study. Lancet Oncol., 2019, 20(6), 816-826.
[http://dx.doi.org/10.1016/S1470-2045(19)30097-X] [PMID: 31047803]
[82]
Yonesaka, K.; Takegawa, N.; Watanabe, S.; Haratani, K.; Kawakami, H.; Sakai, K.; Chiba, Y.; Maeda, N.; Kagari, T.; Hirotani, K.; Nishio, K.; Nakagawa, K. An HER3-targeting antibody-drug conjugate incorporating a DNA topoisomerase I inhibitor U3-1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene, 2019, 38(9), 1398-1409.
[http://dx.doi.org/10.1038/s41388-018-0517-4] [PMID: 30302022]
[83]
Cardillo, T.M.; Sharkey, R.M.; Rossi, D.L.; Arrojo, R.; Mostafa, A.A.; Goldenberg, D.M. Synthetic Lethality Exploitation by an Anti-Trop-2-SN-38 Antibody-Drug Conjugate, IMMU-132, Plus PARP Inhibitors in BRCA1/2-wild-type Triple-Negative Breast Cancer. Clin. Cancer Res., 2017, 23(13), 3405-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2401] [PMID: 28069724]
[84]
Gray, J.E.; Heist, R.S.; Starodub, A.N.; Camidge, D.R.; Kio, E.A.; Masters, G.A.; Purcell, W.T.; Guarino, M.J.; Misleh, J.; Schneider, C.J.; Schneider, B.J.; Ocean, A.; Johnson, T.; Gandhi, L.; Kalinsky, K.; Scheff, R.; Messersmith, W.A.; Govindan, S.V.; Maliakal, P.P.; Mudenda, B.; Wegener, W.A.; Sharkey, R.M.; Goldenberg, D.M. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan. Clin. Cancer Res., 2017, 23(19), 5711-5719.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0933] [PMID: 28679770]
[85]
Heist, R.S.; Guarino, M.J.; Masters, G.; Purcell, W.T.; Starodub, A.N.; Horn, L.; Scheff, R.J.; Bardia, A.; Messersmith, W.A.; Berlin, J.; Ocean, A.J.; Govindan, S.V.; Maliakal, P.; Mudenda, B.; Wegener, W.A.; Sharkey, R.M.; Goldenberg, D.M.; Camidge, D.R. Therapy of Advanced Non-Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan. J. Clin. Oncol., 2017, 35(24), 2790-2797.
[http://dx.doi.org/10.1200/JCO.2016.72.1894] [PMID: 28548889]
[86]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients With Metastatic Triple-Negative Breast Cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[87]
Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; Shah, N.C.; Rugo, H.S.; Goldenberg, D.M.; Sweidan, A.M.; Iannone, R.; Washkowitz, S.; Sharkey, R.M.; Wegener, W.A.; Kalinsky, K. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med., 2019, 380(8), 741-751.
[http://dx.doi.org/10.1056/NEJMoa1814213] [PMID: 30786188]
[88]
Du, Y.; Zhang, W.; He, R.; Ismail, M.; Ling, L.; Yao, C.; Fu, Z.; Li, X. Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorg. Med. Chem., 2017, 25(12), 3247-3258.
[http://dx.doi.org/10.1016/j.bmc.2017.04.025] [PMID: 28465086]
[89]
Chae, S.; Kim, D.; Lee, K.J.; Lee, D.; Kim, Y.O.; Jung, Y.C.; Rhee, S.D.; Kim, K.R.; Lee, J.O.; Ahn, S.; Koh, B. Encapsulation and Enhanced Delivery of Topoisomerase I Inhibitors in Functionalized Carbon Nanotubes. ACS Omega, 2018, 3(6), 5938-5945.
[http://dx.doi.org/10.1021/acsomega.8b00399] [PMID: 30023933]
[90]
Huang, M.; Gao, H.; Chen, Y.; Zhu, H.; Cai, Y.; Zhang, X.; Miao, Z.; Jiang, H.; Zhang, J.; Shen, H.; Lin, L.; Lu, W.; Ding, J. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin. Cancer Res., 2007, 13(4), 1298-1307.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1277] [PMID: 17287296]
[91]
Lin, Q.; Ma, L.; Wang, D.; Yang, Z.; Wang, J.; Liu, Z.; Jiang, G. A novel Camptothecin analogue inhibits colon cancer development and downregulates the expression of miR155 in vivo and in vitro. Transl. Cancer Res., 2017, 6(3), 511-520.
[http://dx.doi.org/10.21037/tcr.2017.06.20]
[92]
Zubovych, I.O.; Sethi, A.; Kulkarni, A.; Tagal, V.; Roth, M.G. A Novel Inhibitor of Topoisomerase I Is Selectively Toxic for a Subset of Non-Small Cell Lung Cancer Cell Lines. Mol. Cancer Ther., 2016, 15(1), 23-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0458] [PMID: 26668189]
[93]
Doroshow, J.H. Cancer chemotherapy and biotherapy.second ed.. Chabner, BA.; Longo, DL., editors; Philadelphia: Lippincott-Raven, 1996.
[94]
Mir, O.; Dahut, W.; Goldwasser, F.; Heery, C. DNA Topoisomerases and Cancer; Pommier, Y., Ed.; Springer, Humana Press: New York, 2012.
[95]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[96]
Menna, P.; Salvatorelli, E.; Minotti, G. Cardiotoxicity of antitumor drugs. Chem. Res. Toxicol., 2008, 21(5), 978-989.
[http://dx.doi.org/10.1021/tx800002r] [PMID: 18376852]
[97]
McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther., 2017, 31(1), 63-75.
[http://dx.doi.org/10.1007/s10557-016-6711-0] [PMID: 28185035]
[98]
Ferreira, A.L.A.; Matsubara, L.S.; Matsubara, B.B. Anthracycline-induced cardiotoxicity. Cardiovasc. Hematol. Agents Med. Chem., 2008, 6(4), 278-281.
[http://dx.doi.org/10.2174/187152508785909474] [PMID: 18855640]
[99]
Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 2012, 18(11), 1639-1642.
[http://dx.doi.org/10.1038/nm.2919] [PMID: 23104132]
[100]
Haggerty, T.J.; Dunn, I.S.; Rose, L.B.; Newton, E.E.; Martin, S.; Riley, J.L.; Kurnick, J.T. Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol. Immunother., 2011, 60(1), 133-144.
[http://dx.doi.org/10.1007/s00262-010-0926-x] [PMID: 21052994]
[101]
Tzogani, K.; Penttilä, K.; Lapveteläinen, T.; Hemmings, R.; Koenig, J.; Freire, J.; Márcia, S.; Cole, S.; Coppola, P.; Flores, B.; Barbachano, Y.; Roige, S.D.; Pignatti, F. EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the Treatment of Adults with Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Oncologist, 2020, 25, 1-7.
[http://dx.doi.org/10.1634/theoncologist.2019-0785] [PMID: 32282100]
[102]
Capranico, G.; Soranzo, C.; Zunino, F. Single-strand DNA breaks induced by chromophore-modified anthracyclines in P388 leukemia cells. Cancer Res., 1986, 46(11), 5499-5503.
[PMID: 3463414]
[103]
Capranico, G.; De Isabella, P.; Penco, S.; Tinelli, S.; Zunino, F. Role of DNA breakage in cytotoxicity of doxorubicin, 9-deoxydoxorubicin, and 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells. Cancer Res., 1989, 49(8), 2022-2027.
[PMID: 2702645]
[104]
Jarvinen, T.A.H. HoIIi, K.; Kuukasjarvi, T.; Isola, J.J. . Predictive value of topoisomerase Ioc and other prognostic factors for epirubicin chemotherapy in advanced breast cancer. Br. J. Cancer, 1998, 77(12), 2267-2273.
[http://dx.doi.org/10.1038/bjc.1998.377] [PMID: 9649144]
[105]
Willmore, E.; Errington, F.; Tilby, M.J.; Austin, C.A. Formation and longevity of idarubicin-induced DNA topoisomerase II cleavable complexes in K562 human leukaemia cells. Biochem. Pharmacol., 2002, 63(10), 1807-1815.
[http://dx.doi.org/10.1016/S0006-2952(02)00920-6] [PMID: 12034365]
[106]
Kuznetsov, D.D.; Alsikafi, N.F.; O’Connor, R.C.; Steinberg, G.D. Intravesical valrubicin in the treatment of carcinoma in situ of the bladder. Expert Opin. Pharmacother., 2001, 2(6), 1009-1013.
[http://dx.doi.org/10.1517/14656566.2.6.1009] [PMID: 11585003]
[107]
Dinney, C.P.; Greenberg, R.E.; Steinberg, G.D. Intravesical valrubicin in patients with bladder carcinoma in situ and contraindication to or failure after bacillus Calmette-Guérin. Urol. Oncol., 2013, 31(8), 1635-1642.
[http://dx.doi.org/10.1016/j.urolonc.2012.04.010] [PMID: 22575238]
[108]
Sharma, P.; Zargar-Shoshtari, K.; Sexton, W.J. Valrubicin in refractory non-muscle invasive bladder cancer. Expert Rev. Anticancer Ther., 2015, 15(12), 1379-1387.
[http://dx.doi.org/10.1586/14737140.2015.1115350] [PMID: 26569509]
[109]
Evison, B.J.; Sleebs, B.E.; Watson, K.G.; Phillips, D.R.; Cutts, S.M. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med. Res. Rev., 2016, 36(2), 248-299.
[http://dx.doi.org/10.1002/med.21364] [PMID: 26286294]
[110]
Hasinoff, B.B.; Wu, X.; Patel, D.; Kanagasabai, R.; Karmahapatra, S.; Yalowich, J.C. Mechanisms of Action and Reduced Cardiotoxicity of Pixantrone; a Topoisomerase II Targeting Agent with Cellular Selectivity for the Topoisomerase IIα Isoform. J. Pharmacol. Exp. Ther., 2016, 356(2), 397-409.
[http://dx.doi.org/10.1124/jpet.115.228650] [PMID: 26660439]
[111]
Barrenetxea Lekue, C.; Grasso Cicala, S.; Leppä, S.; Stauffer Larsen, T.; Herráez Rodríguez, S.; Alonso Caballero, C.; Jørgensen, J.M.; Toldbod, H.; Leal Martínez, I.; D’Amore, F. Pixantrone beyond monotherapy: A review. Ann. Hematol., 2019, 98(9), 2025-2033.
[http://dx.doi.org/10.1007/s00277-019-03749-0] [PMID: 31312929]
[112]
Ross, W.; Rowe, T.; Glisson, B.; Yalowich, J.; Liu, L. Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res., 1984, 44(12 Pt 1), 5857-5860.
[PMID: 6094001]
[113]
Li, J.; Chen, W.; Zhang, P.; Li, N. Topoisomerase II trapping agent teniposide induces apoptosis and G2/M or S phase arrest of oral squamous cell carcinoma. World J. Surg. Oncol., 2006, 4, 41.
[http://dx.doi.org/10.1186/1477-7819-4-41] [PMID: 16822322]
[114]
Wang, Z.; Chen, J.; Hu, J.; Zhang, H.; Xu, F.; He, W.; Wang, X.; Li, M.; Lu, W.; Zeng, G.; Zhou, P.; Huang, P.; Chen, S.; Li, W.; Xia, L.P.; Xia, X. cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J. Clin. Invest., 2019, 129(11), 4850-4862.
[http://dx.doi.org/10.1172/JCI127471] [PMID: 31408442]
[115]
Infante Lara, L.; Fenner, S.; Ratcliffe, S.; Isidro-Llobet, A.; Hann, M.; Bax, B.; Osheroff, N. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res., 2018, 46(5), 2218-2233.
[http://dx.doi.org/10.1093/nar/gky072] [PMID: 29447373]
[116]
Sinkule, J.A. Etoposide: A semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy, 1984, 4(2), 61-73.
[http://dx.doi.org/10.1002/j.1875-9114.1984.tb03318.x] [PMID: 6326063]
[117]
Braybrooke, J.P.; Levitt, N.C.; Joel, S.; Davis, T.; Madhusudan, S.; Turley, H.; Wilner, S.; Harris, A.L.; Talbot, D.C. Pharmacokinetic study of cisplatin and infusional etoposide phosphate in advanced breast cancer with correlation of response to topoisomerase IIalpha expression. Clin. Cancer Res., 2003, 9(13), 4682-4688.
[PMID: 14581337]
[118]
Bombarde, O.; Larminat, F.; Gomez, D.; Frit, P.; Racca, C.; Gomes, B.; Guilbaud, N.; Calsou, P. The DNA-Binding Polyamine Moiety in the Vectorized DNA Topoisomerase II Inhibitor F14512 Alters Reparability of the Consequent Enzyme-Linked DNA Double-Strand Breaks. Mol. Cancer Ther., 2017, 16(10), 2166-2177.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0767] [PMID: 28611105]
[119]
Leary, A.; Le Tourneau, C.; Varga, A.; Sablin, M.P.; Gomez-Roca, C.; Guilbaud, N.; Petain, A.; Pavlyuk, M.; Delord, J.P. Phase I dose-escalation study of F14512, a polyamine-vectorized topoisomerase II inhibitor, in patients with platinum-refractory or resistant ovarian cancer. Invest. New Drugs, 2019, 37(4), 693-701.
[http://dx.doi.org/10.1007/s10637-018-0688-4] [PMID: 30547316]
[120]
Wang, Y.; Sun, H.; Xiao, Z.; Zhang, D.; Bao, X.; Wei, N. XWL-1-48 exerts antitumor activity via targeting topoisomerase II and enhancing degradation of Mdm2 in human hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 9989.
[http://dx.doi.org/10.1038/s41598-017-10577-7] [PMID: 28855652]
[121]
Jehn, U.; Heinemann, V. New drugs in the treatment of acute and chronic leukemia with some emphasis on m-AMSA. Anticancer Res., 1991, 11(2), 705-711.
[PMID: 2064323]
[122]
Goodell, J.R.; Ougolkov, A.V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D.D.; Ferguson, D.M. Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J. Med. Chem., 2008, 51(2), 179-182.
[http://dx.doi.org/10.1021/jm701228e] [PMID: 18163538]
[123]
Oppegard, L.M.; Ougolkov, A.V.; Luchini, D.N.; Schoon, R.A.; Goodell, J.R.; Kaur, H.; Billadeau, D.D.; Ferguson, D.M.; Hiasa, H. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. Eur. J. Pharmacol., 2009, 602(2-3), 223-229.
[http://dx.doi.org/10.1016/j.ejphar.2008.11.044] [PMID: 19071108]
[124]
Jamieson, G.C.; Fox, J.A.; Poi, M.; Strickland, S.A. Molecular and Pharmacologic Properties of the Anticancer Quinolone Derivative Vosaroxin: A New Therapeutic Agent for Acute Myeloid Leukemia. Drugs, 2016, 76(13), 1245-1255.
[http://dx.doi.org/10.1007/s40265-016-0614-z] [PMID: 27484675]
[125]
Sedov, V.; Stuart, R.K. Vosaroxin in relapsed/refractory acute myeloid leukemia: Efficacy and safety in the context of the current treatment landscape. Ther. Adv. Hematol., 2017, 8(6), 185-195.
[http://dx.doi.org/10.1177/2040620717703012] [PMID: 28567238]
[126]
Schaeffer, E.M.; Guzzo, T.J.; Furge, K.A.; Netto, G.; Westphal, M.; Dykema, K.; Yang, X.; Zhou, M.; Teh, B.T.; Pavlovich, C.P. Renal medullary carcinoma: Molecular, pathological and clinical evidence for treatment with topoisomerase-inhibiting therapy. BJU Int., 2010, 106(1), 62-65.
[http://dx.doi.org/10.1111/j.1464-410X.2009.09139.x] [PMID: 20002663]
[127]
Haas, N.B.; Lin, X.; Manola, J.; Pins, M.; Liu, G.; McDermott, D.; Nanus, D.; Heath, E.; Wilding, G.; Dutcher, J. A phase II trial of doxorubicin and gemcitabine in renal cell carcinoma with sarcomatoid features: ECOG 8802. Med. Oncol., 2012, 29(2), 761-767.
[http://dx.doi.org/10.1007/s12032-011-9829-8] [PMID: 21298497]
[128]
Chène, P.; Rudloff, J.; Schoepfer, J.; Furet, P.; Meier, P.; Qian, Z.; Schlaeppi, J.M.; Schmitz, R.; Radimerski, T. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem. Biol., 2009, 9, 1.
[http://dx.doi.org/10.1186/1472-6769-9-1] [PMID: 19128485]
[129]
Qing, C.; Jiang, C.; Zhang, J.S.; Ding, J. Induction of apoptosis in human leukemia K-562 and gastric carcinoma SGC-7901 cells by salvicine, a novel anticancer compound. Anticancer Drugs, 2001, 12(1), 51-56.
[http://dx.doi.org/10.1097/00001813-200101000-00007] [PMID: 11272286]
[130]
Zhu, H.; Huang, M.; Yang, F.; Chen, Y.; Miao, Z.H.; Qian, X.H.; Xu, Y.F.; Qin, Y.X.; Luo, H.B.; Shen, X.; Geng, M.Y.; Cai, Y.J.; Ding, J. R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II. Mol. Cancer Ther., 2007, 6(2), 484-495.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0584] [PMID: 17308047]
[131]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[132]
Ma, Y.C.; Wang, Z.X.; Jin, S.J.; Zhang, Y.X.; Hu, G.Q.; Cui, D.T.; Wang, J.S.; Wang, M.; Wang, F.Q.; Zhao, Z.J. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells. PLoS One, 2016, 11(10), e0162821.
[http://dx.doi.org/10.1371/journal.pone.0162821] [PMID: 27760157]
[133]
Lee, M.G.; Liu, Y.C.; Lee, Y.L.; El-Shazly, M.; Lai, K.H.; Shih, S.P.; Ke, S.C.; Hong, M.C.; Du, Y.C.; Yang, J.C.; Sung, P.J.; Wen, Z.H.; Lu, M.C. Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90. Mar. Drugs, 2018, 16(6), 204.
[http://dx.doi.org/10.3390/md16060204] [PMID: 29890785]
[134]
Coon, J.S.; Marcus, E.; Gupta-Burt, S.; Seelig, S.; Jacobson, K.; Chen, S.; Renta, V.; Fronda, G.; Preisler, H.D. Amplification and overexpression of topoisomerase IIalpha predict response to anthracycline-based therapy in locally advanced breast cancer. Clin. Cancer Res., 2002, 8(4), 1061-1067.
[PMID: 11948114]
[135]
Schindlbeck, C.; Mayr, D.; Olivier, C.; Rack, B.; Engelstaedter, V.; Jueckstock, J.; Jenderek, C.; Andergassen, U.; Jeschke, U.; Friese, K. Topoisomerase IIalpha expression rather than gene amplification predicts responsiveness of adjuvant anthracycline-based chemotherapy in women with primary breast cancer. J. Cancer Res. Clin. Oncol., 2010, 136(7), 1029-1037.
[http://dx.doi.org/10.1007/s00432-009-0748-4] [PMID: 20052594]
[136]
Pawlak, A.; Ziolo, E.; Fiedorowicz, A.; Fidyt, K.; Strzadala, L.; Kalas, W. Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors. BMC Cancer, 2016, 16(1), 893.
[http://dx.doi.org/10.1186/s12885-016-2925-6] [PMID: 27852227]
[137]
Sinicropi, M.S.; Iacopetta, D.; Rosano, C.; Randino, R.; Caruso, A.; Saturnino, C.; Muià, N.; Ceramella, J.; Puoci, F.; Rodriquez, M.; Longo, P.; Plutino, M.R. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: Synthesis, characterisation and molecular mechanism evaluation. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 434-444.
[http://dx.doi.org/10.1080/14756366.2017.1419216] [PMID: 29383954]
[138]
Wise, H.C.; Iyer, G.V.; Moore, K.; Temkin, S.M.; Gordon, S.; Aghajanian, C.; Grisham, R.N. Activity of M3814, an Oral DNA-PK Inhibitor, In Combination with Topoisomerase II Inhibitors in Ovarian Cancer Models. Sci. Rep., 2019, 9(1), 18882.
[http://dx.doi.org/10.1038/s41598-019-54796-6] [PMID: 31827119]
[139]
Jensen, L.H.; Dejligbjerg, M.; Hansen, L.T.; Grauslund, M.; Jensen, P.B.; Sehested, M. Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells. BMC Pharmacol., 2004, 4, 31.
[http://dx.doi.org/10.1186/1471-2210-4-31] [PMID: 15575955]
[140]
Vivas-Mejía, P.E.; Cox, O.; González, F.A. Inhibition of human topoisomerase II by anti-neoplastic benzazolo[3,2-alpha]quinolinium chlorides. Mol. Cell. Biochem., 1998, 178(1-2), 203-212.
[http://dx.doi.org/10.1023/A:1006847615575] [PMID: 9546601]
[141]
Gong, M.; Ying, L.; Zhang, J. Gao, Ya-jie.; Zhai, P.P.; Su, Xi.; Li, X.; Li, Y.; Hou, L.; Cui, X.N.. β-Elemene Inhibits Cell Proliferation by Regulating the Expression and Activity of Topoisomerases I and IIα in Human Hepatocarcinoma HepG-2 Cells. BioMed Res. Int., 2015, 2015, 153987.
[http://dx.doi.org/10.1155/2015/153987] [PMID: 26221582]
[142]
Yeh, E.T.; Bickford, C.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol., 2009, 53(24), 2231-2247.
[http://dx.doi.org/10.1016/j.jacc.2009.02.050] [PMID: 19520246]
[143]
Damiani, R.M.; Moura, D.J.; Viau, C.M.; Caceres, R.A.; Henriques, J.A.P.; Saffi, J. Pathways of cardiac toxicity: Comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol., 2016, 90(9), 2063-2076.
[http://dx.doi.org/10.1007/s00204-016-1759-y] [PMID: 27342245]
[144]
Cowell, I.G.; Sondka, Z.; Smith, K.; Lee, K.C.; Manville, C.M.; Sidorczuk-Lesthuruge, M.; Rance, H.A.; Padget, K.; Jackson, G.H.; Adachi, N.; Austin, C.A. Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 8989-8994.
[http://dx.doi.org/10.1073/pnas.1204406109] [PMID: 22615413]
[145]
Hande, K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer, 1998, 34(10), 1514-1521.
[http://dx.doi.org/10.1016/S0959-8049(98)00228-7] [PMID: 9893622]
[146]
Grem, J.L.; Hoth, D.F.; Leyland-Jones, B.; King, S.A.; Ungerleider, R.S.; Wittes, R.E. Teniposide in the treatment of leukemia: A case study of conflicting priorities in the development of drugs for fatal diseases. J. Clin. Oncol., 1988, 6(2), 351-379.
[http://dx.doi.org/10.1200/JCO.1988.6.2.351] [PMID: 3276827]
[147]
Clark, P.I.; Slevin, M.L. The clinical pharmacology of etoposide and teniposide. Clin. Pharmacokinet., 1987, 12(4), 223-252.
[http://dx.doi.org/10.2165/00003088-198712040-00001] [PMID: 3297462]
[148]
Petros, W.P.; Rodman, J.H.; Relling, M.V.; Christensen, M.; Pui, C.H.; Rivera, G.K.; Evans, W.E. Variability in teniposide plasma protein binding is correlated with serum albumin concentrations. Pharmacotherapy, 1992, 12(4), 273-277.
[PMID: 1518726]
[149]
Chen, G.L.; Yang, L.; Rowe, T.C.; Halligan, B.D.; Tewey, K.M.; Liu, L.F. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem., 1984, 259(21), 13560-13566.
[PMID: 6092381]
[150]
Long, B.H.; Musial, S.T.; Brattain, M.G. Single- and double-strand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res., 1985, 45(7), 3106-3112.
[PMID: 3839166]
[151]
Kerrigan, D.; Pommier, Y.; Kohn, K.W. Protein-linked DNA strand breaks produced by etoposide and teniposide in mouse L1210 and human VA-13 and HT-29 cell lines: Relationship to cytotoxicity. NCI Monogr., 1987, 4(4), 117-121.
[PMID: 3041238]
[152]
Pommier, Y.; Capranico, G.; Orr, A.; Kohn, K.W. Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Res., 1991, 19(21), 5973-5980. b
[http://dx.doi.org/10.1093/nar/19.21.5973] [PMID: 1658748]
[153]
Pommier, Y.; Capranico, G.; Orr, A.; Kohn, K.W. Distribution of topoisomerase II cleavage sites in simian virus 40 DNA and the effects of drugs. J. Mol. Biol., 1991, 222(4), 909-924. a
[http://dx.doi.org/10.1016/0022-2836(91)90585-T] [PMID: 1662289]
[154]
Pommier, Y.; Orr, A.; Kohn, K.W.; Riou, J.F. Differential effects of amsacrine and epipodophyllotoxins on topoisomerase II cleavage in the human c-myc protooncogene. Cancer Res., 1992, 52(11), 3125-3130.
[PMID: 1317259]
[155]
Cornarotti, M.; Tinelli, S.; Willmore, E.; Zunino, F.; Fisher, L.M.; Austin, C.A.; Capranico, G. Drug sensitivity and sequence specificity of human recombinant DNA topoisomerases IIalpha (p170) and IIbeta (p180). Mol. Pharmacol., 1996, 50(6), 1463-1471.
[PMID: 8967966]
[156]
Willmore, E.; Frank, A.J.; Padget, K.; Tilby, M.J.; Austin, C.A. Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: Isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique. Mol. Pharmacol., 1998, 54(1), 78-85.
[http://dx.doi.org/10.1124/mol.54.1.78] [PMID: 9658192]
[157]
Kudo, K.; Yoshida, H.; Kiyoi, H.; Numata, S.; Horibe, K.; Naoe, T. Etoposide-related acute promyelocytic leukemia. Leukemia, 1998, 12(8), 1171-1175.
[http://dx.doi.org/10.1038/sj.leu.2401089] [PMID: 9697869]
[158]
Felix, C.A.; Kolaris, C.P.; Osheroff, N. Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst.), 2006, 5(9-10), 1093-1108.
[http://dx.doi.org/10.1016/j.dnarep.2006.05.031] [PMID: 16857431]
[159]
Azarova, A.M.; Lyu, Y.L.; Lin, C.P.; Tsai, Y.C.; Lau, J.Y.; Wang, J.C.; Liu, L.F. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc. Natl. Acad. Sci. USA, 2007, 104(26), 11014-11019.
[http://dx.doi.org/10.1073/pnas.0704002104] [PMID: 17578914]
[160]
Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev., 2012, 112(7), 3611-3640.
[http://dx.doi.org/10.1021/cr200325f] [PMID: 22397403]
[161]
Kruczynski, A.; Pillon, A.; Créancier, L.; Vandenberghe, I.; Gomes, B.; Brel, V.; Fournier, E.; Annereau, J.P.; Currie, E.; Guminski, Y.; Bonnet, D.; Bailly, C.; Guilbaud, N. F14512, a polyamine-vectorized anti-cancer drug, currently in clinical trials exhibits a marked preclinical anti-leukemic activity. Leukemia, 2013, 27(11), 2139-2148.
[http://dx.doi.org/10.1038/leu.2013.108] [PMID: 23568148]
[162]
Herman, E.H.; Witiak, D.T.; Hellmann, K.; Waravdekar, V.S. Biological properties of ICRF-159 and related bis(dioxopiperazine) compounds. Adv. Pharmacol. Chemother., 1982, 19, 249-290.
[http://dx.doi.org/10.1016/S1054-3589(08)60025-3] [PMID: 6819768]
[163]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[164]
Seifert, C.F.; Nesser, M.E.; Thompson, D.F. Dexrazoxane in the prevention of doxorubicin-induced cardiotoxicity. Ann. Pharmacother., 1994, 28(9), 1063-1072.
[http://dx.doi.org/10.1177/106002809402800912] [PMID: 7803884]
[165]
Jones, R.L. Utility of dexrazoxane for the reduction of anthracycline-induced cardiotoxicity. Expert Rev. Cardiovasc. Ther., 2008, 6(10), 1311-1317.
[http://dx.doi.org/10.1586/14779072.6.10.1311] [PMID: 19018683]
[166]
Langer, S.W. Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag. Res., 2014, 6, 357-363.
[http://dx.doi.org/10.2147/CMAR.S47238] [PMID: 25246808]
[167]
Hasinoff, B.B.; Kala, S.V. The removal of metal ions from transferrin, ferritin and ceruloplasmin by the cardioprotective agent ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] and its hydrolysis product ADR-925. Agents Actions, 1993, 39(1-2), 72-81.
[http://dx.doi.org/10.1007/BF01975717] [PMID: 8285144]
[168]
Malisza, K.L.; Hasinoff, B.B. Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Rep., 1996, 2(1), 69-73.
[http://dx.doi.org/10.1080/13510002.1996.11747029] [PMID: 27414516]
[169]
Fortune, J.M.; Osheroff, N. Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol., 2000, 64, 221-253.
[http://dx.doi.org/10.1016/S0079-6603(00)64006-0] [PMID: 10697411]
[170]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[171]
Deng, S.; Yan, T.; Jendrny, C.; Nemecek, A.; Vincetic, M.; Gödtel-Armbrust, U.; Wojnowski, L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer, 2014, 14, 842.
[http://dx.doi.org/10.1186/1471-2407-14-842] [PMID: 25406834]
[172]
Vavrova, A.; Jansova, H.; Mackova, E.; Machacek, M.; Haskova, P.; Tichotova, L.; Sterba, M.; Simunek, T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS One, 2013, 8(10), e76676.
[http://dx.doi.org/10.1371/journal.pone.0076676] [PMID: 24116135]
[173]
Roca, J.; Ishida, R.; Berger, J.M.; Andoh, T.; Wang, J.C. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Natl. Acad. Sci. USA, 1994, 91(5), 1781-1785.
[http://dx.doi.org/10.1073/pnas.91.5.1781] [PMID: 8127881]
[174]
Chang, S.; Hu, T.; Hsieh, T.S. Analysis of a core domain in Drosophila DNA topoisomerase II. Targeting of an antitumor agent ICRF-159. J. Biol. Chem., 1998, 273(31), 19822-19828.
[http://dx.doi.org/10.1074/jbc.273.31.19822] [PMID: 9677416]
[175]
Olland, S.; Wang, J.C. Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II. J. Biol. Chem., 1999, 274(31), 21688-21694.
[http://dx.doi.org/10.1074/jbc.274.31.21688] [PMID: 10419479]
[176]
Morris, S.K.; Baird, C.L.; Lindsley, J.E. Steady-state and rapid kinetic analysis of topoisomerase II trapped as the closed-clamp intermediate by ICRF-193. J. Biol. Chem., 2000, 275(4), 2613-2618.
[http://dx.doi.org/10.1074/jbc.275.4.2613] [PMID: 10644721]
[177]
Buss, J.L.; Hasinoff, B.B. The one-ring open hydrolysis product intermediates of the cardioprotective agent ICRF-187 (dexrazoxane) displace iron from iron-anthracycline complexes. Agents Actions, 1993, 40(1-2), 86-95.
[http://dx.doi.org/10.1007/BF01976756] [PMID: 8147274]
[178]
Hasinoff, B.B.; Herman, E.H. Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc. Toxicol., 2007, 7(2), 140-144.
[http://dx.doi.org/10.1007/s12012-007-0023-3] [PMID: 17652819]
[179]
Hawtin, R.E.; Stockett, D.E.; Byl, J.A.; McDowell, R.S.; Nguyen, T.; Arkin, M.R.; Conroy, A.; Yang, W.; Osheroff, N.; Fox, J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One, 2010, 5(4), e10186.
[http://dx.doi.org/10.1371/journal.pone.0010186] [PMID: 20419121]
[180]
Gao, H.; Huang, K.C.; Yamasaki, E.F.; Chan, K.K.; Chohan, L.; Snapka, R.M. XK469, a selective topoisomerase IIbeta poison. Proc. Natl. Acad. Sci. USA, 1999, 96(21), 12168-12173.
[http://dx.doi.org/10.1073/pnas.96.21.12168] [PMID: 10518594]
[181]
Deweese, J.E.; Osheroff, N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res., 2009, 37(3), 738-748.
[http://dx.doi.org/10.1093/nar/gkn937] [PMID: 19042970]
[182]
Pommier, Y.; Kiselev, E.; Marchand, C. Interfacial inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(18), 3961-3965.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.032] [PMID: 26235949]
[183]
Pendleton, M.; Lindsey, R.H., Jr; Felix, C.A.; Grimwade, D.; Osheroff, N. Topoisomerase II and leukemia. Ann. N. Y. Acad. Sci., 2014, 1310, 98-110.
[http://dx.doi.org/10.1111/nyas.12358] [PMID: 24495080]
[184]
Wang, Y.R.; Chen, S.F.; Wu, C.C.; Liao, Y.W.; Lin, T.S.; Liu, K.T.; Chen, Y.S.; Li, T.K.; Chien, T.C.; Chan, N.L. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res., 2017, 45(18), 10861-10871.
[http://dx.doi.org/10.1093/nar/gkx742] [PMID: 28977631]
[185]
Ohe, Y.; Sasaki, Y.; Shinkai, T.; Eguchi, K.; Tamura, T.; Kojima, A.; Kunikane, H.; Okamoto, H.; Karato, A.; Ohmatsu, H.; Kanzawa, F.; Saijo, N. Phase I study and pharmacokinetics of CPT-11 with 5-day continuous infusion. J. Natl. Cancer Inst., 1992, 84(12), 972-974.
[http://dx.doi.org/10.1093/jnci/84.12.972] [PMID: 1321253]
[186]
Houghton, P.J.; Chesire, P.J.; Myer, L.; Stewart, C.F.; Synold, T.W.; Houghton, J.A. Evaluation of 9-dimethylaminomethyl-I0 hydroxy-camptothecin (topotecan) against xenografts derived from adult and childhood tumors. Cancer Chemother. Pharmacol., 1991, 31, 229-239.
[http://dx.doi.org/10.1007/BF00685553] [PMID: 1464161]
[187]
Rowinsky, E.K.; Grochow, L.B.; Hendricks, C.B.; Ettinger, D.S.; Forastiere, A.A.; Hurowitz, L.A.; McGuire, W.P.; Sartorius, S.E.; Lubejko, B.G.; Kaufmann, S.H.; Donehower, R.C. Phase I and pharmacologic study of topotecan: A novel topoisomerase I inhibitor. J. Clin. Oncol., 1992, 10(4), 647-656.
[http://dx.doi.org/10.1200/JCO.1992.10.4.647] [PMID: 1312588]
[188]
Lambert, J.M.; Fernandes, D.J. Topoisomerase II cleavable complex formation within DNA loop domains. Biochem. Pharmacol., 2000, 60(1), 101-109.
[http://dx.doi.org/10.1016/S0006-2952(00)00309-9] [PMID: 10807951]
[189]
Felix, C.A. Leukemias related to treatment with DNA topoisomerase II inhibitors. Med. Pediatr. Oncol., 2001, 36(5), 525-535.
[http://dx.doi.org/10.1002/mpo.1125] [PMID: 11340607]
[190]
Pui, C.H. Epipodophyllotoxin-related acute myeloid leukaemia. Lancet, 1991, 338(8780), 1468.
[http://dx.doi.org/10.1016/0140-6736(91)92779-2] [PMID: 1683460]
[191]
Smith, M.A.; Rubinstein, L.; Anderson, J.R.; Arthur, D.; Catalano, P.J.; Freidlin, B.; Heyn, R.; Khayat, A.; Krailo, M.; Land, V.J.; Miser, J.; Shuster, J.; Vena, D. Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J. Clin. Oncol., 1999, 17(2), 569-577.
[http://dx.doi.org/10.1200/JCO.1999.17.2.569] [PMID: 10080601]
[192]
Marigny, K.; Aubin, F.; Burgot, G.; Le Gall, E.; Gandemer, V. Particular cutaneous side effects with etoposide-containing courses: Is VP16 or etoposide phosphate responsible? Cancer Chemother. Pharmacol., 2005, 55(3), 244-250.
[http://dx.doi.org/10.1007/s00280-004-0858-2] [PMID: 15526203]
[193]
Tavakoli, J.; Miar, S.; Majid Zadehzare, M.; Akbari, H. Evaluation of effectiveness of herbal medication in cancer care: A review study. Iran. J. Cancer Prev., 2012, 5(3), 144-156.
[PMID: 25628834]
[194]
Wang, C.Z.; Calway, T.; Yuan, C.S. Herbal medicines as adjuvants for cancer therapeutics. Am. J. Chin. Med., 2012, 40(4), 657-669.
[http://dx.doi.org/10.1142/S0192415X12500498] [PMID: 22809022]
[195]
Qurishi, Y.; Hamid, A.; Zargar, M.A.; Singh, S.K.; Ajit, K.S. Potential role of natural molecules in health and disease: Importance of boswellic acid. J. Med. Plants Res., 2010, 4, 2778-2785.
[196]
Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(Suppl. 1), 421-427.
[PMID: 25364657]
[197]
Singh, S.; Awasthi, M.; Pandey, V.P.; Dwivedi, U.N. Natural Products as Anticancerous Therapeutic Molecules with Special Reference to Enzymatic Targets Topoisomerase, COX, LOX and Aromatase. Curr. Protein Pept. Sci., 2018, 19(3), 238-274.
[http://dx.doi.org/10.2174/1389203718666170106102223] [PMID: 28059043]
[198]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2, 377-392.
[199]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[200]
Shoeb, M. Anticancer agents from medicinal plants. Bangladesh J. Pharmacol., 2006, 1, 35-41.
[201]
Kanzawa, F.; Koizumi, F.; Koh, Y.; Nakamura, T.; Tatsumi, Y.; Fukumoto, H.; Saijo, N.; Yoshioka, T.; Nishio, K. In vitro synergistic interactions between the cisplatin analogue nedaplatin and the DNA topoisomerase I inhibitor irinotecan and the mechanism of this interaction. Clin. Cancer Res., 2001, 7(1), 202-209.
[PMID: 11205910]
[202]
Krishnan, P.; Bastow, K.F. Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivatives-eleutherin, α lapachone, and β lapachone. Biochem. Pharmacol., 2000, 60(9), 1367-1379.
[http://dx.doi.org/10.1016/S0006-2952(00)00437-8] [PMID: 11008131]
[203]
Konkimalla, V.B.; Efferth, T. Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine. Biochem. Pharmacol., 2010, 79(8), 1092-1099.
[http://dx.doi.org/10.1016/j.bcp.2009.11.025] [PMID: 20005213]
[204]
Prescott, T.A.; Sadler, I.H.; Kiapranis, R.; Maciver, S.K. Lunacridine from Lunasia amara is a DNA intercalating topoisomerase II inhibitor. J. Ethnopharmacol., 2007, 109(2), 289-294.
[http://dx.doi.org/10.1016/j.jep.2006.07.036] [PMID: 16963212]
[205]
Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Lamellarin D: A novel potent inhibitor of topoisomerase I. Cancer Res., 2003, 63(21), 7392-7399.
[PMID: 14612538]
[206]
Kluza, J.; Gallego, M.A.; Loyens, A.; Beauvillain, J.C.; Sousa-Faro, J.M.; Cuevas, C.; Marchetti, P.; Bailly, C. Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Res., 2006, 66(6), 3177-3187.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1929] [PMID: 16540669]
[207]
Ballot, C.; Kluza, J.; Martoriati, A.; Nyman, U.; Formstecher, P.; Joseph, B.; Bailly, C.; Marchetti, P. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D. Mol. Cancer Ther., 2009, 8(12), 3307-3317.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0639] [PMID: 19952118]
[208]
Ballot, C.; Kluza, J.; Lancel, S.; Martoriati, A.; Hassoun, S.M.; Mortier, L.; Vienne, J.C.; Briand, G.; Formstecher, P.; Bailly, C.; Nevière, R.; Marchetti, P. Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis, 2010, 15(7), 769-781.
[http://dx.doi.org/10.1007/s10495-010-0471-2] [PMID: 20151196]
[209]
Liu, Y.C.; Chen, Z.F.; Liu, L.M.; Peng, Y.; Hong, X.; Yang, B.; Liu, H.G.; Liang, H.; Orvig, C. Divalent later transition metal complexes of the traditional chinese medicine (TCM) liriodenine: Coordination chemistry, cytotoxicity and DNA binding studies. Dalton Trans., 2009, 48(48), 10813-10823.
[http://dx.doi.org/10.1039/b912553a] [PMID: 20023911]
[210]
Mazerska, Z.; Dziegielewski, J.; Konopa, J. Enzymatic activation of a new antitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA. Biochem. Pharmacol., 2001, 61(6), 685-694.
[http://dx.doi.org/10.1016/S0006-2952(01)00527-5] [PMID: 11266653]
[211]
Liu, M.; Zhang, W.; Wei, J.; Qiu, L.; Lin, X. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in K562 cells and inhibits topoisomerase I in vitro. Toxicol. Lett., 2012, 211(2), 126-134.
[http://dx.doi.org/10.1016/j.toxlet.2012.03.771] [PMID: 22484147]
[212]
Liu, M.; Wang, G.; Xiao, L.; Xu, X.; Liu, X.; Xu, P.; Lin, X. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar. Drugs, 2014, 12(7), 3838-3851.
[http://dx.doi.org/10.3390/md12073838] [PMID: 24979270]
[213]
Fayad, W.; Fryknäs, M.; Brnjic, S.; Olofsson, M.H.; Larsson, R.; Linder, S. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters. PLoS One, 2009, 4(10), e7238.
[http://dx.doi.org/10.1371/journal.pone.0007238] [PMID: 19798419]
[214]
Castelli, S.; Katkar, P.; Vassallo, O.; Falconi, M.; Linder, S.; Desideri, A. A natural anticancer agent thaspine targets human topoisomerase IB. Anticancer. Agents Med. Chem., 2013, 13(2), 356-363.
[http://dx.doi.org/10.2174/1871520611313020021] [PMID: 22931416]
[215]
Hoet, S.; Stévigny, C.; Block, S.; Opperdoes, F.; Colson, P.; Baldeyrou, B.; Lansiaux, A.; Bailly, C.; Quetin-Leclercq, J. Alkaloids from Cassytha filiformis and related aporphines: Antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med., 2004, 70(5), 407-413.
[http://dx.doi.org/10.1055/s-2004-818967] [PMID: 15124084]
[216]
Luzzio, M.J.; Besterman, J.M.; Emerson, D.L.; Evans, M.G.; Lackey, K.; Leitner, P.L.; McIntyre, G.; Morton, B.; Myers, P.L.; Peel, M. Synthesis and antitumor activity of novel water soluble derivatives of camptothecin as specific inhibitors of topoisomerase I. J. Med. Chem., 1995, 38(3), 395-401.
[http://dx.doi.org/10.1021/jm00003a001] [PMID: 7853331]
[217]
Dassonneville, L.; Lansiaux, A.; Wattelet, A.; Wattez, N.; Mahieu, C.; Van Miert, S.; Pieters, L.; Bailly, C. Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: Relation to drug-induced apoptosis. Eur. J. Pharmacol., 2000, 409(1), 9-18.
[http://dx.doi.org/10.1016/S0014-2999(00)00805-0] [PMID: 11099695]
[218]
Tazi, J.; Bakkour, N.; Soret, J.; Zekri, L.; Hazra, B.; Laine, W.; Baldeyrou, B.; Lansiaux, A.; Bailly, C. Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol. Pharmacol., 2005, 67(4), 1186-1194.
[http://dx.doi.org/10.1124/mol.104.007633] [PMID: 15625279]
[219]
Li, Y.; Luan, Y.; Qi, X.; Li, M.; Gong, L.; Xue, X.; Wu, X.; Wu, Y.; Chen, M.; Xing, G.; Yao, J.; Ren, J. Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Toxicol. Sci., 2010, 118(2), 435-443.
[http://dx.doi.org/10.1093/toxsci/kfq282] [PMID: 20855424]
[220]
Pan, X.; Hartley, J.M.; Hartley, J.A.; White, K.N.; Wang, Z.; Bligh, S.W. Evodiamine, a dual catalytic inhibitor of type I and II topoisomerases, exhibits enhanced inhibition against camptothecin resistant cells. Phytomedicine, 2012, 19(7), 618-624.
[http://dx.doi.org/10.1016/j.phymed.2012.02.003] [PMID: 22402246]
[221]
Larsen, A.K.; Grondard, L.; Couprie, J.; Desoize, B.; Comoe, L.; Jardillier, J.C.; Riou, J.F. The antileukemic alkaloid fagaronine is an inhibitor of DNA topoisomerases I and II. Biochem. Pharmacol., 1993, 46(8), 1403-1412.
[http://dx.doi.org/10.1016/0006-2952(93)90105-6] [PMID: 8240389]
[222]
Ting, C-Y.; Hsu, C-T.; Hsu, H-T.; Su, J-S.; Chen, T-Y.; Tarn, W-Y.; Kuo, Y-H.; Whang-Peng, J.; Liu, L.F.; Hwang, J. Isodiospyrin as a novel human DNA topoisomerase I inhibitor. Biochem. Pharmacol., 2003, 66(10), 1981-1991.
[http://dx.doi.org/10.1016/j.bcp.2003.07.003] [PMID: 14599556]
[223]
Woo, S.H.; Reynolds, M.C.; Sun, N.J.; Cassady, J.M.; Snapka, R.M. Inhibition of topoisomerase II by liriodenine. Biochem. Pharmacol., 1997, 54(4), 467-473.
[http://dx.doi.org/10.1016/S0006-2952(97)00198-6] [PMID: 9313773]
[224]
Wang, L.K.; Johnson, R.K.; Hecht, S.M. Inhibition of topoisomerase I function by nitidine and fagaronine. Chem. Res. Toxicol., 1993, 6(6), 813-818.
[http://dx.doi.org/10.1021/tx00036a010] [PMID: 8117920]
[225]
Kawiak, A.; Piosik, J.; Stasilojc, G.; Gwizdek-Wisniewska, A.; Marczak, L.; Stobiecki, M.; Bigda, J.; Lojkowska, E. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol. Appl. Pharmacol., 2007, 223(3), 267-276.
[http://dx.doi.org/10.1016/j.taap.2007.05.018] [PMID: 17618663]
[226]
Fujii, N.; Yamashita, Y.; Arima, Y.; Nagashima, M.; Nakano, H. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob. Agents Chemother., 1992, 36(12), 2589-2594.
[http://dx.doi.org/10.1128/AAC.36.12.2589] [PMID: 1336338]
[227]
Raspaglio, G.; Ferlini, C.; Mozzetti, S.; Prislei, S.; Gallo, D.; Das, N.; Scambia, G. Thiocolchicine dimers: A novel class of topoisomerase-I inhibitors. Biochem. Pharmacol., 2005, 69(1), 113-121.
[http://dx.doi.org/10.1016/j.bcp.2004.09.004] [PMID: 15588720]
[228]
Fink, B.N.; Steck, S.E.; Wolff, M.S.; Britton, J.A.; Kabat, G.C.; Schroeder, J.C.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. Dietary flavonoid intake and breast cancer risk among women on Long Island. Am. J. Epidemiol., 2007, 165(5), 514-523.
[http://dx.doi.org/10.1093/aje/kwk033] [PMID: 17158855]
[229]
Liu, T.; Song, Y.; Chen, H.; Pan, S.; Sun, X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull., 2010, 33(10), 1740-1745.
[http://dx.doi.org/10.1248/bpb.33.1740] [PMID: 20930385]
[230]
Jeong, H.J.; Shin, Y.G.; Kim, I.H.; Pezzuto, J.M. Inhibition of aromatase activity by flavonoids. Arch. Pharm. Res., 1999, 22(3), 309-312.
[http://dx.doi.org/10.1007/BF02976369] [PMID: 10403137]
[231]
Kao, Y.C.; Zhou, C.; Sherman, M.; Laughton, C.A.; Chen, S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect., 1998, 106(2), 85-92.
[http://dx.doi.org/10.1289/ehp.9810685] [PMID: 9435150]
[232]
Balunas, M.J.; Su, B.; Brueggemeier, R.W.; Kinghorn, A.D. Natural products as aromatase inhibitors. Anticancer. Agents Med. Chem., 2008, 8(6), 646-682.
[http://dx.doi.org/10.2174/187152008785133092] [PMID: 18690828]
[233]
Wheat, J.; Currie, G. Herbal medicine for cancer patients: An evidence-based review. Int. J. Altern. Med, 2008, 5(2), 1-20.
[234]
López-Lázaro, M.; Willmore, E.; Austin, C.A. The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat. Res., 2010, 696(1), 41-47.
[http://dx.doi.org/10.1016/j.mrgentox.2009.12.010] [PMID: 20025993]
[235]
Kang, K.; Nho, C.W.; Kim, N.D.; Song, D.G.; Park, Y.G.; Kim, M.; Pan, C.H.; Shin, D.; Oh, S.H.; Oh, H.S. Daurinol, a catalytic inhibitor of topoisomerase IIα, suppresses SNU-840 ovarian cancer cell proliferation through cell cycle arrest in S phase. Int. J. Oncol., 2014, 45(2), 558-566.
[http://dx.doi.org/10.3892/ijo.2014.2442] [PMID: 24841075]
[236]
Chou, R.H.; Hsieh, S.C.; Yu, Y.L.; Huang, M.H.; Huang, Y.C.; Hsieh, Y.H. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS One, 2013, 8(8), e71983.
[http://dx.doi.org/10.1371/journal.pone.0071983] [PMID: 23940799]
[237]
Woo, J.K.; Kang, J.H.; Shin, D.; Park, S.H.; Kang, K.; Nho, C.W.; Seong, J.K.; Lee, S.J.; Oh, S.H. Daurinol enhances the efficacy of radiation therapy in lung cancer via suppression of aurora kinase A/B expression. Mol. Cancer Ther., 2015, 14(7), 1693-1704.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0960] [PMID: 25882311]
[238]
Sahu, B.D.; Kalvala, A.K.; Koneru, M.; Mahesh Kumar, J.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One, 2014, 9(9), e105070.
[http://dx.doi.org/10.1371/journal.pone.0105070] [PMID: 25184746]
[239]
Khiati, S.; Seol, Y.; Agama, K.; Dalla Rosa, I.; Agrawal, S.; Fesen, K.; Zhang, H.; Neuman, K.C.; Pommier, Y. Poisoning of mitochondrial topoisomerase I by lamellarin D. Mol. Pharmacol., 2014, 86(2), 193-199.
[http://dx.doi.org/10.1124/mol.114.092833] [PMID: 24890608]
[240]
Tesauro, C.; Fiorani, P.; D’Annessa, I.; Chillemi, G.; Turchi, G.; Desideri, A. Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I. Biochem. J., 2010, 425(3), 531-539.
[http://dx.doi.org/10.1042/BJ20091127] [PMID: 19883377]
[241]
Bailly, C. Anticancer properties of lamellarins. Mar. Drugs, 2015, 13(3), 1105-1123.
[http://dx.doi.org/10.3390/md13031105] [PMID: 25706633]
[242]
Boege, F.; Straub, T.; Kehr, A.; Boesenberg, C.; Christiansen, K.; Andersen, A.; Jakob, F.; Köhrle, J. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J. Biol. Chem., 1996, 271(4), 2262-2270.
[http://dx.doi.org/10.1074/jbc.271.4.2262] [PMID: 8567688]
[243]
Grynberg, N.F.; Carvalho, M.G.; Velandia, J.R.; Oliveira, M.C.; Moreira, I.C.; Braz-Filho, R.; Echevarria, A. DNA topoisomerase inhibitors: Biflavonoids from Ouratea species. Braz. J. Med. Biol. Res., 2002, 35(7), 819-822.
[http://dx.doi.org/10.1590/S0100-879X2002000700009] [PMID: 12131922]
[244]
Constantinou, A.; Mehta, R.; Runyan, C.; Rao, K.; Vaughan, A.; Moon, R. Flavonoids as DNA topoisomerase antagonists and poisons: Structure-activity relationships. J. Nat. Prod., 1995, 58(2), 217-225.
[http://dx.doi.org/10.1021/np50116a009] [PMID: 7769390]
[245]
Bensasson, R.V.; Zoete, V.; Jossang, A.; Bodo, B.; Arimondo, P.B.; Land, E.J. Potency of inhibition of human DNA topoisomerase I by flavones assessed through physicochemical parameters. Free Radic. Biol. Med., 2011, 51(7), 1406-1410.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.021] [PMID: 21745563]
[246]
Kulling, S.E.; Metzler, M. Induction of micronuclei, DNA strand breaks and HPRT mutations in cultured Chinese hamster V79 cells by the phytoestrogen coumoestrol. Food Chem. Toxicol., 1997, 35(6), 605-613.
[http://dx.doi.org/10.1016/S0278-6915(97)00022-7] [PMID: 9225019]
[247]
Rho, Y.H.; Lee, B.W.; Park, K.H.; Bae, Y.S. Cudraflavanone A purified from Cudrania tricuspidata induces apoptotic cell death of human leukemia U937 cells, at least in part, through the inhibition of DNA topoisomerase I and protein kinase C activity. Anticancer Drugs, 2007, 18(9), 1023-1028.
[http://dx.doi.org/10.1097/CAD.0b013e3281de7264] [PMID: 17704652]
[248]
Martín-Cordero, C.; López-Lázaro, M.; Gálvez, M.; Ayuso, M.J. Curcumin as a DNA topoisomerase II poison. J. Enzyme Inhib. Med. Chem., 2003, 18(6), 505-509.
[http://dx.doi.org/10.1080/14756360310001613085] [PMID: 15008515]
[249]
López-Lázaro, M.; Willmore, E.; Jobson, A.; Gilroy, K.L.; Curtis, H.; Padget, K.; Austin, C.A. Curcumin induces high levels of topoisomerase I- and II-DNA complexes in K562 leukemia cells. J. Nat. Prod., 2007, 70(12), 1884-1888.
[http://dx.doi.org/10.1021/np070332i] [PMID: 18076140]
[250]
Singh, S.; Awasthi, M.; Pandey, V.P.; Dwivedi, U.N. Plant derived anti-cancerous secondary metabolites as multipronged inhibitor of COX, Topo, and aromatase: Molecular modeling and dynamics simulation analyses. J. Biomol. Struct. Dyn., 2017, 35(14), 3082-3097.
[http://dx.doi.org/10.1080/07391102.2016.1241720] [PMID: 27667581]
[251]
Habermeyer, M.; Fritz, J.; Barthelmes, H.U.; Christensen, M.O.; Larsen, M.K.; Boege, F.; Marko, D. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity. Chem. Res. Toxicol., 2005, 18(9), 1395-1404.
[http://dx.doi.org/10.1021/tx050039n] [PMID: 16167831]
[252]
Wang, P.; Li, S.; Ownby, S.; Zhang, Z.; Yuan, W.; Zhang, W.; Scott Beasley, R. Ecdysteroids and a sucrose phenylpropanoid ester from Froelichia floridana. Phytochemistry, 2009, 70(3), 430-436.
[http://dx.doi.org/10.1016/j.phytochem.2009.01.017] [PMID: 19254799]
[253]
Neukam, K.; Pastor, N.; Cortés, F. Tea flavanols inhibit cell growth and DNA topoisomerase II activity and induce endoreduplication in cultured Chinese hamster cells. Mutat. Res., 2008, 654(1), 8-12.
[http://dx.doi.org/10.1016/j.mrgentox.2008.03.013] [PMID: 18541453]
[254]
Yoshida, N.; Kuriyama, I.; Yoshida, H.; Mizushina, Y. Inhibitory effects of catechin derivatives on mammalian DNA polymerase and topoisomerase activities and mouse one-cell zygote development. J. Biosci. Bioeng., 2013, 115(3), 303-309.
[http://dx.doi.org/10.1016/j.jbiosc.2012.10.001] [PMID: 23121921]
[255]
Snyder, R.D.; Gillies, P.J. Evaluation of the clastogenic, DNA intercalative, and topoisomerase II-interactive properties of bioflavonoids in Chinese hamster V79 cells. Environ. Mol. Mutagen., 2002, 40(4), 266-276.
[http://dx.doi.org/10.1002/em.10121] [PMID: 12489117]
[256]
Zhou, N.; Yan, Y.; Li, W.; Wang, Y.; Zheng, L.; Han, S.; Yan, Y.; Li, Y. Genistein inhibition of topoisomerase IIalpha expression participated by Sp1 and Sp3 in HeLa cell. Int. J. Mol. Sci., 2009, 10(7), 3255-3268.
[http://dx.doi.org/10.3390/ijms10073255] [PMID: 19742137]
[257]
Ji, S.; Willis, G.M.; Frank, G.R.; Cornelius, S.G.; Spurlock, M.E. Soybean isoflavones, genistein and genistin, inhibit rat myoblast proliferation, fusion and myotube protein synthesis. J. Nutr., 1999, 129(7), 1291-1297.
[http://dx.doi.org/10.1093/jn/129.7.1291] [PMID: 10395589]
[258]
Zahir, A.; Jossang, A.; Bodo, B.; Provost, J.; Cosson, J.P.; Sévenet, T. DNA topoisomerase I inhibitors: Cytotoxic flavones from Lethedon tannaensis. J. Nat. Prod., 1996, 59(7), 701-703.
[http://dx.doi.org/10.1021/np960336f] [PMID: 8759170]
[259]
Babu, B.H.; Jayram, H.N.; Nair, M.G.; Ajaikumar, K.B.; Padikkala, J. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J. Exp. Clin. Cancer Res., 2003, 22(4), 581-589.
[PMID: 15053300]
[260]
Kunnumakkara, A.B.; Nair, A.S.; Ahn, K.S.; Pandey, M.K.; Yi, Z.; Liu, M.; Aggarwal, B.B. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood, 2007, 109(12), 5112-5121.
[http://dx.doi.org/10.1182/blood-2007-01-067256] [PMID: 17332240]
[261]
Park, I.; Park, K-K.; Park, J.H.Y.; Chung, W.Y. Isoliquiritigenin induces G2 and M phase arrest by inducing DNA damage and by inhibiting the metaphase/anaphase transition. Cancer Lett., 2009, 277(2), 174-181.
[http://dx.doi.org/10.1016/j.canlet.2008.12.005] [PMID: 19167809]
[262]
Lee, S.H.; Kim, H.J.; Lee, J.S.; Lee, I-S.; Kang, B.Y. Inhibition of topoisomerase I activity and efflux drug transporters’ expression by xanthohumol. from hops. Arch. Pharm. Res., 2007, 30(11), 1435-1439.
[http://dx.doi.org/10.1007/BF02977368] [PMID: 18087812]
[263]
Tomczyk, M.; Drozdowska, D.; Bielawska, A.; Bielawski, K.; Gudej, J. Human DNA topoisomerase inhibitors from Potentilla argentea and their cytotoxic effect against MCF-7. Pharmazie, 2008, 63(5), 389-393.
[PMID: 18557426]
[264]
Yoon, G.; Kang, B.Y.; Cheon, S.H.; Topoisomerase, I. Topoisomerase I inhibition and cytotoxicity of licochalcones A and E from Glycyrrhiza inflata. Arch. Pharm. Res., 2007, 30(3), 313-316.
[http://dx.doi.org/10.1007/BF02977611] [PMID: 17424936]
[265]
Chowdhury, A.R.; Sharma, S.; Mandal, S.; Goswami, A.; Mukhopadhyay, S.; Majumder, H.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J., 2002, 366(Pt 2), 653-661.
[http://dx.doi.org/10.1042/bj20020098] [PMID: 12027807]
[266]
Tosa, H.; Iinuma, M.; Asai, F.; Tanaka, T.; Nozaki, H.; Ikeda, S.; Tsutsui, K.; Tsutsui, K.; Yamada, M.; Fujimori, S. Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Biol. Pharm. Bull., 1998, 21(6), 641-642.
[http://dx.doi.org/10.1248/bpb.21.641] [PMID: 9657055]
[267]
Shiomi, K.; Kuriyama, I.; Yoshida, H.; Mizushina, Y. Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem., 2013, 139(1-4), 910-918.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.009] [PMID: 23561189]
[268]
de Mejía, E.G.; Chandra, S.; Ramírez-Mares, M.; Wang, W. Catalytic inhibition of human DNA topoisomerase by phenolic compounds in Ardisia compressa extracts and their effect on human colon cancer cells. Food Chem. Toxicol., 2006, 44(8), 1191-1203.
[http://dx.doi.org/10.1016/j.fct.2006.01.015] [PMID: 16540225]
[269]
Topcu, Z.; Ozturk, B.; Kucukoglu, O.; Kilinc, E. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase. Z. Natforsch. C J. Biosci., 2008, 63(1-2), 69-74.
[http://dx.doi.org/10.1515/znc-2008-1-213] [PMID: 18386491]
[270]
Webb, M.R.; Ebeler, S.E. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: Structural determinates of activity. Biochem. J., 2004, 384(Pt 3), 527-541.
[http://dx.doi.org/10.1042/BJ20040474] [PMID: 15312049]
[271]
Yamashita, Y.; Kawada, S.; Fujii, N.; Nakano, H. Induction of mammalian DNA topoisomerase II dependent DNA cleavage by antitumor antibiotic streptonigrin. Cancer Res., 1990, 50(18), 5841-5844.
[PMID: 2168283]
[272]
Constantinou, A.I.; Husband, A. Phenoxodiol (2H-1-benzopyran-7-0,1,3-(4-hydroxyphenyl)), a novel isoflavone derivative, inhibits DNA topoisomerase II by stabilizing the cleavable complex. Anticancer Res., 2002, 22(5), 2581-2585.
[PMID: 12529967]
[273]
Jo, J.Y.; Gonzalez de Mejia, E.; Lila, M.A. Catalytic inhibition of human DNA topoisomerase II by interactions of grape cell culture polyphenols. J. Agric. Food Chem., 2006, 54(6), 2083-2087.
[http://dx.doi.org/10.1021/jf052700z] [PMID: 16536579]
[274]
Stagos, D.; Kazantzoglou, G.; Magiatis, P.; Mitaku, S.; Anagnostopoulos, K.; Kouretas, D. Effects of plant phenolics and grape extracts from Greek varieties of Vitis vinifera on Mitomycin C and topoisomerase I-induced nicking of DNA. Int. J. Mol. Med., 2005, 15(6), 1013-1022.
[http://dx.doi.org/10.3892/ijmm.15.6.1013] [PMID: 15870908]
[275]
Martín-Cordero, C.; López-Lazaro, M.; Piñero, J.; Ortiz, T.; Cortés, F.; Ayuso, M.J. Glucosylated isoflavones as DNA topoisomerase II poisons. J. Enzyme Inhib., 2000, 15(5), 455-460.
[http://dx.doi.org/10.3109/14756360009040701] [PMID: 11030085]
[276]
Naowaratwattana, W.; De-Eknamkul, W.; De Mejia, E.G. Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIα activity. J. Med. Food, 2010, 13(5), 1045-1056.
[http://dx.doi.org/10.1089/jmf.2010.1021] [PMID: 20828312]
[277]
Verschoyle, R.D.; Greaves, P.; Cai, H.; Borkhardt, A.; Broggini, M.; D’Incalci, M.; Riccio, E.; Doppalapudi, R.; Kapetanovic, I.M.; Steward, W.P.; Gescher, A.J. Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemother. Pharmacol., 2006, 57(1), 1-6.
[http://dx.doi.org/10.1007/s00280-005-0039-y] [PMID: 16001171]
[278]
de las Heras, B.; Hortelano, S. Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm. Allergy Drug Targets, 2009, 8(1), 28-39.
[http://dx.doi.org/10.2174/187152809787582534] [PMID: 19275691]
[279]
Goto, T.; Takahashi, N.; Hirai, S.; Kawada, T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res., 2010, 2010, 483958.
[http://dx.doi.org/10.1155/2010/483958] [PMID: 20613991]
[280]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[281]
Rowinsky, E.K.; Onetto, N.; Canetta, R.M.; Arbuck, S.G. Taxol: The first of the taxanes, an important new class of antitumor agents. Semin. Oncol., 1992, 19(6), 646-662.
[PMID: 1361079]
[282]
Sagar, S.M.; Yance, D.; Wong, R.K. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Curr. Oncol., 2006, 13(1), 14-26.
[PMID: 17576437]
[283]
Millimouno, F.M.; Dong, J.; Yang, L.; Li, J.; Li, X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev. Res. (Phila.), 2014, 7(11), 1081-1107.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0136] [PMID: 25161295]
[284]
Chalabi, N.; Satih, S.; Delort, L.; Bignon, Y.J.; Bernard-Gallon, D.J. Expression profiling by whole-genome microarray hybridization reveals differential gene expression in breast cancer cell lines after lycopene exposure. Biochim. Biophys. Acta, 2007, 1769(2), 124-130.
[http://dx.doi.org/10.1016/j.bbaexp.2007.01.007] [PMID: 17321611]
[285]
Rzeski, W.; Stepulak, A.; Szymański, M.; Sifringer, M.; Kaczor, J.; Wejksza, K.; Zdzisińska, B.; Kandefer-Szerszeń, M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 374(1), 11-20.
[http://dx.doi.org/10.1007/s00210-006-0090-1] [PMID: 16964520]
[286]
Polo, M.P.; de Bravo, M.G. Effect of geraniol on fatty-acid and mevalonate metabolism in the human hepatoma cell line Hep G2. Biochem. Cell Biol., 2006, 84(1), 102-111.
[http://dx.doi.org/10.1139/o05-160] [PMID: 16462894]
[287]
Thoppil, R.J.; Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol., 2011, 3(9), 228-249.
[http://dx.doi.org/10.4254/wjh.v3.i9.228] [PMID: 21969877]
[288]
Yang, H.; Dou, Q.P. Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets, 2010, 11(6), 733-744.
[http://dx.doi.org/10.2174/138945010791170842] [PMID: 20298150]
[289]
Zhang, H.L.; Zhang, Y.; Yan, X.L.; Xiao, L.G.; Hu, D.X.; Yu, Q.; An, L.K. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115527.
[http://dx.doi.org/10.1016/j.bmc.2020.115527] [PMID: 32345458]
[290]
Fronza, M.; Lamy, E.; Günther, S.; Heinzmann, B.; Laufer, S.; Merfort, I. Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. Phytochemistry, 2012, 78, 107-119.
[http://dx.doi.org/10.1016/j.phytochem.2012.02.015] [PMID: 22436445]
[291]
Ray, S.; Majumder, H.K.; Chakravarty, A.K.; Mukhopadhyay, S.; Gil, R.R.; Cordell, G.A. Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donovani. J. Nat. Prod., 1996, 59(1), 27-29.
[http://dx.doi.org/10.1021/np960018g] [PMID: 8984149]
[292]
Nateewattana, J.; Saeeng, R.; Kasemsook, S.; Suksen, K.; Dutta, S.; Jariyawat, S.; Chairoungdua, A.; Suksamrarn, A.; Piyachaturawat, P. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues. Invest. New Drugs, 2013, 31(2), 320-332.
[http://dx.doi.org/10.1007/s10637-012-9868-9] [PMID: 22899371]
[293]
Berdelle, N.; Nikolova, T.; Quiros, S.; Efferth, T.; Kaina, B. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol. Cancer Ther., 2011, 10(12), 2224-2233.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0534] [PMID: 21998290]
[294]
Gálvez, M.; Martín-Cordero, C.; Ayuso, M.J. Iridoids as DNA topoisomerase I poisons. J. Enzyme Inhib. Med. Chem., 2005, 20(4), 389-392.
[http://dx.doi.org/10.1080/14756360500141879] [PMID: 16206835]
[295]
Wada, S.; Tanaka, R. Betulinic acid and its derivatives, potent DNA topoisomerase II inhibitors, from the bark of Bischofia javanica. Chem. Biodivers., 2005, 2(5), 689-694.
[http://dx.doi.org/10.1002/cbdv.200590045] [PMID: 17192012]
[296]
Ganguly, A.; Das, B.; Roy, A.; Sen, N.; Dasgupta, S.B.; Mukhopadhayay, S.; Majumder, H.K. Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer Res., 2007, 67(24), 11848-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1615] [PMID: 18089815]
[297]
Syrovets, T.; Büchele, B.; Gedig, E.; Slupsky, J.R.; Simmet, T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol. Pharmacol., 2000, 58(1), 71-81.
[http://dx.doi.org/10.1124/mol.58.1.71] [PMID: 10860928]
[298]
Kogan, N.M.; Schlesinger, M.; Priel, E.; Rabinowitz, R.; Berenshtein, E.; Chevion, M.; Mechoulam, R. HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor. Mol. Cancer Ther., 2007, 6(1), 173-183.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0039] [PMID: 17237277]
[299]
Nagase, M.; Oto, J.; Sugiyama, S.; Yube, K.; Takaishi, Y.; Sakato, N. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci. Biotechnol. Biochem., 2003, 67(9), 1883-1887.
[http://dx.doi.org/10.1271/bbb.67.1883] [PMID: 14519971]
[300]
Binaschi, M.; Zagotto, G.; Palumbo, M. Drug determinants stimulated by clerocidin: Sequence specificity and structural irreversible and reversible topoisomerase II DNA cleavage. Cancer Res., 1997, 57, 1710-1716.
[PMID: 9135013]
[301]
Du, Y.C.; Chang, F.R.; Wu, T.Y.; Hsu, Y.M.; El-Shazly, M.; Chen, C.F.; Sung, P.J.; Lin, Y.Y.; Lin, Y.H.; Wu, Y.C.; Lu, M.C. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models. Phytomedicine, 2012, 19(8-9), 788-796.
[http://dx.doi.org/10.1016/j.phymed.2012.03.014] [PMID: 22516893]
[302]
Furbacher, T.R.; Gunatilaka, A.A.L. Catalytic inhibition of topoisomerase IIalpha by demethylzeylasterone, a 6-oxophenolic triterpenoid from Kokoona zeylanica. J. Nat. Prod., 2001, 64(10), 1294-1296.
[http://dx.doi.org/10.1021/np010123c] [PMID: 11678653]
[303]
Li, M.; Miao, Z.H.; Chen, Z.; Chen, Q.; Gui, M.; Lin, L.P.; Sun, P.; Yi, Y.H.; Ding, J. Echinoside A, a new marine-derived anticancer saponin, targets topoisomerase2alpha by unique interference with its DNA binding and catalytic cycle. Ann. Oncol., 2010, 21(3), 597-607.
[http://dx.doi.org/10.1093/annonc/mdp335] [PMID: 19773249]
[304]
Mizushina, Y.; Iida, A.; Ohta, K.; Sugawara, F.; Sakaguchi, K. Novel triterpenoids inhibit both DNA polymerase and DNA topoisomerase. Biochem. J., 2000, 350(Pt 3), 757-763.
[http://dx.doi.org/10.1042/bj3500757] [PMID: 10970789]
[305]
Li, C.H.; Chen, P.Y.; Chang, U.M.; Kan, L.S.; Fang, W.H.; Tsai, K.S.; Lin, S.B. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci., 2005, 77(3), 252-265.
[http://dx.doi.org/10.1016/j.lfs.2004.09.045] [PMID: 15878354]
[306]
Chang, U.M.; Li, C.H.; Lin, L.I.; Huang, C.P.; Kan, L.S.; Lin, S.B. Ganoderiol F, a ganoderma triterpene, induces senescence in hepatoma HepG2 cells. Life Sci., 2006, 79(12), 1129-1139.
[http://dx.doi.org/10.1016/j.lfs.2006.03.027] [PMID: 16635496]
[307]
Senarisoy, M.; Canturk, P.; Zencir, S.; Baran, Y.; Topcu, Z. Gossypol interferes with both type I and type II topoisomerase activities without generating strand breaks. Cell Biochem. Biophys., 2013, 66(1), 199-204.
[http://dx.doi.org/10.1007/s12013-012-9468-5] [PMID: 23161103]
[308]
Wada, S.; Iida, A.; Tanaka, R. Screening of triterpenoids isolated from Phyllanthus flexuosus for DNA topoisomerase inhibitory activity. J. Nat. Prod., 2001, 64(12), 1545-1547.
[http://dx.doi.org/10.1021/np010176u] [PMID: 11754608]
[309]
Lee, K.H.; Cho, C.H.; Rhee, K.H. Anti-leukemic and topoisomerase I inhibitory effect of Mansonone E isolated from Ulmus davidiana. J. Med. Plants Res., 2012, 6(24), 4091-4095.
[310]
Pungitore, C.R.; Padron, J.M.; Leon, L.G.; Garcia, C.; Ciuffo, G.M.; Martin, V.S.; Tonn, C.E. Inhibition of DNA topoisomerase I and growth inhibition of human cancer cell lines by an oleanane from Junellia aspera (Verbenaceae). Cell. Mol. Biol., 2007, 53(3), 13-17.
[PMID: 17531144]
[311]
Lin, J.P.; Lu, H.F.; Lee, J.H.; Lin, J.G.; Hsia, T.C.; Wu, L.T.; Chung, J.G. Anticancer Research (-)-Menthol Inhibits DNA Topoisomerases I, II · and ‚ and Promotes NF-KB expression in Human Gastric Cancer SNU-5. Cells, 2005, 25, 2069-2074.
[PMID: 16158947]
[312]
Meng, L.H.; Ding, J. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation. Acta Pharmacol. Sin., 2007, 28(9), 1460-1465.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00698.x] [PMID: 17723179]
[313]
Lu, H.R.; Meng, L.H.; Huang, M.; Zhu, H.; Miao, Z.H.; Ding, J. DNA damage, c-myc suppression and apoptosis induced by the novel topoisomerase II inhibitor, salvicine, in human breast cancer MCF-7 cells. Cancer Chemother. Pharmacol., 2005, 55(3), 286-294.
[http://dx.doi.org/10.1007/s00280-004-0877-z] [PMID: 15592835]
[314]
Kongkum, N.; Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Piyachaturawat, P.; Jariyawat, S.; Suksen, K.; Yoosook, C.; Kasisit, J.; Napaswad, C. DNA topoisomerase IIα inhibitory and anti-HIV-1 flavones from leaves and twigs of Gardenia carinata. Fitoterapia, 2012, 83(2), 368-372.
[http://dx.doi.org/10.1016/j.fitote.2011.11.015] [PMID: 22155186]
[315]
Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.; Murakami-Nakai, C.; Kuriyama, I.; Takeuchi, T.; Sugawara, F.; Yoshida, H. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci., 2005, 77(17), 2127-2140.
[http://dx.doi.org/10.1016/j.lfs.2005.03.022] [PMID: 15935396]
[316]
Takeda, S.; Noguchi, M.; Matsuo, K.; Yamaguchi, Y.; Kudo, T.; Nishimura, H.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Omiecinski, C.J.; Aramaki, H. (-)-Xanthatin up-regulation of the GADD45γ tumor suppressor gene in MDA-MB-231 breast cancer cells: Role of topoisomerase IIα inhibition and reactive oxygen species. Toxicology, 2013, 305, 1-9.
[http://dx.doi.org/10.1016/j.tox.2012.12.019] [PMID: 23313378]
[317]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[318]
Segall, M.D.; Beresford, A.P.; Gola, J.M.; Hawksley, D.; Tarbit, M.H. Focus on success: Using a probabilistic approach to achieve an optimal balance of compound properties in drug discovery. Expert Opin. Drug Metab. Toxicol., 2006, 2(2), 325-337.
[http://dx.doi.org/10.1517/17425255.2.2.325] [PMID: 16866617]
[319]
Singh, S.; Das, T.; Awasthi, M.; Pandey, V.P.; Pandey, B.; Dwivedi, U.N. DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation. Biotechnol. Appl. Biochem., 2016, 63(1), 125-137.
[http://dx.doi.org/10.1002/bab.1346] [PMID: 25594242]
[320]
Drwal, M.N.; Marinello, J.; Manzo, S.G.; Wakelin, L.P.G.; Capranico, G.; Griffith, R. Novel DNA topoisomerase IIα inhibitors from combined ligand- and structure-based virtual screening. PLoS One, 2014, 9(12), e114904.
[http://dx.doi.org/10.1371/journal.pone.0114904] [PMID: 25489853]
[321]
Hansch, C.; Verma, R.P. 20-(S)-camptothecin analogues as DNA topoisomerase I inhibitors: A QSAR study. ChemMedChem, 2007, 2(12), 1807-1813.
[http://dx.doi.org/10.1002/cmdc.200700138] [PMID: 17886246]
[322]
Kulkarni, S.; Patil, P.; Virupaksha, B.; Alpana, G.; Prashant, K.; Baikerikar, S. molecular dynamics, docking and QSAR analysis of napthoquinone derivatives as Topoisomerase I inhibitorsInt. J. Comput. Bioinfo. In Silico Model; , 2013, 2, pp. 223-233.
[323]
Tekiner-Gulbas, B.; Temiz-Arpaci, O.; Yildiz, I.; Aki-Sener, E.; Yalcin, I. 3D-QSAR study on heterocyclic topoisomerase II inhibitors using CoMSIA. SAR QSAR Environ. Res., 2006, 17(2), 121-132.
[http://dx.doi.org/10.1080/10659360600636105] [PMID: 16644553]
[324]
Pan, P.; Li, Y.; Yu, H.; Sun, H.; Hou, T. Molecular principle of topotecan resistance by topoisomerase I mutations through molecular modeling approaches. J. Chem. Inf. Model., 2013, 53(4), 997-1006.
[http://dx.doi.org/10.1021/ci400066x] [PMID: 23521602]
[325]
Kumar, A.; Kumar, S.; Jain, S.; Kumar, P.; Goyal, R. Study of binding of pyridoacridine alkaloids on topoisomerase II using in silico tools. Med. Chem. Res., 2013, 22, 5431-5441.
[http://dx.doi.org/10.1007/s00044-013-0496-5]
[326]
Dev, S.; Dhaneshwar, S.R. Identification of potent virtual leads as topoisomerase-II inhibitors using pharmacophore modelling, molecular docking and ADME studies. Int. J. Pharm. Sci. Res., 2013, 4, 2939-2954.
[327]
Mancini, G.; D’Annessa, I.; Coletta, A.; Sanna, N.; Chillemi, G.; Desideri, A. Structural and dynamical effects induced by the anticancer drug topotecan on the human topoisomerase I - DNA complex. PLoS One, 2010, 5(6), e10934.
[http://dx.doi.org/10.1371/journal.pone.0010934] [PMID: 20532182]
[328]
Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem., 2010, 17(32), 3769-3805.
[http://dx.doi.org/10.2174/092986710793205408] [PMID: 20858219]
[329]
Ramachandran, C.; Rodriguez, S.; Ramachandran, R.; Raveendran Nair, P.K.; Fonseca, H.; Khatib, Z.; Escalon, E.; Melnick, S.J. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res., 2005, 25(5), 3293-3302.
[PMID: 16101141]
[330]
Singh, S.; Awasthi, M.; Pandey, V.P.; Pandey, B.; Dwivedi, U.N. Molecular dynamics simulated validation of anti-cancerous alkaloids as Topo IIβ inhibitors screened by QSAR, pharmacophore and molecular docking approaches. Med. Chem. Res., 2015, 24, 2972-2985.
[http://dx.doi.org/10.1007/s00044-015-1351-7]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy