Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Novel Approach to Refractory Epilepsy by Targeting Pgp Peripherally and Centrally: Therapeutic Targets and Future Perspectives

Author(s): Urvashi Langeh, Pooja Chawla, Ghanshyam Das Gupta and Shamsher Singh*

Volume 19 , Issue 10 , 2020

Page: [741 - 749] Pages: 9

DOI: 10.2174/1871527319999200819093109

Price: $65

Abstract

Refractory epilepsy is a type of epilepsy involving seizures uncontrolled by first or second- line anticonvulsant drugs at a regular therapeutic dose. Despite considerable growth in epileptic pharmacotherapy, one-third of the patients are resistant to current therapies. In this, the mechanisms responsible for resistant epilepsy are either increased expulsion of antiepileptic drugs (AEDs) by multidrug resistance (MDR) transporters from the epileptogenic tissue or reduced sensitivity of drug in epileptogenic brain tissue. The difficulty to treat refractory epilepsy is because of drug resistance due to cellular drug efflux, use of drug monotherapy, and subtherapeutic dose administration. Increased expression of Pgp is also responsible for resistance epilepsy or refractory epilepsy. Increased glutamate expression via inhibition of cyclooxygenase-II (COX-II) enzyme also upregulate P-glycoprotein (Pgp) expression and augment instance of recurrent seizures. Peripheral and central inhibition of Pgp is a powerful tool to control this drug resistant epilepsy. Drug resistance primarily involves multidrug resistance (MDR1) gene responsible for encoding P-glycoprotein (Pg- P1 or MDR1). Currently, there is no drug under clinical practice which inhibits MDR1. The present review cites some drugs like Calcium Channel Blockers (CCBs), COX-II inhibitors, and glutamate receptors antagonists that inhibit P-gp. The exploitation of these targets may emerge as a beneficial approach for patients with drug-resistant epilepsy. The present review further highlights the mechanistic role of Pgp in drug-resistant epilepsy, glutamate role in drug efflux, and management approach.

Keywords: Refractory epilepsy, pharmacotherapy, drug resistance, resistance epilepsy, epileptogenic brain, P-glycoprotein.

Graphical Abstract
[1]
Adams F. On the sacred disease.The genuine works of Hippocrates. London: Sydenham Society 1849; Vol. II: pp. 831-58.
[2]
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36(3): 174-84.
[PMID: 23298414]
[3]
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393(10172): 689-701.
[PMID: 30686584]
[4]
Laxer KD, Trinka E, Hirsch LJ, et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav 2014; 37: 59-70.
[PMID: 24980390]
[5]
Hamberger MJ, Schevon CA, Seidel WT, McKhann GM II, Morrison C. Cortical naming sites and increasing age in adults with refractory epilepsy: More might be less. Epilepsia 2019; 60(8): 1619-26.
[PMID: 31251399]
[6]
Zang K, Zhang Y, Hu J, Wang Y. The large conductance calcium-and voltage-activated potassium channel (bk) and epilepsy. (CNS & Neurol Disord Drug Targets) 2018; 17(4): 248-54.
[7]
Zhu Y, Zhang S, Feng Y, Xiao Q, Cheng J, Tao J. The Yin and Yang of BK channels in epilepsy. (CNS & Neurol Disord Drug Targets) 2018; 17(4): 272-9.
[8]
Santhosh NS, Sinha S, Satishchandra P. Epilepsy: Indian perspective. Ann Indian Acad Neurol 2014; 17(Suppl. 1): S3-S11.
[PMID: 24791085]
[9]
Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 2016; 12: 2605-16.
[PMID: 27789949]
[10]
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2020; 167: 107605-19.
[PMID: 30980836]
[11]
Binder DK, Schramm J. Multilobar resections and hemispherectomy.Epilepsy: A Comprehensive Textbook. 2nd ed. Philadelphia: Lippincott-Raven 2008; pp. 1879-89.
[12]
Alba-Ferrara L, Kochen S, Hausmann M. Emotional Prosody Processing in Epilepsy: Some Insights on Brain Reorganization. Front Hum Neurosci 2018; 12: 92.
[PMID: 29593517]
[13]
Castaneda-Arellano R, Beas-Zarate C, Feria-Velasco AI, Bitar-Alatorre EW, Rivera-Cervantes MC. From neurogenesis to neuroprotection in the epilepsy: signalling by erythropoietin. Front Biosci 2014; 19: 1445-55.
[PMID: 24896364]
[14]
Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011; 10(2): 173-86.
[PMID: 21256455]
[15]
Golyala A, Kwan P. Drug development for refractory epilepsy: The past 25 years and beyond. Seizure 2017; 44: 147-56.
[PMID: 28017578]
[16]
Dong S, Liu Y, Xu J, Hu Y, Huang L, Wang Z. Synthesis and Evaluation of N-substituted (Z)-5-(benzo [d][1, 3] dioxol-5-ylmethylene)-2-thioxothiazolidin-4-one Derivatives and 5-substitutedthioxothiazolidindione Derivatives as Potent Anticonvulsant Agents CNS & Neuroll Disord Drug Targets 2019; 18(10): 798-807.
[17]
French JA. Refractory epilepsy: clinical overview. Epilepsia 2007; 48(Suppl. 1): 3-7.
[PMID: 17316406]
[18]
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant epilepsy: a current update on non-conventional pharmacological and non-pharmacological interventions. J Epilepsy Res 2015; 5(1): 1-8.
[PMID: 26157666]
[19]
French JA. Refractory epilepsy: one size does not fit all. Epilepsy Curr 2006; 6(6): 177-80.
[PMID: 17260051]
[20]
Sirven JI. Epilepsy: a spectrum disorder. Cold Spring Harb Perspect Med 2015; 5(9): a022848.
[PMID: 26328931]
[21]
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014; 55(4): 475-82.
[PMID: 24730690]
[22]
Engel J Jr. Approaches to refractory epilepsy. Ann Indian Acad Neurol 2014; 17(Suppl. 1): S12-7.
[PMID: 24791078]
[23]
Islam F, Ahmed S, Yasmeen BN, et al. Recent advances in the management of epilepsy. North Int Med Coll J 2014; 5(2): 353-6.
[24]
Sillanpää M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain 2006; 129(Pt 3): 617-24.
[PMID: 16401617]
[25]
Gidal BE. P-glycoprotein expression and pharmacoresistant epilepsy: cause or consequence? Epilepsy Curr 2014; 14(3): 136-8.
[PMID: 24940157]
[26]
Catchpool M, Dalziel K, Mahardya RTK, Harvey AS. Cost-effectiveness of epileptic surgery compared with medical treatment in children with drug-resistant epilepsy. Epilepsy Behav 2019; 97: 253-9.
[PMID: 31254845]
[27]
Schmidt D, Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 2005; 46(6): 858-77.
[PMID: 15946327]
[28]
Xu C, Wang Y, Zhang S, et al. Subicular pyramidal neurons gate drug resistance in temporal lobe epilepsy. Ann Neurol 2019; 86(4): 626-40.
[PMID: 31340057]
[29]
Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003; 53(4): 469-79.
[PMID: 12666114]
[30]
Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 1999; 36(2-3): 179-94.
[PMID: 10837715]
[31]
Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8(1): 967.
[PMID: 29343829]
[32]
Dombrowski SM, Desai SY, Marroni M, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001; 42(12): 1501-6.
[PMID: 11879359]
[33]
Leschziner GD, Andrew T, Pirmohamed M, Johnson MR. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J 2007; 7(3): 154-79.
[PMID: 16969364]
[34]
Feldmann M, Koepp M. P-glycoprotein imaging in temporal lobe epilepsy: in vivo PET experiments with the Pgp substrate [11C]-verapamil. Epilepsia 2012; 53(Suppl. 6): 60-3.
[PMID: 23134497]
[35]
Sukhai M, Yong A, Kalitsky J, Piquette-Miller M. Inflammation and interleukin-6 mediate reductions in the hepatic expression and transcription of the mdr1a and mdr1b genes. Mol Cell Biol Res Commun 2000; 4(4): 248-56.
[PMID: 11409920]
[36]
Calatozzolo C, Pollo B, Botturi A, et al. Multidrug resistance proteins expression in glioma patients with epilepsy. J Neurooncol 2012; 110(1): 129-35.
[PMID: 22832898]
[37]
Marchetti S. Effect of selected ABC-drug transporters and anticancer drug disposition in vitro and in vivo Doctoral dissertation, Utrecht University
[38]
Krishna R, Mayer LD. Modulation of P-glycoprotein (PGP) mediated multidrug resistance (MDR) using chemosensitizers: recent advances in the design of selective MDR modulators. Curr Med Chem Anticancer Agents 2001; 1(2): 163-74.
[PMID: 12678765]
[39]
Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 2002; 22(14): 5833-9.
[PMID: 12122045]
[40]
Owen A, Pirmohamed M, Tettey JN, Morgan P, Chadwick D, Park BK. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001; 51(4): 345-9.
[PMID: 11318771]
[41]
Bankstahl M, Klein S, Römermann K, Löscher W. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 2016; 109: 183-95.
[PMID: 27288003]
[42]
Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug target insights 2013; 7: DTI-S12519.
[43]
Deng X, Xie Y, Chen Y. Effect of neuroinflammation on ABC transporters: possible contribution to refractory epilepsy. (CNS & Neurol Disord Drug Targets) 2018; 17(10): 728-35.
[44]
Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr 2014; 37(4): 137-9.
[45]
Robey RW, Lazarowski A, Bates SE. P-glycoprotein--a clinical target in drug-refractory epilepsy? Mol Pharmacol 2008; 73(5): 1343-6.
[PMID: 18314494]
[46]
Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 2017; 8: 301.
[PMID: 28729850]
[47]
Kambli L, Bhatt LK, Oza M, Prabhavalkar K. Novel therapeutic targets for epilepsy intervention. Seizure 2017; 51: 27-34.
[PMID: 28772199]
[48]
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342(5): 314-9.
[PMID: 10660394]
[49]
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2010; 460(2): 395-403.
[PMID: 20091047]
[50]
Cain SM, Snutch TP. Voltage-gated calcium channels in epilepsy. Epilepsia 2010; 51: 11.
[51]
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82(1): 24-45.
[PMID: 24698266]
[52]
Rajakulendran S, Hanna MG. The role of calcium channels in epilepsy. Cold Spring Harb Perspect Med 2016; 6(1): a022723.
[PMID: 26729757]
[53]
Xu JH, Tang FR. Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci 2018; 19(9): 2735.
[PMID: 30213136]
[54]
Volk HA, Potschka H, Löscher W. Increased expression of the multidrug transporter P-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats. Epilepsy Res 2004; 58(1): 67-79.
[PMID: 15066676]
[55]
Brumberg JC, Nowak LG, McCormick DA. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci 2000; 20(13): 4829-43.
[PMID: 10864940]
[56]
Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 2005; 46(6): 967-9.
[PMID: 15946342]
[57]
Nicita F, Spalice A, Papetti L, Nikanorova M, Iannetti P, Parisi P. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 2014; 23(1): 36-40.
[PMID: 24113539]
[58]
Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 2008; 73(5): 1444-53.
[PMID: 18094072]
[59]
van Vliet EA, Zibell G, Pekcec A, et al. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 2010; 58(2): 404-12.
[PMID: 19786037]
[60]
Zibell G, Unkrüer B, Pekcec A, et al. Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 2009; 56(5): 849-55.
[PMID: 19371577]
[61]
Hartz AM, Bauer B. Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy. Mol Interv 2010; 10(5): 293-304.
[PMID: 21045243]
[62]
Soldner ELB, Hartz AMS, Akanuma SI, et al. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J 2019; 33(12): 13966-81.
[PMID: 31638830]
[63]
Pekcec A, Unkrüer B, Schlichtiger J, et al. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 2009; 330(3): 939-47.
[PMID: 19494186]
[64]
Takemiya T, Maehara M, Matsumura K, Yasuda S, Sugiura H, Yamagata K. Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 2006; 56(1): 103-10.
[PMID: 16837093]
[65]
Bankstahl JP, Hoffmann K, Bethmann K, Löscher W. Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology 2008; 54(6): 1006-16.
[PMID: 18394657]
[66]
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6(12): 81-90.
[PMID: 23055633]
[67]
Lim LL, Foldvary N, Mascha E, Lee J. Acetazolamide in women with catamenial epilepsy. Epilepsia 2001; 42(6): 746-9.
[PMID: 11422329]
[68]
Reiss WG, Oles KS. Acetazolamide in the treatment of seizures. Ann Pharmacother 1996; 30(5): 514-9.
[PMID: 8740334]
[69]
Sun Y, Luo X, Yang K, et al. Neural overexpression of multidrug resistance-associated protein 1 and refractory epilepsy: a meta-analysis of nine studies. Int J Neurosci 2016; 126(4): 308-17.
[PMID: 26000815]
[70]
Duan L, Di Q. Acetazolamide suppresses multi-drug resistance-related protein 1 and P-Glycoprotein expression by inhibiting aquaporins expression in a mesial temporal epilepsy rat model. Med Sci Monit 2017; 23: 5818-25.
[PMID: 29217817]
[71]
Chen YH, Wang CC, Xiao X, Wei L, Xu G. Multidrug resistance-associated protein 1 decreases the concentrations of antiepileptic drugs in cortical extracellular fluid in amygdale kindling rats. Acta Pharmacol Sin 2013; 34(4): 473-9.
[PMID: 23474709]
[72]
Supuran CT. Carbonic anhydrases as drug targets--an overview. Curr Top Med Chem 2007; 7(9): 825-33.
[PMID: 17504127]
[73]
Thiry A, Dogné JM, Supuran CT, Masereel B. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 2007; 7(9): 855-64.
[PMID: 17504130]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy